
Expediting Self-Play Learning in AlphaZero-Style
Game-Playing Agents

Yngvi Björnsson, Róbert Leó Þormar Jónsson and Sigurjón Ingi Jónsson

Department of Computer Science, Reykjavik University

Abstract. One of the main appeals of AlphaZero-style game-
playing agents, which combine deep learning and Monte Carlo Tree
Search, is that they can be trained autonomously without external
expert-level domain knowledge. However, training such agents is
generally computationally expensive, with the most computation-
ally time-consuming step being generating training data via self-
play. Here we propose an improved strategy for generating self-play
training data, resulting in higher-quality samples, especially in ear-
lier training phases. The new strategy initially emphasizes the latter
game phases and gradually extends those phases to entire games as
the training progresses. In our test domains, the games Connect4 and
Breakthrough, we show that game-playing agents using the improved
training approach learn significantly faster than counterpart agents
using a standard approach. Furthermore, we empirically show that
the proposed strategy is (in our test domains) superior to several re-
cently proposed strategies for expediting self-play learning in game
playing.

1 Introduction
Over the past years, in part prompted by the success of Alp-
haZero [12, 13, 11], deep reinforcement learning has become main-
stream for training game-playing agents to play abstract board games
at an expert level [12, 9, 7, 15]. One of the main appeals of that ap-
proach is that it requires no pre-coded expert domain knowledge nor
human involvement during the learning process. However, this ap-
proach comes at a cost, particularly access to massive computing
resources. For example, AlphaZero played 40 million chess games
with the help of 5,000 special-purpose computing units (TPUs) to
reach state-of-the-art performance in the game of chess [12].

The most computationally time-consuming component of the
learning process is generating the training data, i.e., the games, via
self-play. Thus, a natural question is whether one can achieve similar
expertise by using significantly less computing resources. Several av-
enues of research have addressed this, most notably model improve-
ments, i.e., altering the neural-network architecture for faster conver-
gence and better performance [4, 17, 2] and more efficient generation
and use of the training data [14, 8, 17]. Here, we are only concerned
with the latter and investigate it further using the games Connect4
and Breakthrough as our test domains.

The paper’s main contribution is an improved strategy for gen-
erating training data via self-play, resulting in higher-quality train-
ing samples, especially in earlier training phases. The new strat-
egy, which we call Late-To-Early Simulation Focus (LATE), initially

∗ Authors are listed in alphabetical order. All authors contributed equally.

emphasizes training experiences gathered from the late stages (i.e.,
endgame) of individual training games; however, as training pro-
gresses, it expands its focus to consider entire games. In our test
domains, game-playing agents using the new approach for training
reach superior playing strength than counterpart agents using a stan-
dard training approach, requiring significantly less training time. Fur-
thermore, we empirically show and quantify the quality improve-
ment in the training data when using our new approach and con-
trast its effectiveness to that of several other recently published ap-
proaches [8, 17].

The paper’s organization is as follows. The next section provides
the necessary background material. The two following sections de-
scribe and empirically evaluate the enhancements for expediting the
game agent’s learning, respectively. Finally, we conclude and discuss
future work.

2 Background
This section provides the necessary preliminaries. We start by giv-
ing an overview of the workings of AlphaZero-style game-playing
agents and their training, followed by a summary of recent related
approaches at having such agents generating self-play training data
more effectively.

2.1 AlphaZero-Style Agents

AlphaZero-style game-playing agents use a (deep) neural-network-
guided Monte Carlo Tree Search (MCTS) [6, 3] to decide which
moves to play. A neural network, denoted by fθ , takes a game state
s as input and generates a policy prior p and a value estimate v, i.e.:

(pθ, vθ) = fθ(s).

The policy prior pθ is a distribution of real numbers over all available
moves in state s, evaluating their relative promise, whereas the real
number vθ estimates the merit of state s from the player’s to move
perspective, for example, as the expected game outcome. The neural
network outputs are used for guiding an MCTS, modifying it in two
critical ways.

First, the MCTS selection phase, which applies while choosing ac-
tions while traversing the tree (built and kept in memory), is extended
to use the policy priors from the neural network for early guidance,
that is, action selection in the tree is performed by choosing in each
state s the action a that maximizes:

PUCT(s, a, s′) = V (s′) + cPUCT · pθ(s, a)
√

N(s)

N(s′) + 1
,

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230279

263

where s′ is the successor state resulting from taking action a in state
s, and, as in regular MCTS, V : S → R and N : S → N hold the
average backup-value and the number of visits to state s, respectively
(where S represents the state space).

Second, the playout and expansion phases of a regular MCTS are
combined into a single evaluation-and-expansion phase. This phase
is entered after the selection phase, and a new node s is added to the
tree using the neural network to label the node’s V (s) and pθ(s, a)
values for non-terminal nodes (and the game’s outcome for termi-
nal states). Unlike in traditional MCTS, for non-terminal states, no
playout simulations are performed.

The back-propagation phase functions the same as in traditional
MCTS, updating the value estimate of all ancestors of s in the tree.
Also, move decisions are made in a traditional manner, with the se-
lection, evaluation-and-expansion, and back-propagation phases re-
peatably run successively until allotted deliberation resources are up
(typically a limit on time or number of simulations), when the most
frequently visited action at the root is played.

2.2 AlphaZero-Style Training

The neural network fθ is trained using data gathered during agents’
self-play. Initially, an agent plays a fixed number of games against
itself using an untrained network. For each game, all occurring states
are recorded and labeled with the game outcome (from the player’s
perspective to move), z, and the relative frequency at which the
MCTS explored the actions available in the state, π (normalized to be
a probability distribution). This results in labeled samples for training
the next-generation network for the agents. This process continues in
a bootstrapping fashion until playing performance converges.

The network training uses the following loss function:

L(θ, s, z,π) = (vθ(s)− z)2 − π� log(pθ(s)) + c‖θ‖2

with z and π the target outcome and policy, respectively. The training
process keeps relevant training samples in a so-called replay buffer
during training, from which it samples mini-batches for updating the
network. In the traditional approach, this is a fixed-sized buffer stor-
ing training samples from one or more recent agent generations.

Extra precaution is taken during training to encourage exploration.
Firstly, Dirichlet noise is added to the tree’s root node r during self-
play, modifying the policy prior as follows:

p′(r) = λp(r) + (1− λ)η

where, η is sampled from a Dirichlet distribution with parameter
α. Secondly, instead of always greedily playing the most promising
move, a move is chosen probabilistically using a softmax policy for
the first few moves of each game.

In the default training approach, the neural network of the self-play
agents is updated periodically with a better-tuned version; however,
the agents’ search behavior stays the same otherwise. In particular, a
fixed number of MCTS simulations is performed per action decision.
It can take many generations for the training process to converge. In
early generations, valuable signals from the training games may be
sparse as the agents act more or less randomly. However, gradually,
the agents start to improve, and the games become more represen-
tative of expert play. The premise behind our method for expediting
self-play, as well as the others we review in the following subsection,
is avoiding spending much computing resources on generating and
training with samples having low-quality target signals.

2.3 Related Work

OLIVAW [8], an AlphaZero-style agent for playing the game of Oth-
ello, introduces several techniques for reducing self-play training
time. Two of those are related to our work. First, it uses a dynamic
training window (DTW) that gradually increases the number of past-
generation training samples stored in the replay buffer as training
progresses. Second, it incrementally adjusts the number of MCTS
simulations per action decision as training progresses, increasing
them stepwise (100 for the first four generations, 200 for the next
seven, and from thereon, 400). We use a slight variation of this en-
hancement that more gradually increases the simulation count, which
we call gradual simulation increase (GIS). The rationality behind
both those enhancements is to move quickly away from the earlier
generations.

KataGo [17] introduces several architectural and self-play-related
enhancements to AlphaZero-style learning. The improvements are
both domain-specific (to the game of Go) and domain-independent.
The most closely related domain-independent enhancement is called
randomized playout cap (RPC), which limits the number of simula-
tions per move to n, where n is much smaller than the regular sim-
ulation number N and applies to most move decisions throughout
a game. During training, one ignores the training samples resulting
from the fast searches, thus getting fewer training samples per game.
This strategy leads to more varied games being played, albeit result-
ing in a slightly smaller but more diverse training set — a tradeoff
the paper claims is still beneficial for training. As the training ad-
vances, the number of simulations in both full and partial searches
incrementally increases.

3 Method

Traditionally, after a self-play game, all training samples resulting
from the game are labeled with the game outcome (the target for the
value function) and the relative visit counts to the children of the
MCTS root node (the target for the policy function).

In early training generations, the gameplay is poor, with both
sides making many mistakes. This results in the signal the target
labels provide being noisy and only loosely related to the actual
merits of moves and states. Nonetheless, the training samples pro-
vide more than enough helpful feedback to improve the agents’
playing strength. The gameplay thus generally improves quickly be-
tween early training generations. The previous strategies for expedit-
ing self-play training, which we reviewed earlier, capitalize on this.
However, another factor is also at play, hitherto unexploited – the
labeling quality also differs within a game.

The think-ahead process of MCTS can reliably look some moves
ahead. So, when close to terminal states, it quickly zooms in on the
correct moves, resulting in the value and policy target labels both
being reasonably accurate. On average, at least to start with, the la-
bels tend to be significantly more accurate in later game phases than
earlier ones (we confirm this assertion in our test domain in the re-
sult section). This observation is a central premise behind the LATE
enhancement we propose.

3.1 Late-To-Early Simulation Focus

In the Late-To-Early Simulation Focus (LATE) enhancement, we vary
the number of MCTS simulations performed during self-play based
on the current training generation and the number of moves played
within a game, according to a function w(g,m) ∈ [0, 1], where g

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents264

Figure 1: Weight function for Connect4

is the training generation number and m is the game’s current move
number. Assuming minimum and maximum numbers of simulations
allowed being n and N , respectively, the number of simulations the
agent performs in a given state when deciding on an action is:

w(g,m) ·N
where

w(g,m) = max
(n

N
, s(g,m)

)

and where the s(g,m) function controls the simulation effort. A dif-
ferent function could be used, but here we opt for a shifted and scaled
sigmoid function:

s(g,m) =
1

1 + exp(ρ(g)− m
h
)

where h is a scaling hyper-parameter. The shift ρ(g) transitions from
the initial value ρ0 to ρ1 according to

ρ(g) = (ρ1 − ρ0)
(g

u

)ω

+ ρ0

where u is the generation at which we want the weight to be a con-
stant 1, and ω controls the acceleration.

Initially, the weight will be close to zero but then drifts towards
one as the game progresses. The weighing adjustment occurs late in
early training generations but earlier in later generations. Figure 1
depicts an example thereof, where the hyper-parameters have been
adjusted for learning in Connect4.

The main impetus behind the s(g,m) function is to get an easily
parameterized smooth transition (from low to high) as both games
and training progress. Other functions with similar properties might
suffice too.

3.2 Training and Loss Weighting

During training, we use all self-play states but weigh the loss of sam-
ples with w. This approach mitigates the data quality problem by
focusing the training on the late game, where higher-quality samples
are found. The model can then gradually increase its strength towards
the early game along with the weight function, utilizing its improved
performance in later moves to enhance its moves in earlier stages.

3.3 Neural Networks

As in AlphaZero the neural networks feature a convolutional body,
accompanied by a value head and a policy head. The convolutional

8popopopo
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1OPOPOPOP

a b c d e f g h

8popopopo
7Z0opZpop
6pZpZ0Z0Z
5Z0Z0o0Z0
40Z0OPZ0Z
3Z0Z0Z0Z0
2POPZ0OPO
1OPOPOPOP

a b c d e f g h
Figure 2: Breakthrough. The initial position to the left, with White to
move. In the example position to the right, the White pawn on d4 can
move to either c5, d5, or e5 (with capture), whereas the White pawn
on e4 can move to either d5 or f5.

body consists of ResNet [5] blocks that function as a feature extrac-
tor. The value head processes the body’s output to generate an evalu-
ation estimate, while the policy head produces a tensor representing
a probability distribution over possible moves.

4 Results

We empirically evaluate the LATE enhancement by monitoring the
quality of the learning process, the computing effort required, and the
playing strength of the resulting agents. However, before presenting
the empirical results, we describe the test domains, the experimental
methodology, and the experimental setup.

4.1 Games

We use the two-player (perfect information, deterministic, turn-
taking) abstract strategy board games Connect4 and Breakthrough
as our test domains.

Connect4 is a well-known game played on a vertically suspended
7x6 grid. The players take turns dropping colored disks, one per turn,
into any remaining non-full grid column (once dropped, a disk falls
to the lowest unoccupied grid cell in that column). The first player
to form a horizontal, vertical, or diagonal line of length four with
their color disks wins. If the grid fills without either player forming
a line of four, the game outcome is a draw. The main reason for us
including this game in our testbed is that it is strongly solved —
we know the actual outcome of all possible game states. Having this
information as ground truth allows us to systematically compute and
compare the quality of the training samples generated by different
self-play strategies.

The game Breakthrough is played on a chess-like board. The left
diagram in Figure 2 shows the board’s initial setup, with the white
pieces along the bottom two rows and the Black pieces along the top
two rows. White goes first and then the players take alternating turns,
with each player moving one of their pieces per turn. A piece moves
one square straight or diagonally forward (relative to the player), with
the following restrictions: the target square must either be empty or,
in the case of diagonals moves, can be occupied by an opponent’s
piece, which is then captured and removed from the board. The right
diagram in Figure 2 shows examples of legal piece moves. The ob-
jective of the game is to be the first player to maneuver one of their
pieces to the opponent’s back-rank, and the first player to do so wins.
Another way to win is to capture all the opponent’s pieces. It fol-
lows from the game rules that one of the players always wins (no

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents 265

draws). The strategic complexity of the game is rich enough to re-
quire non-trivial strategies to play well while simultaneously being
small enough to allow us to train an expert-level agent in a reasonable
time frame using moderate computing resources.

4.2 Experimental Methodology

Connect4 is a strongly solved game, which allows us to evaluate
the quality of the generated training data by comparing the labels
of the training data to ground truth. We used an existing solver [10]
to provide the ground truth. We use v∗(s) ∈ {−1, 0, 1} to repre-
sent the ground-truth game outcome of a state s assuming optimal
play from both sides, where −1, 0, and 1 represent a loss, draw, and
a win, respectively. Then, given states and comparison evaluations
(s1, v1), . . . , (sn, vn), we use the root mean squared error (RMSE)
between the ground-truth evaluations v∗(si) and comparison evalu-
ations vi. The ground-truth policy, π∗, is a probability distribution
over all possible actions in a given state, where actions that lead to
the best available game outcome from that state all get a value 1/b
(assuming b such actions), while all other actions get the value 0. 1

We use the cross-entropy as an error measure between π∗ and the
comparison policy π. Using the above error measures, we evaluate
the quality of both the neural network’s and MCTS outputs.

Furthermore, we created three datasets to ease the evaluation and
reproducibility of our empirical evaluation. First, a dataset Dc4 con-
sisting of 10,000 Connect4 positions representative of expert-level
gameplay. We generated the dataset by playing multiple games us-
ing an agent that chooses its actions with a softmax policy over all
available moves as evaluated by the solver — the agent is thus more
likely to pick a good move, albeit not always the best one. We then
randomly pick one position from each game to store in the dataset,
ensuring no duplications. We use this dataset to evaluate the qual-
ity of our model/agent throughout training (see subsection 4.4). Sec-
ond, we created two datasets of opening positions four plies into the
game, Oc4 and Obt, the former with 25 distinct positions and the lat-
ter with 50. We use them as starting points when matching agents
against each other (see subsection 4.6). Both datasets were created
using standard MCTS.

We also created an optimal agent for Connect4 using a solver. It
plays perfectly, and when choosing between actions with the same
game-theoretical value, it chooses the one that either wins the fastest
or, when not winning, the one that puts up the most prolonged resis-
tance. We use it as a baseline when evaluating the playing strengths
of other Connect4 agents.

Throughout our experiments, we employ the cumulative number
of executed simulations as a proxy to approximate the computational
resources expended in training an agent. This approach is justified as
the vast majority of computational resources dedicated to training an
agent are consumed by the simulations conducted during self-play.
Given that the number of simulations executed per generation varies
across the different agents we train, the cumulative number of simu-
lations serves as the most suitable and consistent measure.

4.3 Experimental Setup

The agents are written in C++, and the training is done in Python us-
ing PyTorch version 1.13.1. The source code is publicly available [1].
For the most part, we ran the experiments on a 16-core (32-thread)

1 This is not the only way to form an optimal ground-truth policy, but we
chose to do it this way because it is the policy that MCTS would converge
to with an infinite number of simulations.

CPU (AMD Rysen 9 3950X) with an NVIDIA Geforce RTX 2080
Ti GPU card, and 32GB of memory. On that hardware, each training
episode using the complete computing resources lasted, depending
on the method, from a few hours to a full day for Connect4, and from
a few days to over two weeks for Breakthrough. 2

4.3.1 Self-Play Hyperparameters

All our agents apart from RPC (see below) play 5000 games per
generation. For the default and DTW agents, we use 600 and 800
simulations per state in Connect4 and Breakthrough, respectively. In
the GIS implementation, the number of simulations starts at 60 in
Connect4 and increases linearly to 600 over the course of 100 gener-
ations. In Breakthrough, the number of simulations begins at 80 and
follows a similar linear increase to 800 within the same timeframe.

When applying LATE to Connect4, we use n = 20, h = 3, ρ1 =
−4, ρ0 = 10.5, u = 100, and ω = 2. The weight function with
these hyperparameters is depicted in Figure 1. For Breakthrough, we
use n = 50, h = 8.4, ρ1 = 4, ρ0 = 8.2, u = 100, and ω = 1.
With these hyperparameters, the weight function for Breakthrough
is analogous to the one used for Connect4, but is adjusted for the
standard number of moves in Breakthrough. Additionally, the weight
function transitions linearly towards the early game with ω = 1, as
a quadratic transition in Breakthrough is initially too slow due to the
increased number of moves.

For RPC, the full search probability (p) is set to 0.25 in both
games, as in KataGo. In Connect4, the parameters n and N (num-
ber of simulations in a partial and full search, respectively) start at
75 and 450, respectively, and increase linearly to 150 and 750 over
100 generations. In Breakthrough, the values of n and N increase
from 100 and 600 to 200 and 1,000 during the same period. These
values are similar to the ones used in KataGo. Now, because only
states that get a full search are used for training, the average number
of training states we obtain from a game is a factor of 1/p smaller.
Thus, to generate an equivalent amount of training data as in the other
runs, we multiply the number of games per generation by a factor of
1/p, resulting in 20,000 games per generation for RPC experiments.

When incorporating Dirichlet noise at the root, we use α = 0.7
for Connect4 and α = 0.3 for Breakthrough, consistent with the
AlphaZero approach, which inversely scales this parameter with the
average branching factor. A softmax policy, as described in subsec-
tion 2.2, is used for the first four plies in Connect4, and for the first
six plies in Breakthrough. All our agents use cPUCT = 4, determined
through informal experiments.

4.3.2 Training Parameters

When training, we sample games uniformly from the last 20 genera-
tions in Connect4 and 25 generations in Breakthrough. The learning
rates are set to a constant 10−3 for Connect4 and 10−4 for Break-
through, and the weight decay parameter is c = 10−4 for both
games. These parameters were all determined through informal em-
pirical experiments, except for the weight decay parameter, which is
the same as in AlphaZero [12].

For DTW in Connect4, the training window increases from 1 to 20
over 60 generations. In Breakthrough, it increases from 1 to 40 over
80 generations.

2 Thanks to Lambda Labs (https://lambdalabs.com) for donating computing
time for some of our early experiments.

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents266

Figure 3: Training data quality for default agent (left) and LATE agent (right). Each curve is averaged over 20 generations. The high error in the
first few moves is exacerbated by the measures we use during training to encourage exploration. Overall, the error reduces as both the training
and, even more profoundly, the game progresses.

Figure 4: Comparing model quality for different training window sizes for LATE and default agent. The error is shown both as a function of
generations (left) and simulations (right).

4.3.3 Neural networks

In Connect4, the convolutional body is composed of six 64-
channel ResNet blocks, and the policy is represented by a single 7-
dimensional vector that corresponds to the board columns.

In Breakthrough, the body is made up of seven 128-channel
ResNet blocks, and the policy is represented by a 3 × 8 × 8 ten-
sor. The three channels indicates the possible ways to move a piece:
channel 0 for left, channel 1 for forward, and channel 2 for right.

4.4 Quality Assessment Using Ground-Truth

Our ground-truth for Connect4 allows us to monitor the quality of
the training data and our agents during training, thus gaining added
insights. Here, we look at the value estimate quality (for brevity, we
omit discussing the policy quality, but our playing-strength experi-
ments indirectly demonstrate improved policy quality).

4.4.1 Training Data

Figure 3 shows the errors of the value labels of the training sam-
ples during Connect4 training for both the default and our enhanced

agent. The different curves show the error averaged over different
training generations. We see that, overall, the error reduces with fur-
ther training (one anomaly where the default agent shows a sign of
overfitting towards the end of training). Even more profound is the
effect of the error reducing towards later game stages. By contrast-
ing the left and right graphs, we see that the quality of the training
samples generated by our enhanced agent seems at least as good as
for the default agent despite running much fewer simulations in early
game stages. Moreover, because of the sample weighing, the training
of the enhanced agents places less emphasis on the (more erroneous)
samples in the early game stages. This results in more effective train-
ing with respect to playing strength, as we see later.

4.4.2 Model

How do the errors in the training data affect the quality of the neu-
ral network and the agents’ decisions? Figure 4 depicts the error of
the network’s value output (v) of positions from various game states,
i.e., using the Dc4 test dataset, plotted as a function of training gen-
eration (left) and the number of simulations (right). Each agent has
two versions, one using the default training-window size of sampling
from the past 20 generations and the other using twice as large a

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents 267

Figure 5: The upper plots show the model error of vθ as a function of the number of training generations and total number of self-play
simulations, respectively. The lower plots show similar plots for the agents MCTS root value estimate after 600 simulations.

window. Firstly, the network’s value output quality is much better in
the LATE agent than the default one, both given the same number
of training samples (left) and the same self-play training-data gen-
eration effort (right). Secondly, we see a sign that the LATE agent
using the smaller training window is starting to overfit its evaluations
towards playing against itself, as its performance against the fully-
trained baseline agents starts to degrade. This behavior is well-known
in self-play learning settings and becomes more visible the better an
agent gets. It can be rectified by including training data from earlier
agent generations. Third, we see that the LATE agent benefits from
a more extensive training window as its performance continues im-
proving. Typically it is detrimental to use training data from much
earlier generations, as it has lower overall quality; however, because
of the importance of weighing the LATE agent uses in training, it
seems it can still benefit from better quality endgame samples from
early generations while not being distracted by the more erroneous
early-game samples (unlike the default agent).

4.5 Comparison to Other Methods

Finally, we assess the quality of our approach in contrast to other
similar approaches proposed in the literature (which we summarised
in the related work section). Figure 5 depicts the error of positions
from various game states, i.e., using the Dc4 test dataset, plotted

as a function of training generation (left) and the number of simu-
lations (right). The upper and lower graphs show, respectively, the
errors in the networks’ value output (vθ(s)), and the value estimate
of the MCTS root after 600 simulations. The LATE method is in
a class of its own regarding the value accuracy of both the neural-
network model and the MCTS — as we will see later, this translates
directly into improved playing strength. However, for fairness, the re-
sult should not be interpreted literally as all methods mostly use the
default hyper-parameters and could potentially improve by careful
tuning. Nonetheless, the result shows the LATE method’s promise.

4.6 Playing Strength

Ultimately, we would like to compare the computing effort required
for the different enhancements to generate agents of equal playing
strength. We do that here for both Connect4 and Breakthrough.

4.6.1 Connect4

Figure 6 shows the results of all the trained Connect4 agents playing
an optimal agent (described in section 4.2). The agents’ winning rate
is plotted as a function of the total number of simulations over 100
training generations (the agents use different strategies to decide on
the number of simulations in each state; thus, the difference is the

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents268

Figure 6: Connect4 agents win rate against a baseline player (an optimal agent).

Figure 7: Breakthrough agents win rate against a baseline agent (the default trained 100 generations). All agents were trained for 100 generations
except LATE-40W and RPC whose training is ongoing, here capped at 81 and 49 generations, respectively; however, the trend is clear.

total number of simulations between the agents). Each data point is
based on 50 games beginning from the opening positions in Oc4,
with the agents playing each position from both sides.

The LATE agents learn much faster than the others and, interest-
ingly, are the only ones that, in the end, converge to playing on an
(almost) equal level to the optimal agent. The LATE agent that uses
the larger generation window holds a slight edge over its counterpart.
The playing strength results are in harmony with the model quality
results we presented earlier; after only a few simulations, the LATE
agents reach greater playing strength than all the other agents and
maintain that advantage throughout training. Impressively, even very
early in their training, the LATE agents have reached a level of play-
ing strength that the other agents have difficulty matching even at the
end of their training (100 training generations).

4.6.2 Breakthrough

Figure 7 shows the results of all the Breakthrough agents competing
against a baseline Breakthrough agent. The baseline agent is the de-
fault agent after training for 100 training generations (the maximum).
Unfortunately, we do not have an objective measure of the baseline
player’s strength; however, as anecdotal evidence, it is a formidable
opponent, consistently beating even expert-level chess players with
both colorous. Each data point is based on 100 games played from
the opening positions in Obt, with the agents playing both sides.

The LATE agents again learn significantly faster than the others.
Specifically, the agents require only ca. 20% of the default agent’s
training resources to match its performance. Moreover, it learns twice
as fast as its closest rival of other self-play enhancements, GIS.

5 Conclusions and Future Work

We presented an enhanced scheme, LATE, to expedite self-play
learning in AlphaZero-style game-playing agents and extensively
evaluated it in two test domains. The former, Connect4, is a strongly
solved game, which allowed us to continuously evaluate the qual-
ity of the training process in various ways, including how accurately
the training samples were labeled, how accurate the trained models
were, and how accurate the agents’ decisions were. The latter test do-
main, Breakthrough, has a much larger state space and is strategically
more complex than Connect4. In both domains, the LATE enhance-
ment learned far more efficiently than a standard approach, requiring
much less computation resource to reach similar or better quality of
play. Also, unlike the standard approach, a positive side-effect of the
enhancement is that it can effectively reuse data from much earlier
training generations. Furthermore, we compared the LATE enhance-
ments with several recently proposed enhancements and found that
our approach outperformed the others in our test domains.

As for future work, we plan to carry on along three paths. First, we
plan to experiment with the proposed enhancement in a broader range
of games. Second, to make the first plan more easily attainable, we
plan to automate the process of selecting various hyper-parameters,
particularly those involved in computing w(g,m); currently, they are
manually selected based on expected game length and the number
of training generations. Third, we plan a more thorough empirical
comparison with related methods for improving self-play training —
both those discussed in this paper and more recent ones [16] — where
we tune each method more carefully for the domain at hand. This will
allow us to determine their relative strengths and weaknesses more
conclusively.

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents 269

References

[1] Yngvi Björnsson, Róbert Leó Þormar Jónsson, and Sigurjón Ingi Jóns-
son. AlphaZeroLATE source code. https://github.com/Robertleoj/
alpha_bsc_src/, 2023.

[2] Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-
Dong Chiu, Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu,
Vasil Khalidov, Cheng-Ling Li, Hsin-I Lin, Yu-Jin Lin, Xavier Mar-
tinet, Vegard Mella, Jérémy Rapin, Baptiste Rozière, Gabriel Synnaeve,
Fabien Teytaud, Olivier Teytaud, Shi-Cheng Ye, Yi-Jun Ye, Shi-Jim
Yen, and Sergey Zagoruyko, ‘Polygames: Improved zero learning’,
CoRR, abs/2001.09832, (2020).

[3] Rémi Coulom, ‘Efficient selectivity and backup operators in monte-
carlo tree search’, in Computers and Games, 5th International Confer-
ence, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, eds.,
H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. Donkers, vol-
ume 4630 of Lecture Notes in Computer Science, pp. 72–83. Springer,
(2006).

[4] Chao Gao, Martin Müller 0003, and Ryan Hayward, ‘Three-head neu-
ral network architecture for monte carlo tree search’, in Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, ed., Jérôme
Lang, pp. 3762–3768. ijcai.org, (2018).

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, CoRR, abs/1512.03385, (2015).

[6] Levente Kocsis and Csaba Szepesvári, ‘Bandit based monte-carlo plan-
ning’, in Machine Learning: ECML 2006, 17th European Confer-
ence on Machine Learning, Berlin, Germany, September 18-22, 2006,
Proceedings, eds., Johannes Fürnkranz, Tobias Scheffer, and Myra
Spiliopoulou, volume 4212 of Lecture Notes in Computer Science, pp.
282–293. Springer, (2006).

[7] Charles Lovering, Jessica Forde, George Konidaris, Ellie Pavlick, and
Michael Littman, ‘Evaluation beyond task performance: Analyzing
concepts in alphazero in hex’, Advances in Neural Information Pro-
cessing Systems, 35, 25992–26006, (2022).

[8] Antonio Norelli and Alessandro Panconesi, ‘Olivaw: Mastering othello
without human knowledge, nor a penny’, IEEE Transactions on Games,
1–1, (2022).

[9] LCZero open-source authors. Leela chess zero.
[10] Pascal Pons. connect4. https://github.com/PascalPons/connect4, 2020.
[11] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-

rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Diele-
man, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis, ‘Mastering the game of go with deep
neural networks and tree search’, Nature, 529(7587), 484–489, (2016).

[12] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis, ‘A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play’, Science,
362(6419), 1140–1144, (2018).

[13] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis, ‘Mastering the game of go without human
knowledge’, Nature, 550(7676), 354–359, (2017).

[14] Wu Ti-Rong, Wei Ting-Han, and Wu I-Chen, ‘Accelerating and im-
proving alphazero using population based training’, in Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 1046–1053. AAAI
Press, (2020).

[15] Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta,
Zhuoyuan Chen, James Pinkerton, and Larry Zitnick, ‘ELF OpenGo:
an analysis and open reimplementation of AlphaZero’, in Proceedings
of the 36th International Conference on Machine Learning, eds., Ka-
malika Chaudhuri and Ruslan Salakhutdinov, volume 97 of Proceed-
ings of Machine Learning Research, pp. 6244–6253. PMLR, (09–15
Jun 2019).

[16] Alexandre Trudeau and Michael Bowling, ‘Targeted search control in
alphazero for effective policy improvement’, in Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June

2023, eds., Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh,
pp. 842–850. ACM, (2023).

[17] David J Wu, ‘Accelerating self-play learning in go’, arXiv preprint
arXiv:1902.10565, (2019).

Y. Björnsson et al. / Expediting Self-Play Learning in AlphaZero-Style Game-Playing Agents270

