
PARIS: Planning Algorithms for Reconfiguring
Independent Sets

Remo Christen1, Salomé Eriksson1, Michael Katz2, Christian Muise3, Alice Petrov3, Florian Pommerening1,
Jendrik Seipp4, Silvan Sievers1 and David Speck4

1University of Basel, 2IBM T.J. Watson Research Center, 3Queen’s University, 4Linköping University

Abstract. Combinatorial reconfiguration is the problem of trans-
forming one solution of a combinatorial problem into another, where
each transformation may only apply small changes to a solution and
may not leave the solution space. An important example is the in-
dependent set reconfiguration (ISR) problem, where an independent
set of a graph (a subset of its vertices without edges between them)
has to be transformed into another by a sequence of transformations
that can replace a vertex in the current subset such that the new sub-
set is still an independent set. The 1st Combinatorial Reconfigura-
tion Challenge (CoRe Challenge 2022) was a competition focused
on the ISR problem. The PARIS team successfully participated with
two solvers that model the ISR problem as a planning task and em-
ploy different planning techniques for solving it. In this work, we de-
scribe these models and solvers. For a fair comparison to competing
ISR approaches, we re-run the entire competition under equal com-
putational conditions. Besides showcasing the success of planning
technology, we hope that this work will create a cross-fertilization of
the two research fields.

1 Introduction

Combinatorial reconfiguration studies the space of solutions for com-
binatorial problems. The task is to transform one solution of a com-
binatorial problem into a different one, without leaving the space of
solutions. Each transformation can only make a small change to the
current solution. The term was coined by Ito et al. [21] who show
that there is a host of problems derived from NP-complete (com-
binatorial) problems that fall into the category of combinatorial re-
configuration problems and that they are PSPACE-complete. Two
prominent examples for reconfiguration tasks are propositional satis-
fiability [22] and graph k-coloring [8]. But probably the most well-
studied representative of combinatorial reconfiguration tasks is the
independent set reconfiguration (ISR) problem [23].

An independent set of a graph is a subset of its vertices such that no
two vertices of the subset share an edge. Reconfiguring an indepen-
dent set means replacing one vertex in the subset with another one
such that the new subset is still an independent set. The ISR problem
is to find a sequence of such reconfiguration steps to reach a given
target configuration from a given start configuration. The problem is
PSPACE-complete [30], as hard as automated planning [7].
The 1st Combinatorial Reconfiguration Challenge (CoRe 2022)1

is a competition that compares practical combinatorial reconfigura-
tion algorithms. Its first instantiation targeted the ISR problem, fea-

1 https://core-challenge.github.io/2022

turing different tracks. We participated in the competition using two
solvers that model ISR problems as planning tasks and use various
planning techniques for solving them. Among the seven teams that
participated, our solvers achieved 4 first, 3 second, and 3 third places
across all tracks, winning the majority of awards.

In this work, we present the ISR problem and explain how we can
model it as a planning problem. We describe the technology used in
our solvers, which is mostly based on planning techniques, includ-
ing a technique for detecting unsolvable problems which we believe
to be useful for unsolvability planning in general. Furthermore, since
competitors of the competition ran their solvers themselves using dif-
ferent hardware and resource limits, we re-ran all of them under equal
computational conditions and report the results in this work. Besides
showcasing the success of planning technology, we also introduce a
problem that is new to our community. We believe this will lead more
planning researchers to develop ideas for the ISR problem and create
a cross-fertilization of the fields.

2 Background

A graph is a pair G = 〈V,E〉, where V is a set of vertices and E ⊆
{{u, v} | u, v ∈ V, v �= u} is a set of edges between the vertices. An
independent (vertex) set of a graph G is a subset of vertices I ⊆ V
such that no two vertices in the subset I are edges of G, i.e., for all
v, u ∈ I it holds that {v, u} �∈ E.

2.1 Independent Set Reconfiguration

Similar to Kaminski et al. [23], we consider an independent set as a
set of tokens placed on the vertices of a graphG, called token config-
uration, such that no two tokens are adjacent. The token jump recon-
figuration rule describes how to transform one token configuration
into another, moving a token from one vertex to any other unoccu-
pied vertex, so that the resulting configuration again describes an in-
dependent set. Note that the token can jump, i.e., it does not have
to move along an edge. Given the reconfiguration rule, we define a
reconfiguration sequence ρ = 〈I0, . . . , In〉 as a sequence of non-
repeating independent sets, where each set Ii with 1 ≤ i ≤ n results
from a single token jump from the previous set Ii−1. The length |ρ|
of a reconfiguration sequence ρ = 〈I0, . . . , In〉 is the number of to-
ken jumps inducing the sequence, i.e., |ρ| = n. The Independent Set
Reconfiguration decision problem [23] is defined as follows.

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230303

453

https://core-challenge.github.io/2022

Definition 1 (Independent Set Reconfiguration) Given a graph G
and two independent sets Is and It, the independent set reconfigu-
ration (ISR) decision problem is to determine whether there exists a
reconfiguration sequence ρ = 〈Is, . . . , It〉.

The ISR problem is a prominent representative of combinatorial
reconfiguration. It is known to be PSPACE-complete for general in-
put graphs [23, 30] and formed the central problem of CoRe 2022.

1

2 3

4

5

1

2 3

4

5· · ·

Figure 1: Visualization of the independent set reconfiguration prob-
lem described in Example 1 with a graph consisting of five nodes,
two tokens depicted in blue, the start independent set Is (left), and
the target independent set It (right).

Example 1 Figure 1 shows an ISR problem with the start set Is =
{1, 3} and the target set It = {2, 4}. A solution to this problem
is the reconfiguration sequence ρ = 〈{1, 3}, {3, 5}, {2, 5}, {2, 4}〉,
where first the token at node 1 is moved to node 5, then the token at
node 3 is moved to node 2, and finally the token at node 5 is moved
to node 4. This sequence has a length of |ρ| = 3, since it performs
three jumps and is the shortest sequence that solves the problem.

2.2 Combinatorial Reconfiguration Challenge

Similar to the International Planning Competition (IPC), CoRe 2022
featured different tracks. They can be separated into two main cate-
gories: graph tracks and solver tracks.

Graph Tracks In the graph tracks the objective was to construct
an ISR instance such that the shortest reconfiguration sequence is
as long as possible. For CoRe 2022 there were three graph tracks,
one each for graphs with 10, 50 and 100 nodes, and the team that
constructed the instance with the longest shortest reconfiguration se-
quence won the respective track.

Solver Tracks In total, there were three different solver tracks in
CoRe 2022: the existent, the shortest and the longest track, each fur-
ther subdivided into a single solver sub-track and a portfolio solver
sub-track. In the existent track, each solver that provided a recon-
figuration sequence for or detected unsolvability of an ISR instance
received one point. In contrast, the shortest and longest tracks consid-
ered the quality of the solutions, and solvers that provided the short-
est/longest (among the participants) reconfiguration sequence for an
instance received one point.2 The winning solver for each track was
the one that received the most points across all benchmark instances.

Note that the names shortest and longest are somewhat mislead-
ing. The aim in these tracks is to find a solution, aiming at as short-
/long loopless solutions as possible, but no guarantees on optimal-
ity are needed. To draw parallels between these tracks and Interna-
tional Planning Competition (IPC) tracks, the shortest track is ac-
tually more similar in that respect to the satisficing IPC track. Cur-

2 Reconfiguration sequences must be non-repeating. Therefore, participants
must search for loopless solutions in the longest track.

rently, there is no equivalent in planning competitions to the longest
track. The existent track is somewhat similar to the agile IPC track.

2.3 Classical Planning

In this paper, we propose to model the ISR problem as a classical
planning problem. For this, we consider the Planning Domain Def-
inition Language (PDDL) [27] and the SAS+ formalism [2] to de-
scribe classical planning problems. A (classical) planning problem
is a concise representation of a transition system with a single ini-
tial state, a compact description of the set of goal states, and a set of
actions with preconditions and effects that describe the transitions.
The objective is to derive a course of action that transforms the ini-
tial state into one of the goal states. While the full details of PDDL
are beyond the scope of this paper and are not necessary to follow
the content of the paper, the excerpts presented in this paper suffice
to present our contributions. For a more detailed account, we refer
the reader to the literature [17].

An SAS+ task formally is a tuple 〈V,A, I,G〉, where V is a finite
set of variables V , each with a finite domain dom(V), A is a finite
set of actions, I is the initial state, and G is the goal. Partial variable
assignments p map a subset of variables vars(p) ⊆ V to values in
their domain. Variable assignments s with vars(s) = V are called
states. A partial variable assignment p is satisfied in a state s if p
and s agree on vars(p). Each action a ∈ A consists of a precondi-
tion pre(a) and an effect eff(a), both partial variable assignments. An
action is applicable in a state if its precondition is satisfied, and ap-
plying it updates the state with values defined in its effect. A planner
finds a sequence of actions that is sequentially applicable and leads
from the initial state I to some state satisfying the partial variable
assignment G.

3 Graph Track

The graph track was dedicated to finding challenging ISR instances.
Our entry finished tied for third in n=10, and second for the n=50,
n = 100 instances. Drawing from the notion of “gadgets” in com-
putational complexity, we leverage a five-node subgraph called the
“house widget” in order to encode bit flips in a graph and thus require
an exponential plan length (exponential in the number of widgets in-
cluded). Each subgraph consists of a 4-cycle with two adjacent nodes
leading to a 5th node called the anchor. Figure 2 shows this widget
and all of its maximally independent sets. We call the configuration
on the left off and the configuration on the right on. The sequence in
Figure 2 is the (only) way for a house widget to “flip its bit”.

The house widget has a number of properties that make it ideal
to use as a building block in creating exponential sequences: (1) the
graph has an optimal “long” shortest reconfiguration sequence to flip
its bit for ISR instances with 5 nodes, and (2) each step of the recon-
figuration sequence consists of a maximum independent set. Also,
(3) this reconfiguration sequence is unique and (4) the anchor is oc-
cupied throughout the entire sequence of flipping the widget with
the exception of the starting state and ending state. Finally, (5) the
solution space is a path, and thus the behavior of the widget is pre-
dictable.

We treat our house widget as an individual bit and connect several
of them in a way that ensures exponential solutions. First, we make
the anchors a fully connected subgraph, guaranteeing that no two
houses can switch states simultaneously. The order of bit flips is then
enforced by connecting a house’s anchor to the bits previously seen
in the sequence. Figure 3 shows the connection that allows house 1

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets454

Figure 2: Reconfiguration sequence from off to on.

1 2

Figure 3: House 1 is unable to flip unless house 2 is on.

to switch only when house 2 is set to on. We add these connections
in an iterative way, with the addition of every new house widget. As
our base case, the first house has an initial configuration of off and a
goal of on. Suppose we have a sequence of k houses generated; we
add house k + 1 according to the following:

1. We can only flip house k+1 when the goal of house k is satisfied.
2. The new initial state is to have all houses off, and the new goal is

to have only the house k + 1 on.

This forces the plan length to double with each new house: achieve
the old goal of the k-house sequence, flip house k + 1, and then go
back to the initial state of the k house sequence. Thus, we have a set
of subgraphs connected in such a way that forces exponential growth
in plan length with every added house subgraph. Putting everything
together, graphs are generated as follows:

1. Create k houses.
2. Make the anchors of all houses a clique of order k.
3. Add edges according to the iterative method above.

3.1 Building on Planning Technology

What we present above is the culmination of extensive exploration
and intuition-building on the problem of generating difficult planning
instances for the ISR domain. Even though the final solution was free
of planning technology, the journey to a competitive entry was ripe
with planning-based insight. In the following, we highlight some of
the planning elements that proved essential to this exploration.

Similar to the early exploration in the solver tracks, the PLANU-
TILS library [29] allowed us to explore the instances we were gen-
erating easily with different planners. Beyond that, we gained in-
sight by leveraging state-of-the-art planners to compute the worst-
case goal configurations. To evaluate solutions for the graph track,
we used a manually modified version of Fast Downward’s A∗ search
with the blind heuristic, effectively giving us breadth-first search
(BrFS), in the following way:

1. Compute a target state with the furthest distance from the initial
state, by exhaustively expanding the search space with BrFS (we
modified the planner to output one such target state).

2. Use this newly-found state as a new initial configuration.
3. Repeat step 1 to find a new candidate initial state.

For some solution attempts, the above approach allowed us to find
not only a reasonable goal choice but an initial state candidate as
well. Finding pairs of states that are maximally far apart is closely
related to the computation of upper bounds for factored state-space
search [1], a problem that is NEXPTIME-hard.

Finally, the generated problems are meant to yield very long short-
est plans. In particular, by choosing the intial and goal configuration
such that every number encoded by the houses is traversed in the
solution, we can achieve a solution length of 3 · (2n/5 − 1). This
is because each house requires 5 nodes, each house induces 3 flips,
and we substract 1 because we count moves and not configurations.
We were able to use the breadth-first search from above to verify the
shortest plan lengths. E.g., in a matter of a few minutes, the planner
can find the shortest solution for our n = 100 instance with a length
of 3 · (220 − 1) = 3, 145, 725 actions.

In summary, the maturity of the technology produced by the plan-
ning community had a direct impact on our ability to iterate on ideas
for the graph tracks quickly.

3.2 Other Graph Construction Algorithms

Despite our guarantee of exponential growth, there was one approach
submitted by Bousquet, Durain, and Pierron (the tpierron team) that
outperformed our construction. While we use our widget even for
small graphs, the tpierron team brute-force the n = 10 case, focusing
on the diameter of the graph generated by reconfiguration sequences.

For n = 50 and n = 100, the tpierron team uses a larger, more
complex widget that has a longer reconfiguration sequence than ours.
While we connect widgets of size 5, they connect widgets of size 10
in such a way that results in 4 · d transitions in the previous graph
G, where d is the length of the reconfiguration sequence in the orig-
inal graph G. That is, for every new widget added, the sequence is
increased by a factor of 4 and 10 additional transitions are forced in
the added widget to constructG′. Thus, they produce a sequence that
grows at a rate of 4d+ 10.

They then connect widgets in a way that requires a complete se-
quence of transitions in the original graph for a partial sequence of
transitions in the added widget. In contrast, we connect widgets in
a way that requires a complete sequence of transitions between all
widgets, i.e., each house widget must completely flip before another
can be adjusted.

They do so while retaining the requirement that tokens can only
move following the maximum reconfiguration sequence in both G
and G′. As a result, in the n = 50 scenario, the tpierron team
achieved a reconfiguration sequence length of 3410 compared to our
length of 3069, and in the n = 100 case, they reached a length of
3495250 compared to our length of 3145725. For more details on
their submission, see “Graph track description” by Nicolas Bousquet,
Bastien Durain, and Theo Pierron in the Core 2022 booklet [34].

4 Planning Encoding

The planning domain definition language (PDDL) is the de-facto
standard language for modeling planning tasks [17], and most plan-
ning tools are built with PDDL as their input language. The ISR
problem can be encoded in PDDL by introducing a single lifted ac-
tion to move a token from one location to another. Figure 4 shows the
PDDL code for this move action, with comments interleaved. We call
this the single encoding. While the encoding itself is quite compact,
grounding these tasks is slow. In an ISR instance with n nodes, n2

move actions have to be created. As we are dealing with graphs of

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets 455

(: a c t i o n move
: p a r am e t e r s (? l 1 ? l 2 − l o c)
: p r e c o n d i t i o n (and

(t okened ? l 1) ; Source has t oken
(f r e e ? l 2) ; D e s t i n a t i o n i s f r e e
; D e s t i n a t i o n ’ s n e i g h bo r s a r e f r e e
(f o r a l l (? l 3 − l o c) (imply

(and (no t (= ? l 1 ? l 3))
(edge ? l 2 ? l 3))

(f r e e ? l 3))))
: e f f e c t (and

; Source i s f r e e
(no t (t okened ? l 1)) (f r e e ? l 1)
; D e s t i n a t i o n has t oken
(t okened ? l 2) (no t (f r e e ? l 2))))

Figure 4: Single PDDL encoding using one move action.

(: a c t i o n p i ck
: p a r am e t e r s (? l 1 − l o c)
: p r e c o n d i t i o n (and

(h a nd f r e e) ; Not h o l d i n g a t oken
(t okened ? l 1)) ; Source has t oken

: e f f e c t (and
; Hold ing a token
(no t (h a nd f r e e)) (h o l d i n g)
; Source i s f r e e
(f r e e ? l 1) (no t (t okened ? l 1))))

(: a c t i o n p l a c e
: p a r am e t e r s (? l 1 − l o c)
: p r e c o n d i t i o n (and

(h o l d i n g) ; Hold ing a t oken
(f r e e ? l 1) ; D e s t i n a t i o n i s f r e e
; D e s t i n a t i o n ’ s n e i g h bo r s a r e f r e e
(f o r a l l (? l 2 − l o c) (imply

(edge ? l 1 ? l 2) (f r e e ? l 2))))
: e f f e c t (and

; Not h o l d i n g a token
(no t (h o l d i n g)) (h a nd f r e e)
; D e s t i n a t i o n has t oken
(no t (f r e e ? l 1)) (t okened ? l 1)))

Figure 5: Split PDDL encoding using two actions.

up to 40000 nodes, this can be problematic. To overcome this issue,
we tested two approaches. The first is manual pre-grounding, called
single-grounded. This does not help with the quadratic number of
actions but avoids overhead creating the SAS+ representation. The
second approach, called split, is to split the move action into two
actions, pick and place. It is presented in Figure 5. In this encod-
ing, we only need 2n actions but plans are twice as long and have
to be post-processed. Even this encoding can be slow to ground and
can be sped up significantly with pre-grounding, which we call split-
grounded. Ultimately, we found the split-grounded encoding to be
the most efficient, and so we used it for all tracks and solvers.

The planning systems we used are all built on the Fast Down-
ward planning system [18], which first translates the input PDDL
into SAS+ [2] before searching for a plan. While we used the afore-
mentioned PDDL encodings for the bulk of the development work
for the contest, our final submission directly encodes the input tasks
into the split SAS+ format to save on the computational effort re-
quired by this translation.

We encode a given ISR problem 〈G, Is, It〉 with a graph G =
〈V,E〉, as an SAS+ task 〈V,A, I,G〉 in the following way. The
variables V = V ∪ {hand} contain one binary variable for each
node in the graph to represent if there is a token on this node, and a
binary variable hand to represent if we are currently holding a token.
The domain of all variables is {free, occupied}. The initial state is
I = {v 	→ occupied | v ∈ Is}∪{v 	→ free | v ∈ V \Is}∪{hand 	→
free}, and the goal is G = {v 	→ occupied | v ∈ It} ∪ {v 	→ free |
v ∈ V \ It} ∪ {hand 	→ free}. Note that specifying the occupied
nodes in the goal would also be sufficient but specifying a value for
all variables can help the planners realize that there is exactly one
goal state.

The actions are analogous to the ones shown in Figure 5. There
is an action pick(v) ∈ A for every v ∈ V and it has the precon-
dition pre(pick(v)) = {v 	→ occupied, hand 	→ free} and effect
eff(pick(v)) = {v 	→ free, hand 	→ occupied}. I.e., picking up a to-
ken is possible from all nodes that have a token, as long as we are not
already holding one. Additionally, there is an action place(v) ∈ A
for every v ∈ V and it has the precondition pre(place(v)) = {v 	→
free, hand 	→ occupied} ∪ {v′ 	→ free | {v, v′} ∈ E} and effect
eff(place(v)) = {v 	→ occupied, hand 	→ free}. So placing a held
token is only possible on positions that currently have no token and
have only free neighbors. The latter ensures every reachable config-
uration is an independent set.

5 Finding Solutions

We use sequential algorithm portfolios for each of the three solver
tracks. That is, we run a sequence of algorithms, each with an asso-
ciated time limit. The next section describes the algorithms that we
use in our sequential portfolios.

5.1 Planning Algorithms

After testing various planning heuristics from the literature in ex-
ploratory experiments, we found landmark-based heuristics to work
well on ISR tasks. Relaxation-based heuristics, such as FF [19] and
Red-black [13] did not contribute to search performance. Interest-
ingly, both for satisficing and optimal planning, it is best to combine
the landmark costs admissibly.

A∗+Landmarks We run an A∗ search [16] with a landmark count
heuristic [24] that uses two different kinds of landmarks: h1 land-
marks [26] and RHW landmarks [32]. The landmark costs are com-
bined with uniform cost partitioning [25], which ensures that the re-
sulting heuristic is admissible. As a result, this algorithm is optimal,
sound, and complete, i.e., if it reports a plan, this is a shortest plan,
if it reports unsolvability, the task is indeed unsolvable, and given
sufficient resources, it will terminate.

GBFS+Landmarks We run a greedy best-first search (GBFS)
[14] with a landmark count heuristic [24] over h1 landmarks [26].
Again, the landmark costs are combined with uniform cost partition-
ing. This algorithm is sound and complete, but not optimal.

Symbolic Search We run a forward symbolic blind search [38, 36]
using Binary Decision Diagrams [6] as the underlying data structure.
The symbolic planner we use is SymK [37], which uses CUDD [35]
as its decision diagram library. This search is optimal, sound and
complete.

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets456

Symbolic Top-k Search The problem of finding a plan that is as
long as possible is not commonly considered in the planning com-
munity, but only in the context of approximating the longest possible
solution in SAT-based planning [1]. Interestingly, the search for the
longest path in a compactly represented graph is NEXPTIME-hard
[31] and is therefore considered more complex than ordinary satisfic-
ing or optimal planning, which are known to be PSPACE-hard [7].
Cohen et al. [11] investigated heuristic search for finding the longest
path for a given explicitly represented graph. While this is an inter-
esting line of research to be applied in the context of planning, in the
CoRe 2022 challenge we were interested in finding a long plan, but
not necessarily the longest.

To find long plans, we run a forward symbolic blind search based
on the algorithm SymK-LL [39], implemented in the symbolic search
planner SymK [37], which iteratively finds and generates all loopless
plans for a task. However, we have made the following adjustments
to find long loopless plans. First, once we find a goal state reachable
with cost c, we reconstruct only one loopless plan with cost c and
ignore all other plans with the same cost. Second, since the split en-
coding introduces intermediate states in which a token is held, we
ignore these artificial states when evaluating if a plan is loopless dur-
ing the plan reconstruction of SymK-LL. This algorithm iteratively
finds longer plans, starting with the shortest one, and eventually finds
the longest loopless plan, given enough resources.

Counter Abstraction We abstract the problem to a planning prob-
lem that counts how many tokens are in certain positions and check
for unsolvability in the abstraction. Since this algorithm is new, we
describe it in more detail in Section 5.6.

We now describe our sequential algorithm portfolios. Our portfolio
for the existent track is identical to the one for the shortest track.

5.2 Portfolio for shortest and existent Tracks

The competition enforced no resource constraints and left it up to the
competitors for how long they want to run their solvers. We decided
on the following time limits for our portfolio based on some initial
test that showed diminishing returns for higher limits. If one step in
the portfoilo finds a solution, the remaining steps are skipped.

1. Counter abstraction: 10 seconds
2. Symbolic search: 70 minutes
3. A∗+Landmarks: 70 minutes
4. GBFS+Landmarks: 70 minutes
5. Counter abstraction: 14 hours

Note that we use counter abstraction twice: first with a small time
limit at the start of the portfolio to handle all tasks where we can
quickly prove unsolvability. Then again with a large time limit after
all other components to cover hard unsolvable instances.

5.3 Single Solver for shortest and existent Tracks

We ran GBFS+Landmarks for 70 minutes as our single-solver sub-
mission since it has the highest coverage among all components.

5.4 Portfolio for longest Track

Our portfolio for the longest track executed two components: (1)
GBFS+Landmarks for 330 seconds and (2) Symbolic top-k search
for 70 minutes. If the former found a solution, we used the cost of
that solution as a lower solution bound for the latter, so that symbolic

〈3, 0〉 〈2, 1〉〈2, 1〉 〈1, 2〉 〈0, 3〉

Figure 6: Example coloring for the counter abstraction approach. Top:
initial state (left) and goal state (right). Nodes are colored gray if they
have a token in the initial state but not the goal state, and are colored
white if they have no token in the initial state but a token in the goal
state. Bottom: the abstract state space. Dashed nodes are pruned.

top-k only reconstructed solutions longer than the solution we al-
ready had. As a fallback, if neither of the two approaches produced a
solution longer than the shortest/existent tracks, we used the solution
to the shortest/existent tracks as a default.

5.5 Single Solver for longest Track

We ran symbolic top-k search for 70 minutes as our single-solver
submission for the longest track. Note that we did not use the “fall-
back” option for this single-track submission.

5.6 Counter Abstraction

The counter abstraction component of our solver tries to detect if the
task is unsolvable by abstracting it to a planning problem that counts
the number of tokens in certain locations. This idea is inspired by
counter abstractions in the area of model checking (e.g., [40]). Sim-
ilar ideas where proposed in the area of planning as well [33]. In
model checking, counter abstractions are usually used for symme-
try reduction, whereas we do not require the abstracted parts to be
symmetric to each other.

Given an ISR problem, we produce a coloring of the vertices in
the graph, i.e., a function that maps each vertex of the graph to one
color. We opted for a simple strategy that uses up to four colors: one
each for nodes that

• contain a token both in the initial and in the goal state;
• contain a token only in the initial but not in the goal state;
• contain a token only in the goal but not in the initial state;
• are empty in the initial and goal state.

Colors for situations that do not occur are not used. For example,
the task in Figure 6 only requires two colors.

Given a coloring, each original state can be abstracted to a state
with one counter variable per color that tracks how many tokens cur-
rently are on vertices with this color. For example, the initial state
in Figure 6 has 3 tokens on gray nodes and 0 on white nodes, so
it can be represented as the state 〈3, 0〉. The goal has all three to-
kens on white nodes and none on gray, so it can be represented
by 〈0, 3〉. Moving a token from a node colored ci to a node col-
ored cj changes the abstract state from 〈c1, . . . , ci, . . . , cj , . . . , cn〉
to 〈c1, . . . , ci − 1, . . . , cj +1, . . . , cn〉. The main observation is that
if any solution to the full problem exists, there has to be a solution
in the abstraction as well. We thus construct the state space of the
abstraction in the following way.

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets 457

existent shortest longest CoRe 2022 limits

#c #e #c #e c score e score #c #e c score e score time (s) mem (GiB) cores

JUNKAWAHARA 122 175 110 130 110.00 130.00 21 29 44.16 56.88 600 32 1
PARIS 334 322 275 275 282.74 280.12 143 233 183.24 251.53 62610 16 32∗

RECONFAIGERATION 257 246 152 214 201.36 214.00 54 29 83.02 29.00 10000 128 4
RECONGO 244 240 238 236 238.00 236.00 115 26 155.93 26.00 12600 96 1
TELEMATIKTUHH 326 303 280 267 280.00 267.00 27 32 76.51 87.95 144000 60 2
TODA 207 211 134 77 164.36 117.76 31 70 60.45 108.20 ∼ 10000 32 1

Table 1: Coverage results from both the competition (c) and our experiments (e). “#” indicates the total number of problems solved or found
to be the shortest/longest. The “score” columns contain an evaluation metric that gives partial points for finding some solution (see text for
details). The last column reports the limits used by the teams in the competition. If different limits were used in different tracks, we report the
maximum. Our solver mostly runs on a single core but the MIP solver used by the counter abstractions used 32 cores for the competition.

For a state s = 〈c1, . . . , cn〉, we construct one successor for each
pair of unique colors ci and cj that differs from s by a single token
that moved from ci to cj . In our running example, the initial state
〈3, 0〉 has a single successor 〈2, 1〉, and this state has two successors
〈3, 0〉 (skipped as we have already seen this state) and 〈1, 2〉. The
latter state now has the abstract goal 〈0, 3〉 as a successor (Figure 6).

Whenever we generate a state, we check whether such a state is re-
alizable (independent of whether it is reachable). If it is not possible
to place the tokens on the respective colors in the required way, we
do not have to consider it or its successors. In our running example,
the state 〈1, 2〉 is not realizable: no matter which two white nodes we
occupy, they always block all three gray nodes.

We use a mixed-integer program (MIP) solver to test if a state s
is realizable by checking if the following system of constraints has a
solution:

xi + xj ≤ 1 for all edges 〈i, j〉 in the graph
∑

i∈Nc

xi ≥ s[c] for all colors c

xi ∈ {0, 1} for all nodes i,

where Nc is the set of all nodes with color c and s[c] is the amount
of tokens that should have color c in state s. The abstract state s is
realizable iff the constraints have a solution.

If we generate a state that matches the goal state (〈0, 3〉 in our ex-
ample), we know that there is an abstract plan. In this case, we still
do not know if there is a real plan and return unknown (this com-
ponent of the solver is incomplete). However, if there is no solution
to the abstract problem, there cannot be a solution to the original
problem. The abstract state space is usually small enough to explore
completely. In our running example, it only has 4 states, and we only
have to explore 3 of them, as we prune state 〈1, 2〉.

While the MIP we use to check for realizability of abstract states
is specific to ISR, the rest of the technique is domain-independent,
and we will explore this further in the future.

5.7 Other Competitors

Across all solver tracks, seven teams competed at CoRe 2022. Three
of them were classified as portfolios: our portfolio, the submission
by Turau and Weyer (TELEMATIKTUHH), and the one by Froleyks,
Yu, and Biere (RECONFAIGERATION) in the existent track.

TELEMATIKTUHH tackles the problem by searching in the space
of independent sets running two algorithms concurrently: an iter-
ative deepening A∗ search using the number of misplaced tokens
as heuristic value for finding optimal solutions, and a breadth-first

search for detecting unsolvability. These algorithms are enhanced by
domain-specific successor generation and memory optimization.

In the existent track RECONFAIGERATION first transforms the
problem to circuits represented as and-inverter graphs in the AIGER
format [4], and then solves them with ABC [5], a model checker
that runs several algorithms concurrently. In the other tracks it repre-
sents tasks as SAT formulas encoding increasingly longer reconfig-
uration sequences. The resulting bounded model checking problems
are solved by the incremental SAT solver CaDiCaL [3].

Among non-portfolio entries, the one by Yamada, Kato, Kosuge,
Takeuchi, and Banbara (RECONGO) achieved strong results. They
translate instances into answer set programs and leverage clingo [15]
as an off-the-shelf solver. Toda (TODA) initially runs a greedy search
and directly returns its suboptimal solution upon success. If it does
not reach the goal, the problem is recast to a bounded model checking
task where the state reached by the search is the initial state. This step
is further informed by edge clique covers computed by ECC [12] and
solved by the bounded model checker NuSMV [10].

Kawahara and Yamazaki (JUNKAWAHARA) work with families of
independent sets, such as the initial independent set, or the family of
all independent sets. They represent such families as zero-suppressed
binary decision diagrams (ZDD) [28] and generate successors using
set operations on ZDDs implemented using Graphillion [20].

Lastly, Blé, Cui, Wu, and Zhong (TIGRISG) rely on a state-action-
reward-state-action approach [34].

6 Evaluation

For our experiments, we converted the Docker images of each com-
peting solver to Singularity images (for improved performance) and
ran all solvers in a unified setup on 10 cores with a 2 hours timeout
and a 60 GiB memory limit. All evaluations were run on Intel Xeon
E5-2660 processors running at 2.2 GHz. We omitted team TIGRISG

because we could not run their Docker container, and their team lost
contact with the person who created it. For the PARIS portfolio, we
adjusted the resource allocation to distribute the time to its compo-
nents proportionally to the overall time limit rather than hard-coded,
and fixed a bug (described below). The code for generating the Sin-
gularity images, as well as all benchmarks, scripts and data from the
evaluation are available online [9].

The shift in evaluation methodology is worth highlighting. In con-
trast to the contest setting, where competitors were allowed to run
their methods on their own hardware without any resource con-
straints, we want to have a uniform analysis of the various ap-
proaches. This mitigates any bias that may stem from different teams
having different computing infrastructure. We can also see in the last
columns of Table 1 that teams allocated very different amounts of

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets458

existent shortest longest

+ - + - + -

JUNKAWAHARA 168 21 158 13 217 13
RECONFAIGERATION 76 0 61 0 205 1
RECONGO 82 0 39 0 210 3
TELEMATIKTUHH 19 0 17 9 202 1
TODA 111 0 198 0 210 47

Table 2: Per-task comparison showing how often PARIS performs
better (+) or worse (-) than other competitors in our experiments.

resources to their solvers. By using one set of limits, we might bias
the results towards a solver but we aimed to select limits sufficiently
high that all solvers can show their strengths.

Table 1 compares the coverage results we obtained with the ones
from the competition. For the existent track, coverage drops in most
cases compared to the competition since the competition gave no re-
strictions on resource usage and most submissions had a significantly
higher timeout. Teams JUNKAWAHARA and TODA are the excep-
tions due to lower limits in the competition: the former used only 10
minutes and the latter only 32 GiB of memory. However, the solver
ranking by coverage remains the same.

For the shortest and longest tracks, solvers only obtain a score
of 1 for a task if their solution is the best one among all com-
petitors. This makes an analysis between the competition and our
evaluation difficult since different best solutions might have been
found. We note that for shortest, RECONFAIGERATION shows im-
proved performance, most likely because their submission used only
32 GiB of memory while we use 60 GiB. For longest, the scores
of both RECONFAIGERATION and RECONGO drop significantly
since they used a much higher time/memory limit in the competition,
while PARIS performs significantly better. The latter is because in
the competition, our submission for longest used the solutions from
shortest as a seed to find longer plans, and we accidentally passed
information that was processed incorrectly when we did not find a
solution for shortest. For this experiment, we instead recompute a
(not necessarily shortest) plan in the beginning and handle the case
of no found plan correctly.

We also use a scoring function that gives partial points for finding
some solution; for shortest it is the ratio of the shortest reported so-
lution and the found solution, for longest it is the ratio of the found
solution and the longest reported solution. Table 1 indicates that in
shortest, many solvers compute only shortest solutions since their
score is identical to their coverage. In contrast, solvers that perform
poorly in longest often find long solutions but not the longest ones.

Table 2 holds a per-task comparison between PARIS and the other
solvers according to the competition metrics. Overall, JUNKAWA-
HARA complements PARIS the best, followed by TELEMATIK-
TUHH and TODA in the shortest and longest tracks, respectively.
Figure 7 shows how many tasks each solver from the existent track

solves within a given time limit. For the portfolio approaches, the plot
reveals sharp increases in coverage around the time the next com-
ponent starts. TELEMATIKTUHH and RECONFAIGERATION solve
many tasks within the first ten seconds and then only a few more
later on. RECONGO, TODA and JUNKAWAHARA solve fewer tasks
in the first few seconds and also fail to reach the total coverage score
of TELEMATIKTUHH within the allotted 7200 seconds. PARIS is
also slow to solve the easy tasks but eventually exceeds all other ap-
proaches given enough time. The reason for this slow start is simply
that the time slices of PARIS are optimized for coverage not speed.

Finally, we rerun each component of our existent portfolio sepa-

100 101 102 103
0

100

200

300

Runtime (seconds)

C
ov
er
ag
e

PARIS RECONGO

TELEMATIKTUHH TODA

RECONFAIGERATION JUNKAWAHARA

Figure 7: Number of tasks solved by competitors from the existent
track within a given time limit on a log scale.

rately to quantify their contribution. We use individual resource lim-
its of 70 minutes and 16 GiB, similar to our competition submis-
sion. First, we analyze how many tasks each component solves that
none of the previous components solved. Symbolic search solves 228
tasks, A∗+Landmarks adds another 45, GBFS+Landmarks 16 more
and finally the counter abstraction detects 37 tasks as unsolvable. In
the competition, the higher timeout (14 hours) for this last compo-
nent lead to solving 9 more tasks, raising total (simulated) coverage
to 335 tasks. Second, we analyze how many tasks are only solved by
a single component: 16 for symbolic search, 0 for A∗+Landmarks,
16 for GBFS+Landmarks and 37 for the counter abstraction. While
A∗+Landmarks is dominated by GBFS+Landmarks, it returns op-
timal solutions, making it an important contributor for the shortest
track. The counter abstraction is very important for detecting unsolv-
able tasks, since no other component is able to handle any of the tasks
that it solved.

7 Conclusions

In this paper, we introduced the independent set reconfiguration
problem, one of the most-studied problems of combinatorial recon-
figuration, as a testbed for planning algorithms. We modeled this
problem as a planning task and adapted different planning techniques
for solving it, including a new technique for detecting unsolvable
ISR problems that we think can be generalized to unsolvability plan-
ning. The resulting solvers participated successfully in the 1st Com-
binatorial Reconfiguration Challenge (2022), winning the majority
of awards in multiple tracks. We re-ran all solvers of the competition
under equal computational conditions for a more thorough analysis
and investigated the strengths and weaknesses of our planning-based
solvers. Our findings show that the independent set reconfiguration
problem is an interesting and challenging problem for planning, and
our algorithms are currently among the best approaches for solving
it. We hope that these findings will prompt more planning researchers
to tackle the ISR problem and create a cross-fertilization of the fields.

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets 459

Acknowledgements

This work was partially supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation programme un-
der grant agreement no. 952215, by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, and the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The computations
were partly enabled by resources provided by the National Aca-
demic Infrastructure for Supercomputing in Sweden (NAISS) and
the Swedish National Infrastructure for Computing (SNIC), partially
funded by the Swedish Research Council through grant agreements
no. 2022-06725 and no. 2018-05973.

References

[1] Mohammad Abdulaziz, Charles Gretton, andMichael Norrish, ‘A state-
space acyclicity property for exponentially tighter plan length bounds’,
in Proc. ICAPS 2017, pp. 2–10, (2017).

[2] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+
planning’, Computational Intelligence, 11(4), 625–655, (1995).

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian
Heisinger, ‘CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020’, in Proc. SAT Competition 2020,
pp. 51–53, (2020).

[4] Armin Biere, Keijo Heljanko, and Siert Wieringa, ‘AIGER 1.9 and be-
yond’, Technical Report 11/2, Johannes Kepler University, Institute for
Formal Models and Verification, (2011).

[5] Robert Brayton and Alan Mishchenko, ‘ABC: An academic industrial-
strength verification tool’, in Proc. CAV 2010, pp. 24–40, (2010).

[6] Randal E. Bryant, ‘Graph-based algorithms for Boolean function ma-
nipulation’, IEEE Transactions on Computers, 35(8), 677–691, (1986).

[7] Tom Bylander, ‘The computational complexity of propositional
STRIPS planning’, AIJ, 69(1–2), 165–204, (1994).

[8] Luis Cereceda, Mixing graph colourings, Ph.D. dissertation, London
School of Economics and Political Science, 2007.

[9] Remo Christen, Salomé Eriksson, Michael Katz, ChristianMuise, Alice
Petrov, Florian Pommerening, Jendrik Seipp, Silvan Sievers, and David
Speck. Code and experimental data for the ECAI 2023 paper “PARIS:
Planning Algorithms for Reconfiguring Independent Sets”. https://doi.
org/10.5281/zenodo.8206715, 2023.

[10] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella, ‘NuSMV 2: An opensource tool for symbolic model
checking’, in Proc. CAV 2002, pp. 359–364, (2002).

[11] Yossi Cohen, Roni Stern, and Ariel Felner, ‘Solving the longest simple
path problem with heuristic search’, in Proc. ICAPS 2020, pp. 75–79,
(2020).

[12] Alessio Conte, Roberto Grossi, and Andrea Marino, ‘Large-scale clique
cover of real-world networks’, Information and Computation, 270,
104464, (2020). Special Issue on 26th London Stringology Days &
London Algorithmic Workshop.

[13] Carmel Domshlak, Jörg Hoffmann, andMichael Katz, ‘Red-black plan-
ning: A new systematic approach to partial delete relaxation’, AIJ, 221,
73–114, (2015).

[14] James E. Doran and Donald Michie, ‘Experiments with the graph tra-
verser program’, Proceedings of the Royal Society A, 294, 235–259,
(1966).

[15] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, ‘Multi-shot ASP solving with clingo’, Theory and Practice of
Logic Programming, 19(1), 27–82, (2019).

[16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, IEEE Transactions
on Systems Science and Cybernetics, 4(2), 100–107, (1968).

[17] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian
Muise, An Introduction to the Planning Domain Definition Language,
volume 13 of Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool, 2019.

[18] Malte Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–
246, (2006).

[19] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast
plan generation through heuristic search’, JAIR, 14, 253–302, (2001).

[20] Takeru Inoue, Hiroaki Iwashita, Jun Kawahara, and Shin-ichi Minato,
‘Graphillion: software library for very large sets of labeled graphs’,
Software Tools for Technology Transfer, 18, 57–66, (2016).

[21] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Pa-
padimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno, ‘On the
complexity of reconfiguration problems’, in Proc. ISAAC 2008, pp. 28–
39, (2008).

[22] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Pa-
padimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno, ‘On the
complexity of reconfiguration problems’, Theoretical Computer Sci-
ence, 412(12-14), 1054–1065, (2011).

[23] Marcin Kaminski, Paul Medvedev, and Martin Milanic, ‘Complexity
of independent set reconfigurability problems’, Theoretical Computer
Science, 439, 9–15, (2012).

[24] Erez Karpas and Carmel Domshlak, ‘Cost-optimal planning with land-
marks’, in Proc. IJCAI 2009, pp. 1728–1733, (2009).

[25] Michael Katz and Carmel Domshlak, ‘Structural patterns heuristics via
fork decomposition’, in Proc. ICAPS 2008, pp. 182–189, (2008).

[26] Emil Keyder, Silvia Richter, and Malte Helmert, ‘Sound and com-
plete landmarks for and/or graphs’, in Proc. ECAI 2010, pp. 335–340,
(2010).

[27] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins, ‘PDDL
– The Planning Domain Definition Language – Version 1.2’, Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control, Yale University, (1998).

[28] Shin-ichi Minato, ‘Zero-suppressed BDDs for set manipulation in com-
binatorial problems’, in Proc. DAC 1993, pp. 272–277, (1993).

[29] Christian Muise, Florian Pommerening, Jendrik Seipp, and Michael
Katz, ‘Planutils: Bringing planning to the masses’, in ICAPS 2022 Sys-
tem Demonstrations and Exhibits, (2022).

[30] Naomi Nishimura, ‘Introduction to reconfiguration’, Algorithms, 11(4),
52, (2018).

[31] Christos H. Papadimitriou and Mihalis Yannakakis, ‘A note on succinct
representations of graphs’, Information and Control, 71(3), 181–185,
(1986).

[32] Silvia Richter, Malte Helmert, and Matthias Westphal, ‘Landmarks re-
visited’, in Proc. AAAI 2008, pp. 975–982, (2008).

[33] Pat Riddle, Jordan Douglas, Mike Barley, and Santiago Franco, ‘Im-
proving performance by reformulating PDDL into a bagged represen-
tation’, in ICAPS 2016 Workshop on Heuristics and Search for Domain-
independent Planning, pp. 28–36, (2016).

[34] Takehide Soh, Yoshio Okamoto, and Takehiro Ito. Core challenge 2022
solver and graph descriptions. arXiv:2208.02495 [cs.AI], 2022.

[35] Fabio Somenzi. CUDD: CU decision diagram package - release 3.0.0.
https://github.com/ivmai/cudd, 2015. Accessed: 2023-04-03.

[36] David Speck, Florian Geißer, and Robert Mattmüller, ‘When perfect
is not good enough: On the search behaviour of symbolic heuristic
search’, in Proc. ICAPS 2020, pp. 263–271, (2020).

[37] David Speck, Robert Mattmüller, and Bernhard Nebel, ‘Symbolic top-k
planning’, in Proc. AAAI 2020, pp. 9967–9974, (2020).

[38] Álvaro Torralba, Vidal Alcázar, Peter Kissmann, and Stefan Edelkamp,
‘Efficient symbolic search for cost-optimal planning’, AIJ, 242, 52–79,
(2017).

[39] Julian von Tschammer, Robert Mattmüller, and David Speck, ‘Loopless
top-k planning’, in Proc. ICAPS 2022, pp. 380–384, (2022).

[40] Thomas Wahl and Alastair Donaldson, ‘Replication and abstraction:
Symmetry in automated formal verification’, Symmetry, 2, 799–847,
(2010).

R. Christen et al. / PARIS: Planning Algorithms for Reconfiguring Independent Sets460

https://doi.org/10.5281/zenodo.8206715
https://doi.org/10.5281/zenodo.8206715

	Introduction
	Background
	Independent Set Reconfiguration
	Combinatorial Reconfiguration Challenge
	Classical Planning

	Graph Track
	Building on Planning Technology
	Other Graph Construction Algorithms

	Planning Encoding
	Finding Solutions
	Planning Algorithms
	Portfolio for shortest and existent Tracks
	Single Solver for shortest and existent Tracks
	Portfolio for longest Track
	Single Solver for longest Track
	Counter Abstraction
	Other Competitors

	Evaluation
	Conclusions

