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Abstract. When assessing uncertainty in model predictions, it is
key to consider potential error patterns in some regions of the fea-
ture space. In this paper, we build on quantile regression to propose
a new method to produce prediction intervals in regression tasks.
It estimates a conditional quantile function of the residual variable
given a specific representation. The method then adjusts the regres-
sor’s prediction with an upper and lower conditional quantile pre-
diction in order to produce an adaptive prediction interval for any
new input. Further, we suggest an additional layer based on confor-
mal prediction in order to provide coverage guarantees. Lastly, as
distribution-free conditional coverage is impossible to achieve, we
suggest a tree-based representation which displays patterns of under-
coverage. This diagnostic tool aims to reveal which regions of the
feature space are significantly less likely to have trustworthy pre-
diction intervals. In order to prove their efficacy, our techniques are
tested over various use cases and compared against four main base-
lines. Our methods empirically achieve the expected coverage and
tend to produce shorter intervals.

1 Introduction

Models can exhibit good overall performance but they may some-
times be inclined to failure modes when error patterns surface during
inference [23]. For example, a regression model could be subject to
a local overestimation bias or high uncertainty in a given area of the
feature space. These patterns turn out to be harmful in regression ap-
plications such as price prediction in finance or treatment effect eval-
uation in the medical field. When the model predicts on new data, it is
thus key to produce predictive confidence intervals which are likely
to contain the ground truth with a certain probability. For instance,
an algorithm for real estate investors should be able to estimate an
interval that would include, with a certain likelihood, the future sale
price of a house based on its characteristics. The model users would
also like to know whether the prediction interval tends to undercover
for these types of properties. For a patient with high cholesterol level,
a doctor aims to predict the effect of a treatment. He intends to obtain
a prediction interval for this patient’s cholesterol level in six months
with a certain probability. Another requirement is to know whether
the prediction interval usually covers the true response with the ex-
pected probability for this category of patients.

Objectives We consider a training dataset {(Xi, Yi)}ni=1, indexed
by a set I = {1, ..., n}, with n pairs of observations drawn ex-
changeably (e.g. i.i.d.) from an unknown joint distribution PXY over
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d features X ∈ X ⊆ R
d and the response Y ∈ Y ⊆ R. Given a

new input Xn+1 ∈ X , a natural regression task is to estimate the
value of the response Yn+1 leveraging a predictor μ̂ : X → Y ,
where (Xn+1, Yn+1) is also drawn exchangeably from PXY . The re-
gression function μ̂ estimates the conditional mean of the response.
Beyond the point-wise prediction, the uncertainty can be assessed
with a prediction interval Ĉ(Xn+1) ⊆ Y . We say that Ĉ satisfies
distribution-free marginal coverage if it includes the true response
Yn+1 with probability:

P{Yn+1 ∈ Ĉ(Xn+1)} ≥ 1− α, for all PXY . (1)

1−α denotes the target coverage level (e.g. 90%) and the probability
is over {(Xi, Yi)}n+1

i=1 . Further, we say that Ĉ satisfies distribution-
free conditional coverage if, for all PXY and almost all x:

P{Yn+1 ∈ Ĉ(Xn+1)|Xn+1 = x} ≥ 1− α. (2)

In this paper, we seek to construct prediction intervals with em-
pirical coverage level of 1 − α. An additional requirement is that
those intervals should be short and adaptive, based on local patterns
detected in the residuals Ri = Yi − μ̂(Xi). Lastly, as assessing con-
ditional coverage is critical for some applications, we would like to
understand the limitations of our method by displaying the regions
of the feature space where the desired coverage level does not hold.

Novelty of the proposed approaches To achieve those objec-
tives, we build on quantile regression [11], conformal prediction
[34, 17, 14], and conformalized quantile regression [21]. Our method
is illustrated in Figure 1 and is a sequence of three techniques. A
regression model μ̂ is fitted to the training dataset. The first tech-
nique is called quantile regression+ (QR+) as it aims to adjust the
regressor’s prediction with the estimates of an upper and lower con-
ditional quantile of the residual variable given (X, μ̂(X)). We thus
fit two conditional quantile regressors on a separate residual dataset
with the targeted bounds (α/2 and (1 − α/2) quantiles). The resid-
ual dataset can be thought of as a multidimensional residual plot:
{((Xi, μ̂(Xi)), Ri)}. Given any new input, QR+ then generates a
prediction interval by adding each of the conditional quantile pre-
dictions to the regressor’s prediction. The conformalized quantile re-
gression+ (CQR+) complements QR+ with a layer based on confor-
mal prediction in order to accurately adapt the width of the prediction
interval based on the desired coverage level. Lastly, the undercover-
age tree analysis (UTA) is a tree-based representation which displays
the paths to regional undercoverage. This diagnostic tool aims to pro-
vide practitioners with miscoverage warnings for certain specific re-
gions of the feature space.
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Figure 1. Illustration of our method. Top: We first fit the regression function μ̂. To construct QR+, we fit an upper and lower conditional quantile regression
model to a residual dataset {((Xi, μ̂(Xi)), Ri)}. CQR+ completes QR+ with a conformal prediction layer and produces a quantile of the conformity scores.

Our method can work with a split or cross-validation approach. Bottom: Given a new input, QR+ and CQR+ output prediction intervals by adding each
component previously estimated. The undercoverage tree analysis reveals regions of the feature space where the prediction intervals tend to undercover.

Our techniques thus learn from the original regressor’s mistakes
through the residual dataset. They produce prediction intervals based
on the assessment of the correction to be made. The objective is thus
to detect error patterns in the behavior of the regressor in order to
predict the lower and upper bounds in an adaptive fashion. The main
difference between our techniques and (conformalized) quantile re-
gression is that the former learn from the residuals computed on a
separate dataset instead of the original data. For instance, the quan-
tile regression estimates conditional quantiles of Y while QR+ es-
timates conditional quantiles of the residual variable R. The con-
formalized quantile regression leverages a conformity score based
on the response and estimated conditional quantiles of Y whereas
CQR+ employs a score based on the true residuals and estimated
conditional quantiles of R. The advantage of working with residuals
is that they can reveal the original regressor’s failure modes (i.e. bias,
heteroscedasticity) that our methods can leverage.

Notations The quantiles q+α,|I|{vi} and q−α,|I|{vi} respectively
denote the 1 − α and α quantiles of values {vi : i ∈ I}, where I
denotes a set of |I| indices. q+α,|I|{vi} is thus the �(1−α)(|I|+1)�-
th smallest value of {vi : i ∈ I}, and q−α,|I|{vi} = −q+α,|I|{−vi}.
Let R denote any regression algorithm that takes in training data in-
dexed by I in order to output a regression model fitted on that data:
μ̂ = R({(Xi, Yi) : i ∈ I}). Similarly, let Q be any quantile re-
gression algorithm. Lastly, μ̂−Ik = R({(Xi, Yi) : i ∈ I\Ik})
is the model fitted on the training dataset after removing the subset
indexed by Ik.

Background Some conformal prediction methods require split-
ting the initial training dataset into disjoint subsets, i.e. training data
(for μ̂) indexed by a set of indices I1 and calibration data (for con-
formity scores) indexed by I2. For instance, the split or inductive
conformal prediction [17, 16] produces confidence intervals around
the regression function’s predictions, adjusted with a quantile of the

distribution of the absolute residuals computed on the calibration set
indexed by I2: [μ̂(Xn+1)±q+α,|I2|{|Yi−μ̂(Xi)|}]. As demonstrated
in [16, 32], (1) is satisfied.

Unlike the previous technique, methods based on cross-validation
(leave-one-out can be considered as a special case) do not require
a separate calibration dataset. For instance, CV+ for K-fold cross-
validation (CV+) [2] considers the variability of the regression mod-
els. The training dataset is split into K disjoint subsets indexed
by I1, ..., IK . K regression models μ̂−Ik are fitted to the train-
ing data after removing the k-th subset indexed by Ik. The abso-
lute residuals are computed with the adequate regression model for
each data point i of {(Xi, Yi)}ni=1: RCV

i = |Yi − μ̂−Ik(i)(Xi)|
where i ∈ Ik(i), with k(i) ∈ {1, ...,K}. Lastly, it predicts the fol-
lowing interval given a new input Xn+1: [q−α,|I|{μ̂

−Ik(i)(Xn+1) −
RCV

i }, q+α,|I|{μ̂
−Ik(i)(Xn+1) +RCV

i }]. It guarantees a theoretical
coverage level of at least 1 − 2α. The jackknife+ method [2] is a
specific case of CV+ with a leave-one-out approach. The jackknife+-
after-bootstrap method (J+aB) can be viewed as an alternative based
on bootstraps. It also attains a 1− 2α theoretical coverage guarantee
[10]. This method creates B training datasets indexed by I1, ..., IB

by bootstrapping from the available training data. B regression func-
tions μ̂b are then fitted on these bootstraps. For each data point i,
there is an aggregation agg (e.g. mean) of the predictions of the
μ̂b’s whose training dataset indexed by Ib did not contain this point:
μ̂agg\i = agg({μ̂b : b = 1, ..., B, Ib �	 i}). The absolute residuals
can then be computed for the i-th data point (i ∈ I) with the re-
lated aggregation function: RJ+aB

i = |Yi − μ̂agg\i(Xi)|. Lastly,
the prediction interval is Ĉ(Xn+1) = [q−α,|I|{μ̂agg\i(Xn+1) −
RJ+aB

i }, q+α,|I|{μ̂agg\i(Xn+1) +RJ+aB
i }].

Another alternative to produce confidence intervals is the condi-
tional quantile regression (QR) [11]. Its objective is to estimate the
α-th conditional quantile function of Y given X = x, defined as
qα(x) = inf{y : FY |X(y|X = x) ≥ α}. FY |X(y|X = x) is the
conditional distribution function of Y given X = x: P{Y ≤ y|X =
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x}. This estimation is performed by minimizing the quantile loss (or
pinball loss [24]) on the training data:

Lα(q̂α(x), y) = (y − q̂α(x))α1[y > q̂α(x)]+

(q̂α(x)− y)(1− α)1[y ≤ q̂α(x)].

This approach can be leveraged to produce the prediction interval
[q̂α/2(Xn+1), q̂1−α/2(Xn+1)] for a target coverage level of 1 − α,
with the lower and upper bounds being the estimates of the α/2-th
and (1−α/2)-th conditional quantiles, respectively. However, there
is no theoretical guarantee to satisfy (1) [21]. In order to fulfill (1),
Romano et al. [21] suggest combining the strengths of conformal
prediction and quantile regression. This method, called conformal-
ized quantile regression (CQR), produces valid and adaptive predic-
tive intervals, with length varying according to heteroscedasticity in
the data. The authors describe the split and symmetric version of
CQR. Given a new input Xn+1, it constructs the prediction interval
by leveraging the estimates of conditional quantiles and a quantile of
conformity scores si: [q̂α/2(Xn+1)−q+α,|I2|{si}, q̂1−α/2(Xn+1)+

q+α,|I2|{si})]. q̂α/2 and q̂1−α/2 have been fitted on a training dataset
and the scores si have been computed on a calibration dataset in-
dexed by I2: si = max{q̂α/2(Xi)− Yi, Yi − q̂1−α/2(Xi)}.

Lastly, it is known that distribution-free conditional coverage is
impossible to achieve for any finite-width interval [8]. The authors
thus propose an algorithm with approximate conditional coverage
property which is valid for sets of similar instances (e.g. similar pa-
tients in the medical example). Regional uncertainty can also be ex-
plained by leveraging tree representations [3].

2 Methods

In this section, we detail our methods with split and cross-validation
(CV) versions for both QR+ and CQR+. They are respectively called
QR+ (SPLIT), CQR+ (SPLIT), QR+ (CV), and CQR+ (CV). The
split version requires splitting the training dataset into subsets while
the CV option requires fitting the regression model multiple times.

For the sake of clarity, q̂α denotes a conditional quantile model
fitted on the original training data {(Xi, Yi)}, whereas r̂α indi-
cates a conditional quantile model fitted on the residual dataset
{((Xi, μ̂(Xi)), Ri)}.

2.1 QR+ (split)

Our objective is to produce prediction intervals with characteristics
stated in Section 1. By definition, Yn+1 = μ̂(Xn+1)+Rn+1, where
Rn+1 is the (net) residual error for the input Xn+1. Instead of di-
rectly estimating a conditional quantile of Yn+1 given Xn+1 = x,
we consider estimating a conditional quantile of Rn+1. To achieve
that, QR+ seeks to detect any pattern in the residuals given a specific
representation (X, μ̂(X)). The residual dataset {((Xi, μ̂(Xi)), Ri)}
could be thought of as a multidimensional residual plot. The residual
plot, showing the residual values against the fitted values or against
the covariate values, is a diagnostic graph employed to check whether
the variance of residuals is constant in linear regression models [1].
It can also be employed to detect other patterns such as a local bias.
As μ̂(Xn+1) + R̂n+1 can be considered as an attempt to correct
the regressor’s initial prediction, estimating upper and lower bounds
could be viewed as the predictive confidence in the applied correc-
tion: μ̂(Xn+1) + r̂α/2(Xn+1, μ̂(Xn+1)) for the lower bound and
μ̂(Xn+1) + r̂1−α/2(Xn+1, μ̂(Xn+1)) for the upper bound, where
{r̂α/2, r̂1−α/2} = Q({((Xi, μ̂(Xi)), Ri)}). It is worth noting that

our method does not make any assumption on the properties of the
residuals. The residual structure could be biased/unbiased or het-
ero/homoscedastic.

QR+ thus requires a residual dataset where each residual Ri is
computed with a regression model fitted on the training dataset that
does not contain the i-th data point. We describe here the different
steps of the split version:

• We first split the training dataset {(Xi, Yi)}ni=1 into two disjoint
subsets, indexed by I1 and I2, respectively.

• We fit the regression function on the first set: μ̂ = R({(Xi, Yi) :
i ∈ I1}).

• We compute the (net) residuals on {(Xi, Yi) : i ∈ I2}: Ri =
Yi − μ̂(Xi).

• We fit two conditional quantile regression functions r̂ on the resid-
ual dataset: {r̂α/2, r̂1−α/2} = Q({((Xi, μ̂(Xi)), Ri) : i ∈ I2}).

• Given a new input Xn+1 = x, QR+ constructs Ĉ(x):

[μ̂(x) + r̂α/2(x, μ̂(x)), μ̂(x) + r̂1−α/2(x, μ̂(x))].

Similarly to QR, there is no theoretical guarantee that (1) is satisfied.

2.2 CQR+ (split)

In order to obtain theoretical coverage guarantees, we conformalize
QR+. We adapt the conformity scores proposed in [21] to our method
based on residuals. The split version of CQR+ is carried out as fol-
lows:

• We first split the training dataset {(Xi, Yi)}ni=1 into three disjoint
subsets, indexed by I1, I2, and I3, respectively.

• μ̂ is fitted on the first dataset: μ̂ = R({(Xi, Yi) : i ∈ I1}).
• We compute the (net) residuals on {(Xi, Yi) : i ∈ I2}: Ri =

Yi − μ̂(Xi).
• Two conditional quantile regression functions are fitted on the

residual dataset: {r̂α/2, r̂1−α/2} = Q({((Xi, μ̂(Xi)), Ri) : i ∈
I2}).

• The conformity scores are computed on {(Xi, Yi) : i ∈ I3}:
si = max{r̂α/2(Xi, μ̂(Xi))−Ri, Ri − r̂1−α/2(Xi, μ̂(Xi))}

• We compute the quantile of the conformity scores q+α,|I3|{si},
with i ∈ I3.

• Given a new input Xn+1 = x, the method constructs Ĉ(x):

[μ̂(x) + r̂α/2(x, μ̂(x))− q+α,|I3|{si},

μ̂(x) + r̂1−α/2(x, μ̂(x)) + q+α,|I3|{si}].

Theorem 1 If (Xi, Yi), i = 1, ..., n+ 1 are exchangeable, then the
output Ĉ(Xn+1) of the CQR+ (SPLIT) method satisfies (1).

Proof. The proof follows the main ideas of the split conformal pre-
diction guarantee [16, 32, 13]. Let Ĉr(Xn+1) denote the predic-
tion interval for the residual Rn+1, i.e. [r̂α/2(Xn+1, μ̂(Xn+1)) −
q+α,|I3|{si}, r̂1−α/2(Xn+1, μ̂(Xn+1))+q+α,|I3|{si})]. We note that

{Rn+1 ∈ Ĉr(Xn+1)} = {sn+1 ≤ q+α,|I3|{si}}. Conditioning
on the training sets indexed by I1 ∪ I2, if (Xi, Yi) are exchange-
able, so are the conformity scores si for i ∈ I3 and i = n + 1.
We have: P{sn+1 ≤ q+α,|I3|{si}|(Xk, Yk) : k ∈ I1 ∪ I2} =

�(|I3| + 1)(1 − α)�/(|I3| + 1) ≥ 1 − α, by definition of quantile
q+α,|I3|{si}. As Rn+1 = Yn+1 − μ̂(Xn + 1), we have P{(Yn+1 −
μ̂(Xn + 1)) ∈ Ĉr(Xn+1)|(Xk, Yk) : k ∈ I1 ∪ I2} ≥ 1 − α, and
thus P{Yn+1 ∈ Ĉ(Xn+1)|(Xk, Yk) : k ∈ I1 ∪ I2} ≥ 1 − α. We
conclude by taking the expectation over the training sets.
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Algorithm 1 QR+ (CV)
Input: Data {(Xi, Yi)}ni=1 indexed by I, number of folds K, target
coverage 1− α
Output: Prediction interval Ĉ

Split data into K disjoint subsets indexed by I1, ..., IK .
for k = 1, ...,K do

Fit μ̂−Ik = R({(Xi, Yi) : i ∈ I\Ik}).
end for

for i = 1, ..., n do

Compute the residual Ri = Yi − μ̂−Ik(i)(Xi).
end for

Fit conditional quantile regression models {r̂α/2, r̂1−α/2} =
Q({((Xi, μ̂

−Ik(i)(Xi)), Ri) : i ∈ I}).
Fit on full data μ̂ = R({(Xi, Yi) : i ∈ I}).
Compute prediction interval for any Xn+1 = x:
[μ̂(x) + r̂α/2(x, μ̂(x)), μ̂(x) + r̂1−α/2(x, μ̂(x))].

2.3 QR+ (CV)

The computational cost of the split version is relatively low as it only
requires fitting three functions (μ̂, r̂α/2, and r̂1−α/2). However, these
versions require splitting the initial training dataset. Fitting μ̂ and r̂
on small subsets can produce poor models of the data and thus wide
prediction intervals. Further, a small calibration dataset (e.g. subset
indexed by I3 for CQR+) can produce unreliable conformity scores
with high variability [33]. On the other hand, QR+ (CV) is based on
cross-validation and does not require splitting the training dataset.
According to Kohavi [12], if the regressor remains stable under the
perturbations created by removing each fold, the cross-validation es-
timate of the generalization error will remain unbiased. Better stabil-
ity should be observed with a large number (K) of subsets. In our
experiments, we followed Kohavi’s suggestion to use ten folds as a
reasonable trade-off between stability and computational cost.

QR+ (CV) is described in Algorithm 1. Ik(i) contains the i-th data
point, with k(i) ∈ {1, ...,K}. Therefore, in order to calculate each
residual Ri, the prediction μ̂−Ik(i)(Xi) is computed with the regres-
sion model fitted on the training set that does not contain the i-th data
point. To fit the two conditional quantile regression models, the co-
variate μ̂−Ik(i)(Xi) is computed with the regression function fitted
on the training set that does not contain the data point i.

2.4 CQR+ (CV)

This version of CQR+ is based on cross-validation and thus does not
require splitting the training dataset either. CQR+ (CV) is described
in Algorithm 2. As mentioned previously for QR+ (CV), Ik(i) con-
tains the i-th data point, with k(i) ∈ {1, ...,K}. Therefore, in order
to compute each conformity score si, we use the functions (μ̂−Ik(i) ,
r̂
−Ik(i)

α/2 , r̂
−Ik(i)

1−α/2 ) fitted on the training set that does not contain the
data point i.

Computational cost If we consider QR+ (CV), the model train-
ing cost is K + 3 because we fit K μ̂−Ik , two conditional quantile
regression models, and μ̂. In terms of prediction, the model evalua-
tion cost is 3 in order to compute μ̂(.), r̂α/2(.), and r̂1−α/2(.). With
regard to CQR+ (CV), the training cost is 3K + 3 in order to fit K
μ̂−Ik , 2K conditional quantile regression models, then μ̂, r̂α/2, and
r̂1−α/2. In that case, the model evaluation cost is 3 as well.

Algorithm 2 CQR+ (CV)
Input: Data {(Xi, Yi)}ni=1 indexed by I, number of folds K, target
coverage 1− α
Output: Prediction interval Ĉ

Split Data into K disjoint subsets indexed by I1, ..., IK .
for k = 1, ...,K do

Fit μ̂−Ik = R({(Xi, Yi) : i ∈ I\Ik}).
end for

for i = 1, ..., n do

Compute the residual Ri = Yi − μ̂−Ik(i)(Xi).
end for

for k = 1, ...,K do

Fit cond. quantile regressors {r̂−Ik
α/2 , r̂

−Ik
1−α/2} =

Q({((Xi, μ̂
−Ik(i)(Xi)), Ri) : i ∈ I\Ik}).

end for

for i = 1, ..., n do

Compute conformity scores si =
max{r̂−Ik(i)

α/2 (Xi, μ̂
−Ik(i)(Xi))−Ri,

Ri − r̂
−Ik(i)

1−α/2 (Xi, μ̂
−Ik(i)(Xi))}.

end for

Compute the quantile q+α,|I|{si}.
Fit on full data {r̂α/2, r̂1−α/2} =
Q({((Xi, μ̂

−Ik(i)(Xi)), Ri) : i ∈ I}).
Fit on full data μ̂ = R({(Xi, Yi) : i ∈ I}).
Compute prediction interval for any Xn+1 = x:
[μ̂(x) + r̂α/2(x, μ̂(x))− q+α,|I|{si},
μ̂(x) + r̂1−α/2(x, μ̂(x)) + q+α,|I|{si}].

Stability CQR+ (CV) does not have any theoretical coverage guar-
antees. In some specific settings (e.g. n ≈ d), μ̂ could be unstable.
In such contexts, the jackknife method, for instance, may have sig-
nificant undercoverage compared to jackknife+ [2]. We thus won-
der whether the intervals produced by CQR+ (CV) may undercover
in these conditions. Indeed, CQR+ (CV) computes the conformity
scores with μ̂−Ik(i) , r̂

−Ik(i)

α/2 , and r̂
−Ik(i)

1−α/2 whereas it uses μ̂, r̂α/2,
and r̂1−α/2 to construct the prediction intervals. In a context of insta-
bility, we would recommend producing the prediction intervals with
the same μ̂−Ik and r̂−Ik :

[q−α,|I|{μ̂
−Ik(i)(x) + r̂

−Ik(i)

α/2 (x, μ̂−Ik(i)(x))− si},

q+α,|I|{μ̂
−Ik(i)(x) + r̂

−Ik(i)

1−α/2 (x, μ̂
−Ik(i)(x)) + si}].

2.5 The undercoverage tree analysis

As distribution-free conditional coverage is impossible to achieve for
any finite-width interval [8], we propose the undercoverage tree anal-
ysis (UTA) in order to discover potential patterns of undercoverage.
This tool aims to reveal regions of the feature space where the pre-
diction intervals are more likely to undercover. UTA has to be used
on a dataset (indexed by Iuta) where the response values are avail-
able. UTA should be considered as a diagnostic tool giving insights to
model users. The latter should be informed about the model caveats,
i.e. whether the prediction intervals are really trustworthy or not.

Let T denote a classification tree algorithm [4] that takes in train-
ing data indexed by Iuta in order to output a model fitted on that
data: t̂ = T ({(Xj , Uj) : j ∈ Iuta}). The label Uj ∈ {0, 1, 2}
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Table 1. Marginal coverage (%) computed on the test dataset and averaged over ten training-test splits. The results are displayed by dataset, by base
algorithm (lgbm, linear), and for each method. The last two lines represent a simple mean across datasets. Values in parenthesis are standard deviations. All

methods empirically achieve roughly 90% coverage.

Dataset Model QR QR+ (ours) CQR CQR+ (ours) CV+ J+aB

house
lgbm 90.10 (1.95) 90.75 (1.94) 90.38 (1.60) 89.76 (1.81) 91.61 (1.91) 90.65 (2.41)
linear 91.30 (1.35) 90.96 (2.12) 90.96 (1.33) 90.14 (1.60) 90.58 (1.34) 90.17 (0.94)

bike
lgbm 90.64 (0.91) 90.78 (0.62) 90.29 (0.66) 90.76 (0.40) 91.59 (0.79) 90.54 (0.71)
linear 90.72 (1.36) 90.33 (1.31) 90.32 (2.03) 89.94 (1.00) 89.79 (0.95) 89.87 (0.87)

community
lgbm 90.48 (3.34) 90.83 (1.77) 89.77 (1.36) 90.40 (1.56) 90.85 (1.99) 90.13 (1.96)
linear 97.37 (4.54) 89.82 (3.82) 91.03 (1.79) 90.15 (1.72) 90.30 (1.43) 90.28 (1.56)

concrete
lgbm 88.81 (2.77) 93.28 (2.53) 91.00 (2.34) 92.99 (2.16) 93.98 (1.91) 91.94 (2.62)
linear 91.04 (2.78) 91.79 (2.85) 90.05 (1.95) 90.30 (2.26) 91.09 (1.94) 91.04 (1.86)

fb1
lgbm 91.10 (1.17) 90.16 (0.46) 93.52 (1.37) 90.05 (0.34) 92.02 (0.65) 90.74 (0.38)
linear 92.59 (0.96) 89.87 (1.01) 94.55 (0.80) 89.59 (1.02) 89.85 (0.85) 89.80 (0.90)

protein
lgbm 90.02 (0.65) 90.53 (0.31) 90.02 (0.15) 90.44 (0.29) 90.61 (0.62) 89.99 (0.45)
linear 90.71 (1.17) 90.79 (0.93) 89.78 (0.97) 90.20 (0.81) 89.88 (0.79) 89.89 (0.82)

simple mean
lgbm 90.19 91.06 90.83 90.73 91.78 90.66
linear 92.29 90.59 91.11 90.05 90.25 90.18

is defined as Uj = 2.1(Yj > UBj) + 1(Yj < LBj). LBj and
UBj are respectively the lower and upper bounds of the predic-
tion interval generated by CQR+ (CV) for input Xj ∈ Iuta, i.e.
LBj = μ̂(Xj) + r̂α/2(Xj , μ̂(Xj)) − q+α,|I|{si}, and UBj =

μ̂(Xj) + r̂1−α/2(Xj , μ̂(Xj)) + q+α,|I|{si}, with i ∈ I. The la-
bels 1 and 2 identify when the prediction intervals do not contain the
response, with CQR+ overestimating the response (Yj < LBj) or
underestimating the response (Yj > UBj), respectively. Indeed, it
can be useful to characterize the miscoverage depending on the use
case at hand.

We are interested in displaying the regions of the feature space
where the prediction intervals tend to undercover. We know that the
leaf nodes in a tree can be defined by not necessarily closed hyper-
rectangles [19], which form a partition

⋃
k≥1 Ht̂(lk) of the feature

space. They are defined as Ht̂(lk) = {x ∈ X|cstt̂(lk) |= x}
for all k, where t̂ is the binary decision tree (two children by in-
ternal node), lk denotes the k-th leaf node of t̂, and cstt̂(l) are
the constraints that fulfill the split conditions in the tree path from
the root to leaf l. Given a target coverage 1 − α and tolerance δ,
we would like to identify the leaf nodes with miscoverage level
αk = P{Yj /∈ Ĉ(Xj)|Xj ∈ Ht̂(lk)} > α (i.e. undercoverage)
and with proportion PX(Ht̂(lk)) ≥ δ. We aim to display the leaf
nodes’ related size, miscoverage rate (proportions of labels 1 and 2),
and constraints. By plotting the tree structure with a minimum num-
ber of samples required to be in a leaf node (δ×|Iuta|), we can show
each leaf l with its size (number of samples in the hyperrectangle),
miscoverage rate (proportion of samples with label Uj �= 0 in the hy-
perrectangle), and the combination of constraints cstt̂(l) that explain
that leaf node.

UTA is thus a binary tree structure which identifies the patterns
that lead to regional undercoverage and explain them in terms of fea-
ture values. When used in high-dimensional settings, it could be use-
ful to display untrustworthy regions through a combination of a few
constraints. Based on UTA, practitioners could then decide to reduce
the scope of use of the method (e.g. leaves with high undercoverage).
If CQR+ predictions are directly communicated to non-expert users,
human-in-the loop [7] could help to reduce the risks. In that case,

experts would first check the prediction intervals for new inputs that
would fall into the risky leaves. At least, users should be informed
of the limitations related to those regions of the feature space. As a
monitoring tool, UTA can thus be updated on new data as soon as the
ground truth becomes available. As a last remark, UTA could work
with any other method producing prediction intervals with defined
target coverage (e.g. split conformal prediction).

3 Experiments

3.1 Settings

Datasets We empirically test the relevance of our methods on six
regression datasets. The response in Ames Housing Dataset (house)
is the sale price of residential properties [5, 6]. We use the 1,460 in-
stances for which the outcome is available. The response in Seoul
Bike Sharing Demand Dataset (bike) is the count of public bikes
rented every hour in Seoul [31, 30, 29]. The dependent variable
in the Communities and Crime Data Set (community) [20, 26] is
the crime rate. The regression task proposed by the Concrete Com-
pressive Strength Dataset (concrete) is to predict this strength value
[35, 25]. The task corresponding to the Facebook Comment Volume
variant one dataset (fb1) is to predict the number of comments that a
post will receive [22, 28]. Lastly, the response in the Physicochem-
ical Properties of Protein Tertiary Structure Dataset (protein) is the
size of the residue for a protein [27].

Models and training settings The target miscoverage rate α is set
to 0.1 for a target coverage of 90%. For each use case, the features
are standardized to have zero mean and unit variance. We also rescale
the response by dividing it by its mean absolute value. Each use case
is run over ten different training-test splits. 80%/20% of the instances
are used for training/testing, respectively.

We experiment with two types of base algorithms to fit μ̂, q̂, or r̂.
First, we use LightGBM (lgbm) [9] implemented in lightgbm Python
package. In that case, the regression model μ̂ is produced by opti-
mizing the L2 loss, while the conditional quantile regression func-
tions are fitted by optimizing the pinball loss. Secondly, we employ
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Table 2. Mean interval width computed on the test dataset and averaged over ten training-test splits. The results are displayed by dataset, by base algorithm
(lgbm, linear), and for each method. The last two lines represent a simple mean across datasets. Values in parenthesis are standard deviations. CQR+ leads to

the shortest intervals on average while QR+ is very close. Across the various datasets and models, QR+ and CQR+ outperform QR and CQR, respectively.

Dataset Model QR QR+ (ours) CQR CQR+ (ours) CV+ J+aB

house
lgbm 0.68 (0.07) 0.42 (0.03) 0.53 (0.08) 0.40 (0.01) 0.41(0.02) 0.39 (0.01)
linear 0.73 (0.20) 0.45 (0.08) 0.65 (0.18) 0.42 (0.05) 0.43 (0.05) 0.43 (0.04)

bike
lgbm 1.16 (0.13) 0.67 (0.04) 0.79 (0.05) 0.66 (0.04) 0.78 (0.03) 0.77 (0.04)
linear 2.58 (0.45) 2.23 (0.24) 2.49 (0.44) 2.18 (0.24) 2.19 (0.19) 2.18 (0.18)

community
lgbm 2.97 (1.06) 1.87 (0.05) 1.63 (0.06) 1.84 (0.04) 1.84 (0.03) 1.80 (0.03)
linear 3.77 (0.82) 1.97 (0.16) 2.17 (0.33) 1.91 (0.17) 2.06 (0.07) 2.05 (0.06)

concrete
lgbm 0.97 (0.13) 0.41 (0.03) 0.50 (0.04) 0.40 (0.02) 0.40 (0.01) 0.40 (0.01)
linear 1.30 (0.28) 1.06 (0.11) 1.23 (0.26) 1.00 (0.09) 1.02 (0.05) 1.02 (0.04)

fb1
lgbm 1.85 (0.08) 1.85 (0.16) 2.07 (0.08) 1.84 (0.10) 2.17 (0.10) 1.95 (0.07)
linear 1.63 (0.20) 2.27 (0.54) 2.21 (0.42) 2.13 (0.47) 2.15 (0.20) 2.13 (0.22)

protein
lgbm 1.78 (0.04) 1.40 (0.10) 1.60 (0.09) 1.33 (0.07) 1.71 (0.06) 1.69 (0.07)
linear 2.23 (0.08) 2.22 (0.08) 2.20 (0.06) 2.19 (0.05) 2.57 (0.18) 2.55 (0.18)

simple mean
lgbm 1.57 1.10 1.19 1.08 1.22 1.16
linear 2.04 1.70 1.82 1.64 1.73 1.73

Figure 2. Conditional coverage and interval width for bike (top) and
protein (bottom) use cases with lgbm base regression algorithm and for a

quantile-based partition of the true response. Computed on the test dataset
and averaged over ten training-test splits. In both use cases, for high values

of the true response (partition 10), all the methods tend to undercover.
However, QR+ and CQR+ adapt the length of the prediction intervals to
achieve slightly better conditional coverages. For low values of the true

response (partition 1) in protein use case, only CV+ and J+aB manage to
reach the expected coverage.

a linear regression model that predicts conditional quantiles (linear),
implemented in scikit-learn [18]. The optimization is based on the
pinball loss with L1 regularization. For μ̂, we set the quantile param-
eter to 0.5.

The hyper-parameters of the regression model μ̂ are optimized
through 10-fold cross-validation with 20 iterations of a randomized
search. In order to limit the computational burden, we use the same
hyper-parameter values for the conditional quantile regressors q̂α/2

and q̂1−α/2. For a fair comparison, we follow a similar process for
r̂α/2 and r̂1−α/2: (i) The hyper-parameters of a regression model
fitted on the residual dataset are optimized through 10-fold cross-
validation with 20 iterations of a randomized search; (ii) We use this
same hyper-parameter configuration for the conditional quantile re-
gressors r̂α/2 and r̂1−α/2. Lastly, CV+ and J+aB methods are imple-
mented with the mapie package [15].

Evaluation To compare the different methods on the test data, we
compute the mean interval width of the prediction intervals. We also
evaluate the marginal coverage which is defined as the proportion of
response values that lie within the prediction intervals.

Baselines We compare our methods to four baselines:

• Conditional quantile regression (QR) [11]: As the conditional
quantiles estimated by quantile regressions are sometimes not
well-calibrated [21], the quantile hyper-parameter is tuned using
cross-validation with 10 folds in order to optimize the coverage.

• Conformalized quantile regression (CQR) [21]: For a fair compar-
ison with CQR+, we implement a 10-fold cross-validation version
of CQR. Therefore, the conformity scores are computed through
cross-validation.

• CV+ for K-fold cross-validation (CV+) [2]: We use 10 folds for
this method as well.

• Jackknife+-after-bootstrap method (J+aB) [10]: In this method,
B = 20 training datasets are created by bootstrapping.
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Figure 3. Undercoverage Tree Analysis (bike with lgbm) fitted on the test dataset and based on CQR+ output. The tolerance parameter δ equals 0.1%. The
tree structure exhibits the regions (leaf nodes) with the proportion of samples, the proportion of labels, and the related constraints. The second leaf node from
the left produces prediction intervals which significantly undercover: [0.714, 0.286, 0.0]: 71.4% is the share of samples where the prediction interval includes

the true response ("IN" is the majority class) and the sum of the shares for the last two labels (0.286 and 0.) represent the miscoverage rate. In particular, 28.6%
is the share of samples where the prediction intervals overestimate the true response.

Our methods We use the QR+ and CQR+ CV versions described
in Algorithms 1 and 2, respectively. We set K = 10 folds. Similarly
to QR, the quantile hyper-parameter for QR+ is tuned using cross-
validation with 10 folds in order to optimize the coverage.

3.2 Results

Marginal coverage and interval width The results in Table 1
show that all methods empirically achieve roughly 90% coverage.

The results in Table 2 demonstrate that CQR+ produces the short-
est intervals on average and thus outperforms CQR. Similarly, QR+
is very close to CQR+ and outperforms QR. Correcting the predic-
tion with the predicted conditional quantiles of the residual variable
seems to decrease the prediction uncertainty.

Conditional coverage and interval width The bar charts from
Figure 2 evidence that QR+ and CQR+ produce adaptive prediction
intervals based on a quantile-based partition of the true response.
The charts display the conditional coverage and conditional inter-
val’s width, respectively. For instance, for high values of the true re-
sponse, the base regression model tends to be more uncertain. Conse-
quently, QR+ and CQR+ generate wider prediction intervals in order
to achieve slightly better conditional coverages. However, in the first
partition of the true response of protein use case, only CV+ and J+aB
manage to reach the expected coverage. That is why UTA is required
in order to disclose untrustworthy regions.

Undercoverage Tree Analysis We illustrate the interest of the
Undercoverage Tree Analysis applied to CQR+ (CV) with the bike
dataset. The binary tree structure is plotted in Figure 3. The left child
of a node is the one which respects the split condition. To make the
tree constraints more understandable, the data has not been scaled.
Using the Gini impurity criterion, we fit a decision tree classifier on
the test dataset with μ̂(X) (Ypred in the plot) as additional feature:
t̂ = T ({((Xj , μ̂(Xj)), Uj) : j ∈ Itest}). δ is set to 0.1% via the
parameter for the minimum number of samples in a leaf node. The
second leaf node from the left displays 28.6% miscoverage (score

for label 1). When the regression model predicts an hourly number of
rented bikes lower than 230 and when the rainfall reaches a certain
level, the model tends to output prediction intervals which exceed
the true responses, with 28.6% probability. This type of analysis can
also be useful for applications in the medical or financial fields where
practitioners need to know whether the prediction interval is reliable.

4 Conclusion, limitations, and future work

We presented QR+ and CQR+, two methods which output prediction
intervals by leveraging the estimate of a conditional quantile function
of the residual variable given a specific representation. CQR+ also
exploits conformal prediction to produce even shorter intervals. We
presented UTA, a tree-based representation that identifies untrust-
worthy regions in terms of miscoverage. We have shown the rele-
vance of these techniques on various use cases.

Our intuition to include μ̂(X) as input for the conditional quantile
regression is based on the residual plot: μ̂(X) may be an obvious fea-
ture to detect residual singularities (as it is to visualize bias/variance
from a residual plot). Further, μ̂(X), as the regressor’s output, may
give more insights about model uncertainty than just the raw data
X . However, there is no theoretical justification to demonstrate the
value of μ̂(X) as input for the conditional quantile regression. With
the undercoverage tree analysis of QR+ or CQR+, we could select
samples from leaves with high undercoverage and compare the per-
formance with the other baselines. UTA could also be employed as a
predictive tool in order to estimate, for each new input, whether the
prediction interval contains the true response or not. When the true
response becomes available, we could then estimate the accuracy of
UTA. Further, we could experiment with additional algorithms such
as random forests or neural networks (with pinball loss to estimate
conditional quantiles). Additional expected coverage values could be
tested as well. Lastly, we could study the efficacy of our methods
when distribution shifts occur and in unstable settings. In particular,
we could implement the version of CQR+ presented at the end of
Subsection 2.4.
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