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Abstract. Games that are played in a dynamic model have been
studied in several contexts, such as cybersecurity and planning. In
this paper, we introduce a logic for reasoning about a particular class
of games with temporal goals played in a dynamic model. In such
games, the actions of a player can modify the game model itself. We
show that the model-checking problem for our logic is decidable in
polynomial-time. Then, using this logic, we show how to express in-
teresting properties of cybersecurity games defined on attack graphs.

1 Introduction

Establishing the soundness of both software and hardware systems
is not a mundane task, especially when they are distributed. In the
past fifty years, researchers have come up with different solution to
this problem, and a story of success is the use of formal methods
techniques [16]. These techniques make it possible to verify the cor-
rectness of a system by formally inspecting whether a mathemati-
cal model of it satisfies a formal depiction of its desired behavior.
In particular, classic formal approaches such as model checking and
automata-theoretic techniques, originally developed for monolithic
systems [17, 27], have been meaningfully extended to handle open
and multi-agent systems [28, 4, 33, 34, 23]. Multi-agent systems
model the behavior of two or more rational agents interacting with
each other (cooperatively or adversarially) and whose aim is achiev-
ing a certain goal [24]. Usually, such a behavior is modeled by means
of a mixture of (temporal or modal) logic and game theory: agents are
seen as players of games played over directed graphs (called arenas)
and their objectives are specified by means of logical formulae. For
instance, the syntax of logics such as ATL and Strategy Logic [3, 34],
allows one to express the fact that a coalition of players has a strat-
egy for reaching a certain goal by acting cooperatively. In all the
above logics, the game model, where the players are playing, is con-
sidered as a fixed object: players’ actions determine their location
inside the arena but do not modify the structure of the arena itself.
In contrast, games that are played in a dynamic (i.e., changing) game
model have been studied in several contexts, such as cybersecurity
and planning [35, 37, 11, 13].

In this paper, we introduce a logic for reasoning about a particu-
lar class of games with temporal goals played in a dynamic model.
These games, are played over a directed graph by two players: the
Demon and the Traveler. Each edge e of the graph has an associ-
ated deactivation-cost C(e). Each round of the game is composed by
a move of the Demon followed by a move of the Traveler: given a
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node v of the graph and a natural number n, the Demon deactivates
a proper subset E of the set of edges that are incident to v such that
the sum of the deactivation cost of the edges contained in E is less
then n. Then the Traveler chooses a node v′ such that v is adjacent to
v′ and 〈v, v′〉 does not belong to the set of edges that was chosen by
the Demon in the previous round. A new round starts from the last
node chosen by the Traveler, and the edges that were disabled in the
previous round are restored. The Demon wins the game if the infinite
sequence of nodes subsequently chosen by the Traveler satisfy a cer-
tain property ϕ expressed by a temporal formula. To reason about the
existence of “demonic” strategies for this kind of games, we propose
Obstruction Logic (or simply OL). We define its syntax and seman-
tics, and then study the complexity of its model checking problem.
In OL, one can quantify over the existence of demonic strategies that
allows the Demon to temporally obstruct some reachable states.

Such a logic has direct applications to the cybersecurity field: it
can be used to design active security response strategies during an
ongoing attack. In fact, these games allow to capture the interactions
between an attacker whose possible actions are modeled using an At-
tack Graph [25], and a defender able to dynamically deploy Moving
Target Defense (MTD) mechanisms [15] based on this attack graph.

Structure of the work. The contribution is structured as follows.
In Section 2, we present the syntax and the semantics of our new
logic, called Obstruction Logic (OL). In Section 3, we present our
case study in the context of a security scenario. Then, in Section 4 we
provide some important properties of our logic, such as that mem-
oryless and memoryfull strategies are equivalent. In Section 5 we
compare OL with other logic for strategic and temporal reasoning.
Subsequently, in Section 6, we show our verification procedure by
a fix-point algorithm and prove that the model checking problem is
decidable in polyonimal-time. We conclude by providing a related
work section (see Section 7), by recapping our results, and pointing
to future works (see Section 8).

2 Syntax and Semantics

In this section, we introduce the syntax and semantics of our logic.
First, let us fix some notations that will be used later in the paper.

Notation 1. If π = x1, . . . , xn is a finite sequence, last(π) denotes the
last element xn of π; we use � (resp. �) to denote the prefix relation
(resp. strict prefix relation). If X is a set, |X| denotes its cardinality
and X its complement. By convention, we consider that the set of
natural numbers N does not contain 0. We refer to the set of natural
numbers containing 0 as N0.
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Now, we present the syntax of our logic.

Definition 1. Let Ap be an at most countable set of atomic formu-
lae (or atoms). Formulae of Obstruction Logic (OL, for short) are
defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | 〈 n〉Xϕ | 〈 n〉(ϕUϕ) | 〈 n〉(ϕRϕ)

where p is an atomic formula and n is any number in N0.

The number n is called the grade of the strategic operator. In what
follows we use small case letters from the end of the roman alpha-
bet p, q, r, etc., to denote atoms and greek letters ϕ and ψ (eventu-
ally indexed by natural numbers), to denote arbitrary formulas. The
boolean connectives ⊥, ∨ and → can be defined as usual, we de-
fine 〈 n〉Fϕ := 〈 n〉(�Uϕ), 〈 n〉Gϕ := 〈 n〉(⊥Rϕ) and 〈 n〉(ϕWψ) :=
〈 n〉(ψR (ϕ ∨ ψ)). The size |ϕ| of a formula ϕ is the number of its
connectives.

The intuitive meaning of a formula 〈 〉ϕ with ϕ temporal formula
is “there is a demonic strategy such that all paths of the graphs that
are compatible with the strategy satisfy ϕ” where “demonic strategy”
means “a strategy for disabling arcs”. Formulae of OL will be inter-
preted over obstruction models. The definition follows.

Definition 2. A Kripke Structure is a tuple 〈S ,R,L〉 where S is a
finite, non-empty set of states, R ⊆ S × S is a binary serial relation
over S (i.e., for any s ∈ S there is a s′ ∈ S such that 〈s, s′〉 ∈ R)
and L : S → 2A is a labeling function assigning a set of atomic
propositions to any state s ∈ S . An obstruction model M (model for
short) is given by 〈S ,R,L,C〉 where 〈S ,R,L〉 is a Kripke structure
and C : R→ N is a function assigning to any 〈s, s′〉 ∈ R an n ∈ N.

If M is a model and s one of its states, we define pre(s) = {s′ ∈
S : 〈s′, s〉 ∈ R}, post(s) = {s′ ∈ S : 〈s, s′〉 ∈ R} and R(s) =
{e ∈ R : e = 〈s, s′〉 for some s′ ∈ S }. According to Definition 2, a
model is a finite, directed graph, in which nodes are labeled by a set
of atomic formulae and edges are labeled by positive integers. Thus,
we will use the term nodes and states as synonymous, we will refer to
members of R as edges or arcs, and we will call elements of post(s)
(resp. pre(s)) successors of s (resp. predecessors).

A path π over a modelM is an infinite sequence of states s1, s2, . . .
such that 〈si, si+1〉 ∈ R for all i ∈ N. If π is a path, we write πi to
denote the i-th element si of π, π≤i to denote the prefix s1, . . . , si of π
and π≥i to denote the suffix si, si+1 . . . of π. Along the paper, we use
π, τ, σ, and ρ to denote paths. A history is any finite prefix of some
path. We use H to denote the set of histories.

As said in the introduction, our logic aims to capture strategies
for a particular type of games played over a directed graph; in such
games, one of the two players (the Demon) has the power to tem-
porally deactivate arcs of the graph. Thus, we can define an arc-
removing strategy as follows.

Definition 3. If M is a model, and n a natural number, a n-strategy
is a function S : H → 2R that given an history h, returns a subset E
of R such that: (i) E ⊂ R(last(h)), (ii) (

∑
e∈E C(e)) ≤ n. A memoryless

n-strategy is a n-strategy S such that for all histories h and h′ if
last(h) = last(h′) then S(h) = S(h′).

As it is usual, one can see a memoryless n-strategy as a function
whose domain is the set S of states of a modelM.

As it happens for the logic ATL, the notion of path that is compat-
ible with a strategy, is the central pivot of the semantic of OL formu-
lae. We define this notion by saying that: a path π is compatible with
a n-strategy S if for all i ≥ 1 we have that 〈πi, πi+1〉 � S(π≤i). Given

a state s and a n-strategy S, Out(s,S) denotes the set of paths whose
first state is s and that are compatible with S. We can now precisely
define the semantics of OL formulae.

Definition 4. The satisfaction relation between a modelM, a state s
ofM, and a formula ϕ is defined by induction on the structure of ϕ:

• M, s |= � for all state s;
• M, s |= p iff p ∈ L(s);
• M, s |= ¬ϕ iff notM, s |= ϕ (notationM, s �|= ϕ);
• M, s |= 〈 n〉Xϕ iff there is a n-strategy S such that for all π ∈

Out(s,S) we have thatM, π2 |= ϕ;
• M, s |= 〈 n〉(ϕUψ) iff there is a n-strategy S such that for all
π ∈ Out(s,S) there is a j ∈ N such that M, π j |= ψ and for all
1 ≤ k < j,M, πk |= ϕ;

• M, s |= 〈 n〉(ϕRψ) iff there is a n-strategy S such that for all
π ∈ Out(s,S) we have that eitherM, πi |= ψ for all i ∈ N or there
is a k ∈ N such thatM, πk |= ϕ andM, πi |= ψ for all 1 ≤ i ≤ k.

The memoryless satisfaction relationM, s |=r ϕ is defined by writ-
ing memoryless n-strategies instead of n-strategies in the above defi-
nition. Two formulas ϕ and ψ are semantically equivalent (denoted by
ϕ ≡ ψ) iff for any modelM and state s ofM,M, s |= ϕ iffM, s |= ψ.
Definition 5. GivenM, s, and ϕ, the local model-checking concerns
determining whether M, s |= ϕ. Given M and ϕ, the global model-
checking problem concerns determining the set {s ∈ S : M, s |= ϕ}.

3 Case study

A number of research studies attempt to propose models of secu-
rity threats corresponding to multi-step attack scenarios. Amongst
those, one of the most used formalism is Attack Graphs (for a recent
survey, see for instance [25]). An attack graph is generated given a
description of the system architecture (topology, configurations of
components, etc.) together with the list of existing vulnerabilities,
the attacker’s profile (his capability, known passwords, privileges,
etc.), and attack templates (attacker’s atomic action, including pre-
conditions and postconditions). A path in the graph corresponds to a
sequence of atomic attacks.

Once generated, attack graphs may then be used to perform a se-
curity analysis. It could be a static analysis for the computation of
security metrics or selection of an optimal security hardening pol-
icy. It could also be a dynamic analysis to define an optimal security
attack/response policy during an ongoing attack scenario. In this pa-
per we consider the latter case, and assume that the defender can dy-
namically prevent an attack using active defense mechanisms such as
Moving Target Defense (MTD) mechanisms (see for instance [15] for
a survey). Based on some security objectives defined as properties on
the attack graph, we would like to be able to check whether there ex-
ists for the defender a response strategy based on MTD mechanisms
that prevents the attacker from violating the security objectives.

Background on attack graphs In this paper, we consider that an
attack graph is a labeled oriented graph, where:

• each node represents both the state of the system (including ex-
isting vulnerabilities) and the state of the attacker including con-
stants (attacker skills, financial resources, etc.) and variables (ob-
tained privilege level, obtained credentials, etc.);

• each edge represents an action of the attacker (a scan of the net-
work, the execution of an exploit based on a given vulnerability,
access to a device, etc.) that changes the state of the network or
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the states of the attacker; an edge is labeled with the name of the
action (several edges of the attack graph may have the same label).

Figure 1 gives an example of an attack graph. States of the attack
graph are denoted as si, with 0 ≤ i ≤ 5, and atomic attacks as edge
labels aj, with 1 ≤ i ≤ 7.

Background on MTDs MTD mechanisms uses reconfiguration
techniques to dynamically shifts the attack surface in order to de-
crease the success probability of an attack. We consider that for each
attack step a in the attack graph, there exists a corresponding MTD
mechanism da able to counter it. During an ongoing attack, when the
attacker tries to perform a, if the defender decides to activate da, then
a will fail (i.e. the attacker will not reach the corresponding terminal
state). However, the effect of da will be temporary: if the attacker tries
to launch again a later and the defender does not activate again da, a
will succeed. Regarding the attack graph, it means that the defender
is able to temporarily remove an (or a subset of) edge(s).

We assign a cost to each MTD, corresponding to the impact on the
system due to the reconfiguration phase. We assume that, at a given
moment, when deploying a set of MTD countermeasures, the corre-
sponding sum of costs is under a given threshold. This threshold cor-
responds to the maximal budget in terms of MTD countermeasures
that the defender can deploy for each reaction.

Notice that, from the defender’s point of view the cost represents
the impact due to the deployment of one (or several) MTD mecha-
nism(s) at a given moment. Such mechanisms necessitate a recon-
figuration of the system and may have an impact on the availability
of the services offered by the system. So, we need to ensure at each
iteration that the non-availability of the system due to the reconfigu-
ration is less than a given time period, thus that the cost is less than a
given threshold.

Security objectives and assumptions In this context, the de-
fender defines Security Objectives based on the attack graph. Let
suppose that when reaching state s1, s3, or s5 the attacker has root
privilege on a given critical server s Let suppose that, if the attacker
completes attack steps a6 or a7 (that is, it reaches state s5), then the
defender will obtain information on the identity of the attacker In this
example two security objective could be analyzed:

O1 the attacker is never able to obtain root privilege on server s
unless the defender is able to obtain information on its identity;

O2 while the defender has not obtained information about the at-
tacker identity, the attacker has not root privilege on server s.

Based on a given attack graph and security objectives, we would
like to check whether there are MTD response strategies such that
the security objectives are satisfied. To achieve this, we assume that:

1. The defender always knows the attack graph state reached by the
attacker (called attacker current state).

2. At every moment, there is a unique attacker current state in the
attack graph.

3. When detecting the attacker current state, the defender can acti-
vate a (or a subset of) MTD(s) temporarily removing an (a subset
of) outgoing edge(s). The defender cannot remove edges that are
not outgoing from the attacker current state.

4. The sum of the costs associated to the subset of MTDs activated
is less than a given threshold.

5. When the attacker launches an attack from its current state, if the
corresponding edge has not been removed by the defender, then
the attack always succeeds (i.e. the attacker reaches the next state).

6. When the attacker launches an attack from its current state, if the
corresponding edge has been removed by the defender, then the
attack always fails (i.e. the attacker stays in its current state).

Specification of security objectives Let a be an atomic proposi-
tion that express the fact that the identity of the attacker is known.
Let rs be an atomic proposition expressing the fact that the attacker
has root privilege on server s. The two security objectives O1 and O2

presented above can be expressed by OL formulae. Objective O1 says
that either we want the attacker to never reach a state satisfying rs or
if the attacker reach such a state then the defender wants to be able to
identify it (a). By using t1 as variable for a given threshold, the fol-
lowing OL formula captures O1: ϕ1 := 〈 t1 〉G (¬rs∨(rs → 〈 t1 〉(F a))).

Objective O2 says that we want sr to be false until we have identi-
fied the attacker (a) if such an identification ever happens. Thus, by
using t2 as a variable for a given threshold, we can write O2 using the
weak-until connective: ϕ2 := 〈 t2 〉(¬rs W a).

Remark that it is fairly easy to see the Attack Graph of Figure 1 as
a Model in the sense of Definition 2. We can simply forget the edge
labels, add a loop-edge on s5 to grant seriality, add a cost for each
edge (representing the defender’s cost to apply the corresponding
MTD countermeasure), and specify the labeling function as showed
in Figure 1. Suppose that t1 and t2 are respectively 3 and 5. In the
obtained model M we have that M, s0 |= ϕ1 ∧ ϕ2. To satisfy ϕ1
consider the 3-memoryless strategy S1 that associates {〈s1, s2〉} to
s1, {〈s3, s4〉} to s3, and ∅ to any other state of M. Remark that for
any path π ∈ Out(S1, s0) and any i ∈ N we have that M, πi |= rs

iff πi ∈ {s1, s3, s5}. Thus, we must establish that M satisfies 〈 n〉Fa
on s1 (resp. s3 and s5). To do so, we remark that Out(S1, s1) (resp.
Out(S1, s3) and Out(S1, s5)) only contains the path s1, s3, sω5 (resp.
s3, sω5 and sω5 ) and thatM, s5 |= a. Thus, we have obtained that there
is a strategy (i.e. S1) such that for all π ∈ Out(S1, s0) and all i ∈ N
either M, πi |= ¬rs or if M, πi |= rs then there is a strategy (S1 it-
self) such thatM, ρ j |= a for some j ≥ 1 and for all ρ ∈ Out(S1, πi),
as we wanted. Remark that if t1 < 3 then it is not possible to sat-
isfy ϕ1 in M at s0. For the specification ϕ2 = 〈 1〉(¬rs W a), con-
sider the 4-memoryless strategy S2 that associates {〈s0, s1〉} to s0,
{〈s2, s1〉, 〈s2, s3〉} to s2, {〈s4, s3〉} to s4 and ∅ to s5. The only path in
Out(s0,S	) is s0, s2, s4, sω5 and since s5 satisfies a and all the other si

do not satisfy rs we obtain the wanted result.

s2 s4

s0 s5

s1 s3

a1

a2

a1 a2

a4

a4 a5

a3

a6

a7

a3

(i)

s2 s4

s0 s5

s1 s3

2

3

4

3 2

1

5

6

1 34

(ii)

Figure 1: (i) An Attack Graph where states s1, s3 and s5 represents
the goals of the attacker. (ii) The model M obtained from (i) where
the blue nodes satisfies rs, the red node satisfies both a and rs, and
the white ones satisfy neither rs nor a.

4 Main Properties

In this section, we first prove some remarkable semantic equivalences
between OL formulae.We then show that the satisfaction relation and
the memoryless satisfaction relation coincides.

Let M = 〈S ,R,L,C〉 be a model. We recall that if s is a state
post(s) and pre(s) denote, respectively, the set of successors of s
and the set of predecessors of s. Given a set of states A, we define
Pre(A) =

⋃
s∈A pre(s).
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If s is a state, n a natural number, and A a set of states, we write
� (s, n, A) whenever (

∑
s′∈A C(〈s, s′〉)) ≤ n. If A is a set of states,

�(n, A) denotes the subset of S defined by {s ∈ Pre(A) :� (s, n, A)}.
Let ϕ be any formula: �ϕ�M denotes the set of states ofM verifying,
ϕ, i.e., �ϕ�M = {s ∈ S : M, s |= ϕ}. We omit the superscriptM when
the model is clear from the context. We are now ready to characterize
the set of states satisfying a formula 〈 n〉Xϕ.
Proposition 1. For every model M, state s, and formula ϕ we have
thatM, s |= 〈 n〉Xϕ if and only if s ∈ �(n, �ϕ�)).
Proof. For the (⇒)-direction: suppose that s ∈ �〈 n〉Xϕ�, thus there
is a n-strategy S such that for all π ∈ Out(s,S) we have that
M, π2 |= ϕ. Suppose, to reach a contradiction, that s � �(n, �ϕ�).
This could either mean that s � Pre(ϕ) or that s ∈ Pre(ϕ) and that
∑

s′∈�ϕ� C(s, s′) > n. In the first case, we immediately obtain a contra-
diction. In the second case, we remark that any n-strategy can deac-
tivate a subset of directed edges whose cost is at most n. Thus given
any n-strategy S′ there is a path π ∈ Out(s,S′) such that π2 ∈ �ϕ�,
which contradicts thatM, s |= 〈 n〉Xϕ.

For the (⇐)-direction: suppose that s ∈ �(n, �ϕ�). By definition,
this means that s ∈ Pre(�ϕ�) and that if e1, . . . , en are all the edges
from s to �ϕ�, then (C(e1) + · · · + C(en))≤n. Thus, a n-strategy veri-
fying 〈 n〉Xϕ is readily obtained by selecting the set {e1, . . . , en} given
the history h = s, and the empty-set for any other history h′. �

In the next proposition, we provide the fix-point characterization
for the OL operators.

Proposition 2. For any two formulae ϕ and ψ we have that:

1. 〈 n〉(ϕUψ) ≡ ψ ∨ (ϕ ∧ 〈 n〉X (〈 n〉(ϕUψ)));
2. 〈 n〉(ϕRψ) ≡ ψ ∧ (ϕ ∨ 〈 n〉X (〈 n〉(ϕRψ))).

Proof. We only prove (1), the proof of (2) being entirely similar.
(⇒) Suppose thatM, s |= 〈 n〉(ϕUψ), thus there is a n-strategy S,

such that for every τ ∈ Out(s,S) there is a j ∈ N such thatM, τ j |= ψ
andM, τk |= ϕ for every 1 ≤ k < j. IfM, s |= ψ then we can conclude,
otherwise since s = τ1 for any τ ∈ Out(s,S), we must have that
M, s |= ϕ by hypothesis. Consider the n-strategy S′ defined by:

S′(h) =

⎧
⎪⎪⎨
⎪⎪⎩

S(h′) if h′ = sh and h′ � τ for τ ∈ Out(s,S)
∅ otherwise.

Let C = {s′ : ∃τ ∈ Out(s,S) s.t. τ2 = s′}; given any s′ ∈ C
we clearly have that ρ |= ϕUψ for any ρ ∈ Out(s′,S′). We de-
duce that M, s′ |= 〈 n〉ϕUψ (the Demon can use the above de-
fined n-strategy S′) and since the Demon can get to any of the s′

by disabling the successors of s disabled by S we conclude that
M, s |= 〈 n〉X (〈 n〉(ϕUψ)).

(⇐) Suppose that M, s |= ψ ∨ (ϕ ∧ 〈 〉X (〈 〉(ϕUψ))). If M, s |=
ψ then we can conclude. Otherwise M, s |= ϕ and M, s |=
〈 n〉X (〈 n〉(ϕUψ)). By the definition of satisfaction, this means that
there is a n-strategy S such that M, ρ2 |= 〈 〉 ϕUψ for any ρ ∈
Out(s,S). By applying again the definition of satisfaction, we get
that there is a n-strategy Sρ2 such that for every τ ∈ Out(ρ2,Sρ2 ) we
have thatM, τk |= ψ for some k ≥ 1 andM, τ j |= ϕ for any 1 ≤ j < k.
We define another n-strategy S′′ by

S′′(h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(h) if h = s
Sπ2 (h

′) if h′ = sh and h � τ for
τ ∈ Out(π2,Sπ2 ) and π ∈ Out(s,S)

∅ otherwise

By the definition of S′′, we obtain that sρ ∈ Out(s,S′′) implies
ρ ∈ Out(s,Sπ2 ) for some π ∈ Out(s,S). Now: suppose that there
is a τ ∈ (s,S′′) such that (1) M, τ j �|= ψ for all j ∈ N or such that
(2) M, τk |= ψ for some k ∈ N, and there is a 1 ≤ j < k such that
M, τ j �|= ϕ. In both cases we get a contradiction because such a path
also belongs to Out(π2,Sπ2 ) for some π ∈ Out(s,S). We can thus
finally conclude thatM, s |= 〈 n〉(ϕUψ) as we wanted. �

Let M = 〈S ,R,L,C〉 be a model and ϕ, ψ be two formulae. Con-
sider the two monotone functions Rn

ϕ,ψ and Un
ϕ,ψ from 2S to itself,

for any subset X of S , defined by:

Un
ϕ,ψ(X) = �ψ�M ∪ (�ϕ�M ∩ �(n, X)) (1)

Rn
ϕ,ψ(X) = �ψ�M ∩ (�ϕ�M ∪ �(n, X)) (2)

we can prove the following.

Theorem 1. For every modelM and two formulae ϕ and ψ:

1. �〈 n〉(ϕUψ)�M is the least fix-point of Un
ϕ,ψ;

2. �〈 n〉(ϕRψ)�M is the greatest fix-point of Rn
ϕ,ψ.

Proof. We only give a proof of (2). In virtue of Propositions 1 and 2
it is clear that X = �〈 n〉(ϕRψ)�M is a fix-point of Rn

ϕ,ψ. Let Y be
any other fix-point of the function. If Y = ∅ the result trivially holds.
Otherwise, we show that given v ∈ Y we have that v ∈ X. Since Y is
a fix-point of the function, we have that v ∈ �ψ� and either v ∈ �ϕ�
or v ∈ �(n, Y). If this last case, for the set Ev of edges whose source
is v and whose target is not in Y we have that (

∑
e∈Ev C(e)) ≤ n. We

define an n-memoryless strategy S by

S(v) =

⎧
⎪⎪⎨
⎪⎪⎩

Ev if v ∈ �ψ� ∩ �(n, Y)
∅ otherwise

Now consider a path ρ ∈ Out(v,S) for v ∈ Y . Since ρ1 = v ∈ Y , let
X = {k ≥ 2 : ρk � Y}. If X is empty, then each ρi ∈ �ψ�, otherwise
let j ≥ 2 be the smallest integer such that ρ j � Y . Suppose to reach a
contradiction that ρ j−1 � �ϕ�. Since ρ j−1 ∈ Y and ρ j � �ϕ� we must
have that ρ j ∈ �ψ� ∩ �(n, Y). Thus, given any π ∈ Out(ρ j,S) we
obtain that π2 ∈ Y . Since S is memoryless, we obtain a contradiction
because π2 = ρ j for some π ∈ Out(ρ j−1,S). �

As we have anticipated, we now show that the set of formulae that
are true under the satisfaction relation and the memoryless satisfac-
tion relation coincides.

Lemma 1. For any formula ϕ, for any modelM and state s: ifM, s |=
ϕ thenM, s |=r ϕ.

Proof. The proof is by induction on the structure of ϕ. Remark that
for the case ϕ = 〈 n〉ψ1 Rψ2, we showed in Theorem 1 how given
any v belonging to a fix-point of the function Rn

ψ1 ,ψ2
, it is possible to

construct a n-memoryless strategy S such that all paths in Out(v,S)
satisfies ψ1 Rψ2. As a consequence, we only detail the cases ϕ =
〈 n〉Xψ and ϕ = 〈 n〉(ψ1 Uψ2). The proof for the 〈 n〉(ψ1 Uψ2) case is
inspired by the one presented in [26].

If ϕ = 〈 n〉Xψ, M, s |= ϕ iff there is a n-strategy S such that
〈M, ρ2〉 |= ψ for all ρ ∈ Out(s,S). By induction hypothesis,M, ρ2 |=
ψ. Consider the n-strategy S′ such that S′(h) = S(s) if last(h) = s
and S′(h) = ∅ otherwise. This latter n-strategy is memoryless, and
for any τ ∈ Out(s,S′), τ2 = ρ2 which establish the wanted result.

If ϕ = 〈 〉ψ1 Uψ2. Let S be a n-strategy such that ψ1 Uψ2 holds
for any path π ∈ Out(s,S). Let X = {π≤k : π ∈ Out(s,S) ∧M, πk |=
ψ2 ∧ M, π j |= ψ1 for all 1 ≤ j < k} and Y its prefix-closure. Given
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v ∈ S , let hv be a sequence in Y such that last(hv) = v and �h	 ∈ Y
such that hv � h	 and last(h	) = v. Define a n-strategy Shv by:

Shv (h) =

⎧
⎪⎪⎨
⎪⎪⎩

S(hv · h′′) if h = h′ · h′′ and last(h′) = v
S(h) otherwise

Such a n-strategy associates the same set of edges to any history end-
ing in v and we clearly have that any path in its outcome set verifies
ψ1 Uψ2. Repeat the above procedure for any s′ ∈ S . After at most
|S | steps, we obtain a memoryless n-strategy S′ in which any path
verifies ψ1 Uψ2. �

By the above lemma and by the fact that any memoryless n-
strategy is a n-strategy, one immediately obtains the following.

Theorem 2. For any formula ϕ, for every model M and state s, we
have thatM, s |=r if and only ifM, s |= ϕ.

5 Relationship With Other Logics

5.1 Obstruction Logic and Computation Tree Logic

We here prove that OL extends Computation Tree Logic (CTL)[17]
with a reduction to a fragment of our logic. We define the 0-fragment
of OL to be the set of OL formulae in which the grade of any strate-
gic operator is 0. We denote by OL0 such a fragment. Let (−)• be
the function from OL0 to CTL formulae that substitutes each strate-
gic operator 〈 0〉 with the universal path operator A of CTL, i.e., the
function recursively defined as follows:

(�)• = �
(p)• = p
(¬ϕ)• = ¬(ϕ)•
(ϕ1 ∧ ϕ2)• = (ϕ1)• ∧ (ϕ2)•

(〈 0〉Xϕ)• = AX (ϕ)•

(〈 0〉(ϕ1 Uϕ2))•= A((ϕ1)• U (ϕ2)•)
(〈 0〉(ϕ1 Rϕ2))•= A(ϕ1)• R (ϕ2)•

Remark that the function (−)• induces a bijection between OL and
CTL formulae.

Theorem 3. For every model M, state s, and formula ϕ ∈ OL0, we
have that M, s |= ϕ if and only if M, s |=CT L (ϕ)•, where |=CT L is the
CTL satisfaction relation.

5.2 Obstruction Logic and Alternating-time Temporal
Logic

Here, we compare OL with ATL. In particular, we show that given
an OL formula ϕ and a model M that satisfies it, there is a CGS
(exponential in the size ofM) that satisfies an ATL translation of ϕ.

First, define a rooted OL model as a pair 〈M, s〉 where M is an
OL model and s is one of its states. Given a natural number n,
let S ≤n be the subset of S × 2R defined by (s, E) ∈ S ≤n iff ei-
ther E = ∅ or each e ∈ E has s as source and (

∑
e∈E C(e)) ≤ n.

If 〈M, s〉 is a rooted OL model and n is a natural number, then
Cn
M
= 〈Ap,Ag,Q, qi, actD, actT , P, δ,V〉 is the CGS, where:

• Ap is a set of atomic formulae labeling states ofM;
• Ag = {D, T } where D is the Demon and T is the Traveler;
• Q = QD ∪ QT is a set of states, where QD = S and QT = S ≤n.

Moreover, qI = s is the initial state. The set QD is the set of states
where is the Demon’s turn to move, while QT is the set of states
in which is the Traveler’s turn to move;

• the set of actions actD of the Demon is equal to the set of subset of
R appearing in S ≤n plus the idle action 	. More precisely actD =

{E ∈ 2R : ∃q ∈ S ≤n ∧ q = 〈s, E〉} ∪ {	};
• the set of actions actT of the Traveler is R ∪ {	}. We denote by

act = actD ∪ actT ;
• the protocol function P : Q × Ag → 2act \ ∅ is defined as follows.

For every q ∈ QD, we have that P(q, i) is equal to Xq = {E ∈ 2R :
〈q, E〉 ∈ S ≤n} if i = D, and {	} otherwise. For every q ∈ QT , we
have that if q = 〈s, E〉 then P(q, i) is equal to {e ∈ R : e � E ∧ s′ ∈
S } if i = T and it is equal to {	} otherwise;

• the transition function δ : Q × actD × actT → Q is defined as
follows: δ(q, E, 	) = 〈q, E〉 iff q ∈ QD and δ(q, 〈s, s′〉, 	) = s′ iff
q = 〈s, E〉 ∈ QT and 〈s, s′〉 � E;

• the labeling function V : S → 2Ap is defined by V(q) = L(q) for
any q ∈ QD and V(q) = ∅ for any q ∈ QT .

Remark that given a model M and a natural number n, the CGS
Cn
M

can have a number of states that is exponential in the number of
states ofM. Consider the function from OL formulae to ATL formu-
lae, inductively defined by:

(�)A = �
(p)A = p
(¬ϕ)A = ¬(ϕ)A

(ϕ1 ∧ ϕ2)A = (ϕ1)A ∧ (ϕ2)A

(〈 n〉Xϕ)A = 〈〈D〉〉X (ϕ)A

(〈 n〉(ϕ1 Uϕ2))A = 〈〈D〉〉(ϕ)A U (ψ)A

(〈 n〉(ϕ1 Rϕ2)))A= 〈〈D〉〉(ϕ)A R (ψ)A

Given a CGS Cn
M

as the one defined above, and a path ρ of
the CGS, we write ρD for the subsequence of ρ containing only
states that are in QD. If Δ is an ATL strategy and q ∈ QD is a
state, then OutD(q,Δ) denotes the set of sequences {ρ ∈ QωD :
ρ = πD for some π ∈ Out(q,Δ)}. For an ATL formula ψ, we write
Cn
M
, q |=D ψ iff either:

1. ψ is a boolean formula and Cn
M
, q |=AT L ψ, where |=AT L is the stan-

dard ATL satisfiability relation or
2. ψ is a strategic formula 〈〈D〉〉ψ1 and there is a strategy Δ such that

for all ρ ∈ OutD(q,Δ) we have that ρ satisfies ψ1 (where the spe-
cific clauses for the temporal connectives X , R and U can be
easily obtained).

We can now prove the following the lemma.

Lemma 2. Let ϕ be any OL formula that contains at most a strategic
operator 〈 n〉, we have thatM, s |= ϕ iff Cn

M
, s |=D (ϕ)A.

Remark that we can use the classic bottom-up approach to gener-
alize the above lemma to any OL strategic formula ϕ. We thus obtain
the following result.

Theorem 4. For each strategic formula ϕ whose main operator rank
is n we have thatM, s |= ϕ iff Cn

M
, s |=D (ϕ)A.

5.3 Obstruction Logic and Graded Mu Calculus

In this subsection, we compare OL with graded μ-calculus (GMC
for short) introduced by Kupferman, Sattler, and Vardi in [29]. More
precisely, we show how to translate each OL formula ϕ to a GMC
formula (ϕ)μ and that given an OL model M such that C(e) = 1 for
all e ∈ R, we have that �ϕ�M = �(ϕ)μ�M.
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Since GMC is less known than CTL and ATL, we briefly introduce
its syntax and semantics. GMC is a propositional modal logic aug-
mented with least (μ) and greatest (ν) fix-point operators and with
the two graded modalities [ n ] and 〈 n 〉 . More formally, let Ap be
a non-empty at most countable set of atomic propositions, and V a
non-empty at most countable set of propositional variables and sup-
pose that Ap and V are disjoints. One can define formulae of the
graded μ-calculus using the following grammar:

ϕ ::= � | p | X | ¬ϕ | ϕ ∧ ϕ | [ n ]ϕ | μ X.(ϕ)

where p ∈ Ap, X ∈ V, and n ∈ N0. In μ X.ϕ we require that the
variable X appears in the scope of an even number of negations in ϕ.
An occurrence of a propositional variable that is under the scope of
μ is said to be bound. Free variables are variables that are not bound.
A GMC formula is closed if all its variables are bound.

Let ϕ and ψ two formulae, and suppose that no variable that is
bound in ϕ is free in ψ1. We write ϕ[ψ/X] to denote the result of the
substitution of ψ to each free occurrence of X in ϕ. The greatest fix-
point operator can be defined by ν X.ϕ = ¬(μ X.(¬(ϕ[¬X/X]))) and
the graded diamond modality can be defined as 〈 n 〉ϕ = ¬[ n ]¬ϕ.

Formulae of GMC are interpreted over Kripke Structures. In par-
ticular, given a Kripke structure K = 〈S ,R,L〉, an assignment α :
V → 2S , is a function that sends propositional variables to subsets
of S . Given an assignment α, a subset T of S , and a variable Y ,
α[X → T ] is the assignment defined by α[X → T ](Y) = T if Y = X
and α[X → T ](Y) = α(Y) otherwise. Given a Kripke structure K,
the denotation �ϕ�Kα of a formula ϕ under α in K is the subset of S
inductively defined on the structure of ϕ by the following clauses:

���Kα = S ;
�p�Kα = {s ∈ S | p ∈ L(s)};
�X�Kα = α(X)
�¬ψ�Kα = �ψ�Kα
�ψ ∧ θ�Kα = �ψ�Kα ∩ �θ�Kα ;
�[ n ]ψ�Kα = {s ∈ Pre(�ψ�Kα ) : |post(s) ∩ �¬ψ�Kα | ≤ n}
�μ X.ψ�Kα =

⋂{T ⊆ S : �ψ�Kα[X→T ] ⊆ T }.
Thus, the meaning of a formula ψ = [ n ] ϕ can be spelled out as
ψ is true at s if there are at most n-successors of s in which ϕ is not
true. Remark that if ϕ is closed, one can simply write �ϕ�K as the
denotation of ϕ does not depend on any assignment. Now, let (−)μ be
the function from OL formulae to GMC formulae defined as follows:

(�)μ = �
(p)μ = p
(¬ϕ)μ = ¬(ϕ)μ
(ϕ1 ∧ ϕ2)μ = (ϕ1)μ ∧ (ϕ2)μ

(〈 n〉Xϕ)μ = [ n ] (ϕ)μ

(〈 n〉(ϕ1 Uϕ2))μ = μ X.((ϕ2)μ ∨ ((ϕ1)μ ∧ [ n ] X))
(〈 n〉(ϕ1 Rϕ2)))μ= ν X((ϕ2)μ ∧ ((ϕ1)μ ∨ [ n ] X))

Remark that (ϕ)μ is a closed GMC formula for every formula ϕ, thus
the function (−)μ has as image a proper fragment of GMC. Now: let
us call unary an OL Model M = 〈S ,R,L,C〉 such that C(e) = 1 for
all e ∈ R. We have the following

Lemma 3. For any OL formula ϕ, if M is a unary model, then we
have that: �〈 n〉Xϕ�M = {s ∈ Pre(�ϕ�M) : |post(s) ∩ �¬ϕ�M| ≤ n}

From the above lemma, one can easily prove the following by in-
duction on the structure of ϕ using Theorem 1.

1 One can always respect this constraint by renaming the bound variables of
ϕ.

Theorem 5. IfM is a unary OL model then for every OL formula ϕ
we have that �ϕ�M = �(ϕ)μ�M.

Note that the above theorem is false when the model is not
unary. For instance, consider a model where S = {s1, s2}, R =
{〈s1, s1〉, 〈s1, s2〉, 〈s2, s2〉} with L(s1) = {q},L(s2) = {p} and where
the cost of each arc is 2. At s1, the OL formula 〈 1〉X p is false, while
its translation in GMC [ 1 ] p is true.

6 Model Checking

Here, we show that the global model-checking problem for OL is
decidable in polynomial-time. To show this result, we provide Algo-
rithm 1 that given a modelM and a formula ϕ returns the set of states
ofM satisfying ϕ. This labeling algorithm is an extension of the one
for CTL.

Algorithm 1 Labeling Algorithm (M, ϕ)

1: for all ϕ ∈ S ub(ϕ) do

2: switch ϕ do

3: case ϕ = �
4: �ϕ�← S
5: case ϕ = p
6: �ϕ�← {s ∈ S : p ∈ L(s)}
7: case ϕ = ¬ϕ1
8: �ϕ�← S \ �ϕ1�
9: case ϕ = ϕ1 ∧ ϕ2

10: �ϕ�← �ϕ1� ∩ �ϕ2�

11: case ϕ = 〈 n〉Xϕ1
12: �ϕ�← �(n, �ϕ1�)
13: case ϕ = 〈 n〉(ϕ1 Uϕ2)
14: X ← ∅; Y ← �ϕ2�
15: while Y � X do

16: X ← Y
17: Y ← �ϕ2� ∪ (�ϕ1� ∩ �(n, X))
18: �ϕ�← Y
19: case ϕ = 〈 n〉(ϕ1 Rϕ2)
20: X ← ���; Y ← �ϕ2�
21: while X � Y do

22: X ← Y
23: Y ← �ϕ2� ∩ (�ϕ1� ∪ �(n, X))
24: �ϕ�← Y

Theorem 6. The model checking problem for Obstruction Logic
(OL) is P-complete.

Proof. For the lowerbound, recall that CTL corresponds to the OL0

fragment of OL. Then, the results follows immediately from the P-
hardness of model checking CTL [17].

For the upperbound, Algorithm 1 shows a procedure for model
checking OL, which manipulates set of states of S. The procedure is
inspired by the model checking for CTL [17] and ATL [4]. However,
we use two additional procedures � and � linked to the pre-image
function Pre. In detail, our algorithm uses the following functions:

• The function S ub returns an ordered sequence, w.r.t. their com-
plexities, of syntactic sub-formulas of a given formula ϕ.

• The function Pre is the same as for CTL [17].
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• The function � (s, n, A) takes in input a state s, a natural num-
bers n, and a subset of states A. Such a function returns true if
(
∑

s′∈A C(〈s, s′〉)) < n. If we represent the graph via an adjacent
matrix, we can calculate such function in a linear number of steps
w.r.t. the size of A.

• The function �(n, A) takes in input a natural number n and a subset
of states A. The function returns the subset A′ of Pre(A), such
that � (s′, n, A) for all s′ ∈ A′. The worst possible case is when
Pre(A) = S , and one needs to call |S |-times the function �. So, we
are quadratic in S , i.e. polynomial.

Algorithm 1 works bottom-up on the structure of the formula; the
cases of interest are for strategic formulas. For ϕ = 〈 n〉Xϕ1, the pro-
cedure calls function �(n, �ϕ�) to compute the subset of set of states
of Pre(�ϕ1�) that are “bound” to end up in satisfaction set. As regard
ϕ = 〈 n〉(ϕ1 Uϕ2), the procedure computes the least fixed-point. We
observe that, since it is monotone, such a fixed-point always exists.
A similar reasoning can be done for ϕ = 〈 n〉ϕ1 Rϕ2.

From the above, our procedure runs in polynomial-time in the size
of the model and formula. Termination of such procedure is guaran-
teed, as the state space S is finite. Soundness and completeness of the
algorithm directly follows from Proposition 1 and Theorem 1. �

7 Related Work

In the past years, many works focused on the strategic abilities of
agents playing in a dynamic game model. For instance, the authors
of [35] consider the problem of planning paths in a dynamic but pre-
dictable environment. The authors of this work, have been shown that
determining whether a given agent can construct a path in the graph
reaching its goal is exponential in the size of the graph and number of
players, while we provide a polynomial-time algorithm to solve our
games. Furthermore, they don’t give the ability to the agents to select
a specific subset of successors to be occupied, while in our approach
the Demon is able to do that. In our games the Demon can prevent the
Traveler to occupy a given position only temporarily, while in [35]
the occupation is permanent. Moreover, in our games subset of edges
are deactivated with respect to quantitative information.

Sabotage games and Sabotage Modal Logic [38, 31, 5] are an-
other line of research that our work is related to. Sabotage games
have been introduced by van Benthem with the aim of studying the
computational complexity of a special class of graph-reachability
problems in which an agent has the ability to erase edges. To rea-
son about sabotage games, van Benthem introduced Sabotage Modal
Logic (SML). Determining whether the player who’s moving as a
winning strategy for reaching a certain position by playing a Sabo-
tage Game is PSPACE-hard [32] and the model-checking problem
for Sabotage Modal Logic is PSPACE-complete [31]. Our version of
games is incomparable with Sabotage games since we give the abil-
ity to temporarily select subsets of edges while in Sabotage games
the saboteur can erase only one edge at each turn. On this respect,
our work is related to [13] in which the authors use an extended ver-
sion of Sabotage Modal Logic, called Subset Sabotage Modal Logic
(SSML), in which the deactivation of particular subsets of edges of a
directed graph is allowed. The authors show that the model-checking
problem for such a logic is decidable, but they do not specify the
complexity class of such a decision problem. Furthermore, we recall
that SSML is an extension of SML, but it does not include tempo-
ral operators as we do. Moreover, neither SML nor SSML take into
account quantitative information about the cost of edges as we do.

The authors of [37] introduce Dynamic Escape Games (DEG, for
short). Such games have a close resemblance to our games. A DEG

is a variant of weighted two-player turn-based reachability games
in which an agent has the ability to inhibit edges. Contrary to our
approach, on this class of games the authors have proposed an op-
timized heuristic that provides partial results to check whether the
reachability player has a strategy to reach one of his goal states.

In [1] the authors introduce NTL a temporal logic to reason about
normative systems. A normative system is a Kripke structure in
which certain transition are considered illegal, see [2] for a survey.
Formally, in NTL one evaluates CTL formulae with respect to a
Kripke model in which a set of arcs has been deleted according to
a given assignment function. The assignment function on NTL in
non-local e non-quantitative: any subset of arcs can be deleted by the
assignment, and there is no notion of deletion cost. Moreover, OL
model checking is in P while NTL model checking is in NP.

Module checking [30, 9, 8] is another line of work which is related
to our logic. Although there is a similarity between module checking
and OL model checking for the 1-fragment on unary models, the
two approaches are orthogonal. In OL each state of the model can
be seen as a state that is controlled by the environment (the Demon).
Furthermore, in OLwe ask whether there is a winning strategy for the
environment and not whether all environment strategies are winning.
This difference is found in the fact that the model checking problem
for OL is polynomial, while the module checking problem (even for
“simple” logics such as CTL) is at least exponential.

From the cybersecurity side, several works propose game-
theoretic solutions for finding an optimal defense policy based on
attack graphs. Most of these approaches do not use formal verifica-
tion, but rather try to solve the game using analytic and optimization
techniques, e.g., [19, 20, 36, 39]. The works in [10, 14, 12] share
some ideas with ours on the cybersecurity side. However, the authors
do not use dynamic models. In addition, the already mentioned work
in [11, 13] propose a logical approach to play on Attack Graphs.

8 Conclusions

In this paper, we introduced Obstruction Logic, a logic that allows
to reason about two-player games with temporal goals in which one
of the players has the power to modify, locally and temporarily, the
game structure. Then, we showed how to express cybersecurity prop-
erties via OL.We studied the formal properties of OL and proved that
its model-checking problem is solvable in polynomial-time.

In the future, we can explore different directions. One natural ex-
tension, would be to consider many-player games, between a Demon
and coalitions of Travelers. At any step a possible continuation of
a play would be determined, by the Demon’s deactivation, the syn-
chronous actions of the considered coalition of Travelers T , and all
possible actions of Travelers not in T . We believe that such an exten-
sion would entertain with the logic ATL, the same relationship that
OL entertain with CTL. Another extension we would like to study is
to permit the Demon to permanently deactivate edges of the directed
graph. In this case, Demon’s actions could impact the topology of
the graph in a non-local fashion: the Demon could choose to erase an
edge situated anywhere in the graph. The logic so obtained, would re-
assemble to a temporal version of the already cited Sabotage Modal
Logic [38]. Finally, we would like to study the above scenarios in
the context of imperfect information. Unfortunately, this context is
in general undecidable [18]. To overcome this problem, we could
use an approximation to perfect information [6], a notion of bounded
memory [7], or some hybrid technique [21, 22].
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