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Abstract. In recent years, representations from brain activity pat-
terns and pre-trained language models have been linked to each other
based on neural fits to validate hypotheses about language process-
ing. Nonetheless, open questions remain about what intrinsic prop-
erties of language processing these neural fits reflect and whether
they differ across neural fit approaches, brain networks, and models.
In this study, we use parallel sentence and functional magnetic res-
onance imaging data to perform a comprehensive analysis of four
paradigms (masked language modeling, pragmatic coherence, se-
mantic comparison, and contrastive learning) representing linguis-
tic hypotheses about sentence processing. We include three sen-
tence embedding models for each paradigm, resulting in a total of
12 models, and examine differences in their neural fit to four dif-
ferent brain networks using regression-based neural encoding and
Representational Similarity Analysis (RSA). Among the different
models tested, GPT-2, SkipThoughts, and S-RoBERTa yielded the
strongest correlations with language network patterns, whereas con-
trastive learning-based models resulted in overall low neural fits. Our
findings demonstrate that neural fits vary across brain networks and
models representing the same linguistic hypothesis (e.g., GPT-2 and
GPT-3). More importantly, we show the need for both neural encod-
ing and RSA as complementary methods to provide full understand-
ing of neural fits. All code used in the analysis is publicly available:
https://github.com/lcn-kul/sentencefmricomparison.

1 Introduction

Linking representations from pre-trained language models (PLMs)
and the human brain has proven to be a promising approach to gain
insights about both language understanding in the human brain as
well as the biological plausibility of PLMs. More specifically, PLMs
can serve as hypotheses to explain language understanding and how
it is realized in the human brain. Linking the two requires parallel
datasets of text and brain activity patterns, which are often based on
functional magnetic resonance imaging (fMRI) experiments. A re-
cent development regarding the design of such experiments has been
to move away from highly controlled settings, in which single words
are shown towards using more naturalistic stimuli such as sentences,
paragraphs [34], or even continuous stories [6], to study language
processing in a more realistic setting.

To exploit the rich information in such datasets, PLMs such as
BERT [13] or GPT-2 [36] are leveraged to derive contextualized rep-
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resentations (i.e., embeddings) from the stimuli [42, 9]. These em-
beddings are then used to define a neural fit between PLMs and fea-
tures obtained from brain activity patterns to link the representations,
typically using either (i) Representational Similarity Analysis (RSA)
[24] or (ii) neural encoding. A series of recent studies on neural
encoding has indicated that PLMs trained on next-word prediction
objectives result in a high neural fit between word embeddings and
brain activity patterns (e.g., [38, 9]), which is seen as evidence for the
hypothesis of predictive processing playing a key role in language
understanding (for a more detailed discussion see [3]).

However, it remains challenging to pinpoint the specific properties
that determine a models’ neural fit, and whether it can be distinctly
attributed to such linguistic hypotheses, specifically at sentence level,
mainly for three reasons. First, little is known about the generaliz-
ability of previous findings from word level to sentence level under-
standing and across different models representing the same linguistic
hypothesis, neural fit methods (i.e., neural encoding and RSA), and
brain networks. Second, the relation between performances on com-
putational tasks, namely benchmarks used in natural language pro-
cessing (NLP), and neural fits has not been investigated at sentence
level yet. Third, the impact of inter-sentence context on the resulting
representations that determine a neural fit remains unclear.

In this study, we address these challenges through a comprehen-
sive analysis of different linguistic hypotheses about sentence pro-
cessing, allowing for a more accurate investigation of brain regions
involved in human language processing and explanation of the inner
workings of PLMs. Based on four sentence embedding paradigms,
we categorize a total of 12 sentence embedding models. By linking
the respective sentence embeddings to representations derived from
fMRI using both neural encoding and RSA as neural fits, we address
the following three research questions:
• R1 What properties can neural encoding and RSA reveal about the

neural fit of linguistic hypotheses to different brain networks?
• R2 Does the performance of sentence embedding models on cur-

rent sentence embedding benchmarks correlate with its neural fit?
• R3 Is the neural fit sensitive to sentence context, i.e., the surround-

ing sentences of a given sentence?

2 Related Work

2.1 Representational Similarity Analysis (RSA)

RSA [24] is a popular approach for linking models for various
modalities in neuroscience, such as artificial neural network (ANN)
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Figure 1: Methodology overview. This figure illustrates the pipeline used to perform several analysis on the parallel sentence and functional
MRI (fMRI) data. First, sentence embeddings and fMRI features (i.e., response amplitudes) are derived using 12 sentence embedding models
and four brain networks. Additionally, for both modalities, a representational dissimilarity matrix (RDM, depicted by the red and blue matrices)
is calculated for each sentence embedding model/brain network using pairwise cosine distances across all inputs (i.e., embeddings or fMRI
features). Afterwards, text-based evaluations are performed in the form of linguistic probing and SentEval benchmarking, and neural fits are
determined through Representational Similarity Analysis (RSA) as well as neural encoding.

representations and features derived from the human brain. It consists
of first calculating a representational dissimilarity matrix (RDM) for
each model based on pairwise distances of its representations for a
set of stimuli (e.g., embeddings for a list of sentences shown in an
fMRI experiment). Then, in order to determine how closely related
two given models are, a correlation between the two RDMs is calcu-
lated, resulting in a second-order isomorphism, which compares pair-
wise similarities rather than the individual vectors in the two given
vector spaces. Recently, RSA has been applied to the domain of NLP
[1, 26] for probing and explaining various hypotheses about word or
sentence embeddings. However, it is insufficiently explored whether
the identified links between PLMs and brain activations discovered
by RSA differ from those revealed by neural encoding.

2.2 Neural Encoding

Neural encoding is a long-established approach for linking represen-
tations from ANNs with representations derived from brain activa-
tions. These ANN representations can cover various modalities such
as text [22, 21, 42, 38, 9, 43], audio [30] or video [44]. Overall, the
goal of neural encoding is to learn a mapping model y = f(x) to
predict brain activations y from ANN representations x, and eval-
uate the model on a held-out test set. Similarly, neural decoding is
the inversion of this mapping, i.e., learning a mapping model from
brain activations to predict ANN representations [17, 40, 41, 33]. In
most studies, the basis for neural encoding consists of either single
words (e.g., [21, 43]) or aggregated word embeddings of sentences
(e.g., [38, 9]). In particular, the latter was reported to be problematic
for creating informative sentence representations [37]. There are no-
table exceptions using sentence embedding models [2, 40, 41]. How-
ever, these approaches compare single sentence embedding models
rather than paradigms to each other, and do not include any seman-
tic comparison- and contrastive learning-based models (see Section
3.2), which we cover in our analyses. Further, previous linguistic
probing analyses such as in [41] do not incorporate inter-sentence
context. As a result, most of the evidence supporting the role of pre-
dictive processing in language originated from comparisons between
word-level PLMs. Therefore, it remains unclear whether findings
regarding the role of predictive processing generalize to equivalent
paradigms in sentence-level PLMs.

3 Methods

To answer the research questions proposed in Section 1, we use
a combination of neural fits, benchmarking, and linguistic probing
methods (see Figure 1). First, we outline the fMRI and sentence
data, as well as the respective brain regions and sentence embed-
ding models serving as the starting point for the first research ques-
tion (R1) in Sections 3.1 and 3.2. Then, we define the two methods
to determine the neural fit in Section 3.3, and explain how we ad-
dress research question R2 in Section 3.4. Finally, to address ques-
tion R3, we describe our RSA-based linguistic analysis and link it to
the previously determined neural fits in Section 3.5. All preprocess-
ing steps and analyses are implemented in Python based on sklearn,
scipy, skipthoughts and Hugging Face’s transformers library, and all
code is publicly available1. Further, all experiments are conducted on
a 24GB NVIDIA RTX A5000.

3.1 Data

We use the dataset from [34] consisting of parallel sentence and pre-
processed fMRI data (see Figure 1). More specifically, we choose
this dataset because it is (i) widely used (e.g., [41, 38]) and publicly
available2, (ii) reliable due to repeated measurements and (iii) suf-
ficiently long in terms of sentence context for each measured brain
response. To optimally utilize the available sentence context, we fo-
cus on experiment #2, which consists of 96 passages with four sen-
tences each. Each passage is providing a Wikipedia-style definition
of a concrete object (e.g., an apple). To obtain the respective brain
activations, each passage was presented three times to a total of eight
subjects. Here, we focus on subsets of the original set of brain voxels
using four networks employed in the original approach as well as in
[32], namely the language network, default mode network (DMN),
task-positive network and vision network shown in Figure 2. More
specifically, the frontotemporal language-selective network used in
this approach is taken from [14] and includes the inferior temporal
gyrus as well as the anterior temporal lobe, while the vision network
is based on [8, 35] and mostly covers the occipital cortex. Moreover,
the task-positive network is a cognitive control network that is acti-
vated whenever specific tasks are carried out, whereas the DMN is

1 https://github.com/lcn-kul/sentencefmricomparison
2 https://evlab.mit.edu/sites/default/files/documents/index2.html
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Figure 2: Binary maps of the brain networks adopted from [34, 32]. The four networks used in this analysis comprise regions of interest in the
(i) default mode network (DMN), (ii) language network as defined by [14], (iii) task-positive network and (iv) vision network. The x, y and z
values indicate the cut position for the sagittal, coronal and axial planes that show the largest connected component of each brain network.

a circuit that is deactivated during active versus control conditions,
which has been linked to semantic processing, set shifting, and intro-
spection. Additionally, we examine the neural fits for the language
network separated into the left and right hemisphere and at the level
of the whole brain in Appendix A3.

3.2 Sentence Embedding Models

We choose a total of 12 sentence embedding models based on pre-
trained language models with the aim of maximizing the variety of
paradigms (i.e., training objectives) used to train the models while
still including several examples per paradigm. We group the mod-
els based on their training objectives into four sentence embedding
model paradigms (based on [27]).

Masked Language Modeling A straightforward approach to form
sentence representations is to average word embeddings obtained
from a model trained on a word-level task. To test this approach,
we average the word embeddings from BERT [13], RoBERTa [28]
and DeBERTa [19] and average their word embeddings to form sen-
tence representations for each input. We chose averaging the word
embeddings rather than using the CLS token as a sentence repre-
sentation, since averaging has been shown to improve the quality
of word embedding-based sentence representations [37]. These three
models were trained using the masked language modeling (MLM)
objective, which aims to predict masked tokens (i.e., sub-words) us-
ing the bidirectional context of a given input sequence.

Pragmatic Coherence To include wider sentence context, this
paradigm focuses on the incorporation of coherence in terms of cap-
turing the transition of meaning in longer contexts. Typically, such
models are trained by predicting the correct subsequent input (i.e.,
word sequences or sentences), inspired by the concept of predictive
coding [15, 4]. In this paradigm, we employ SkipThoughts [23],
GPT-2 [36] as well as GPT-3 [7]4, as these approaches are based
on next word or sentence prediction training objectives. Here, we in-
clude both GPT-2 and GPT-3 in order to examine the possible effect
of the extended input length used during the pre-training procedure

3 All appendices can be accessed at
https://github.com/lcn-kul/sentencefmricomparison

4 The GPT-3 embeddings for all text inputs in this analysis are based on Ope-
nAI’s embedding API using the text-embedding-ada-002 model

in GPT-3 (4096 tokens, compared to 1024 tokens for GPT-2) on the
resulting neural fits. For these two models, we again derive aggre-
gated representations by averaging all word embeddings for a given
input.

Semantic Comparison This group of sentence embedding mod-
els is based on learning the semantic relationship between sen-
tences, which is related to semantic processing in the human
brain [25, 29]. The most common strategy for incorporating se-
mantic sentence context is to fine-tune a sentence embedding
model using Natural Language Inference (NLI), Question An-
swering (QA) or Semantic Textual Similarity (STS) tasks. For
this paradigm, we choose the Sentence-RoBERTa (S-RoBERTa)
S-RoBERTa-NLI-STSb-large [37], supervised SimCSE (sup-

SimCSE) [16] and Sentence-T5 (S-T5) [31] models.

Contrastive Learning Given the recent success of several con-
trastive learning-based models on the SentEval [12] benchmark (see
e.g., [16, 10]), we decided to incorporate these models as well.
More specifically, we test the unsupervised SimCSE model (unsup-

SimCSE) [16], DiffCSE [10] and DeCLUTR [18]. To the best of our
knowledge, there is no clear relationship between contrastive learn-
ing and language processing in the human brain. However, there is
existing work on the links between contrastive learning-based mod-
els in computer vision and representations derived from the visual
cortex [5]. Therefore, we test whether this finding generalizes to lan-
guage processing in the human brain.

3.3 Neural Fit

For the first research question (R1), we determine the neural fit
for each combination of sentence embedding model and brain net-
work (resulting in 12 × 4 = 48 comparisons) using both RSA and
regression-based neural encoding.

RSA The rationale behind Representational Similarity Analysis
(RSA) is to compare two representational spaces (i.e., the embed-
ding space of a sentence embedding model and the representational
space of the fMRI features) based on pairwise distances across a
set of inputs, independently from factors such as their dimension-
ality. More specifically, the first step of the RSA is to derive the
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Paradigm Model Language DMN Task Vision

BERT -0.019 -0.006 -0.003 -0.018
RoBERTa -0.029 0.073*** 0.080*** -0.035
DeBERTa 0.032* 0.045** 0.065*** 0.033*Masked language modeling

Mean -0.005 0.038 0.047 -0.007

SkipThoughts 0.082*** 0.043** 0.048*** 0.142***
GPT-2 0.067*** 0.008 0.022 0.066***
GPT-3 0.003 -0.037 -0.019 0.030*Pragmatic coherence

Mean 0.051 0.005 0.017 0.080

S-RoBERTa 0.051*** 0.053*** 0.047*** 0.091***
sup-SimCSE -0.007 -0.004 0.024 0.017

S-T5 0.048*** 0.038** 0.048** 0.087***Semantic comparison

Mean 0.031 0.029 0.040 0.065

unsup-SimCSE 0.030* 0.030* 0.039** 0.048**
DiffCSE -0.025 -0.026 -0.007 -0.015

DeCLUTR -0.008 -0.004 -0.008 0.028*Contrastive learning

Mean -0.001 0.000 0.008 0.020

Table 1: RSA-based neural fit results (R1). This table lists all Spearman rank correlations obtained through RSA for each pairing of sentence
embedding model and brain network, grouped by the previously introduced sentence embedding paradigms. The Mean rows in each paradigm
indicate the mean correlation for a given brain network for all models that are assigned to the respective paradigm. For each result (excluding
means), the significance level is indicated using *** (p ≤ 0.001), ** (p ≤ 0.01), * (p ≤ 0.05) or no asterisk (p > 0.05). For each brain
network, the best performing individual model as well as the paradigm with the highest average correlation are underlined.

RDMs for the sentence embedding models and brain networks, re-
spectively. For that, we calculate the pairwise cosine distances for
both modalities (see Figure 1) based on either embedded paragraphs
or fMRI features. For the fMRI RDMs, we first calculate an RDM
for each subject, and derive a final RDM using the element-wise av-
erage of all subject-specific RDMs. Then, for each RDM, we select
and vectorize the upper triangular matrix (excluding the diagonal)
to calculate Spearman’s rank correlation ρ between the vectorized
RDMs for each sentence embedding model and brain network pair.
We choose Spearman’s rank correlation rather than the Pearson cor-
relation coefficient to measure monotonic rather than linear associ-
ations. These correlation coefficients ρ are the resulting neural fits
based on the RSA. Lastly, since the observed correlation values tend
to be relatively small, we calculate the significance of each model-
brain network correlation pair using permutation testing [24] with
n = 10, 000 repetitions. More specifically, for a given model-brain
network pair, permutation testing determines the significance of an
observed correlation by comparing it to a distribution of correlations
between permuted sentence embedding model RDMs and the brain
network RDM.

Neural Encoding To determine the neural fit based on neural en-
coding, we apply a standard regression-based neural encoding pro-
cedure (e.g., see [38, 41, 32, 39]). We choose neural encoding rather
than decoding as we aim to investigate differences in the ability of
sentence embedding models to predict brain activation features rather
than the predictive ability of the brain activation features. For each
possible mapping from a sentence embedding model onto a brain
network, we construct a neural encoder by adding a linear mapping
model (i.e., Ridge regression) on top of the output of the frozen
sentence embedding model (i.e., in a feature extraction rather than
a fine-tuning setting) to predict the fMRI features. More precisely,
based on a training set of size M consisting of sentence embeddings
X ∈ R

M×ds of dimensionality ds and fMRI features Y ∈ R
M×df

of dimensionality df , the linear mapping model determines regres-
sion coefficients W to minimize the following objective function:

||Y −XW ||22 + ||W ||22
Based on an overall five-fold cross-validation procedure, we then

train and test the encoder on the 96 paragraphs. Given a test set of size

N , we evaluate each model’s performance using pairwise accuracy,
a commonly used metric to evaluate neural encoding [34, 41] as it
focuses on binary comparisons rather than absolute distance values
across paired representations. Based on each possible paragraph pair
(i, j) (i.e., N(N−1)

2
pairs in total), its predicted and true fMRI vectors

ŷi, ŷj and yi, yj , and the cosine distance function D, we calculate the
pairwise accuracy as follows:

pairwise accuracy =
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

acc(i, j)

acc(i, j) =

{
1 D(ŷi, yi) +D(ŷj , yj) < D(ŷi, yj) +D(ŷj , yi)

0 otherwise

Intuitively speaking, the pairwise accuracy metric is measuring
whether a predicted fMRI feature vector for a given sentence is closer
to the underlying true fMRI feature vector from that same sentence
rather than the one from another sentence. We use the average of the
model’s pairwise accuracy across all folds as its final neural fit based
on neural encoding. Further, we perform an exemplary ablation study
to investigate the effect of the hyperparameters of the neural encoder
on the pairwise accuracy based on GPT-2 and the language network
(see Appendix B). Moreover, to assess the role of the pre-training
procedure on the neural fit, we compare GPT-2 to a randomly ini-
tialized baseline in Appendix C. Finally, we investigate the role of
the topic of the passages on the resulting pairwise accuracies in Ap-
pendix D.

3.4 Sentence Embedding Model Properties

In addition to the RSA correlations from the previous section, we
obtain sentence embedding benchmark scores using the SentEval
[12] benchmark (or use previously reported SentEval results) for
all sentence embedding models or to answer research question R2.
The SentEval benchmark consists of 14 sentence classification tasks
such as semantic textual similarity (STS), natural language infer-
ence (NLI) and sentiment analysis. We only use the transfer tasks
(adopting the evaluation setup from [16]), mainly consisting of sen-
timent analysis tasks, and leave out the STS tasks, since some of the
sentence embedding models have already been fine-tuned on such
data (e.g., S-RoBERTa), which would result in an unfair comparison.
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(a) Embedding size vs neural encoding-based neural fits (b) SentEval benchmark scores vs RSA-based neural fits

Figure 3: Analysis of the sentence embedding model properties (R2). Figure 3a shows the correlation between sentence embedding sizes on
the x-axis and neural encoding-based pairwise accuracy scores (i.e., multiple scores for multiple brain networks against a single embedding
size per model) on the y-axis. Figure 3b is illustrating pairings of all RSA scores (y-axis) between fMRI and sentence embedding model
representations against the average SentEval score (x-axis) for all sentence embedding models. The scores for the four brain networks as well
as the mean are indicated in different colors, resulting in five data points for each sentence embedding model. The data points are arranged in
one line due to having one associated embedding size or SentEval score per model.

Next, we average the classification accuracies on all seven transfer
tasks to obtain an average score for each model. Then, we calculate
the Pearson correlation coefficient between each pair of average Sen-
tEval and RSA-based neural fit score (using each brain network as an
individual data point rather than an average across all brain networks)
as in the previous section, and repeat the analyses for each brain
network. Moreover, we investigate whether there is a link between
the size (i.e., dimensionality) of the embeddings from the 12 sen-
tence embedding models and their respective neural encoding per-
formances. For that, we extract the embedding size for each model
and correlate it to the previously obtained pairwise accuracy scores,
again using each of the four brain networks as a separate data point.
Lastly, to examine how representations from different sentence em-
bedding models are correlated to each other, we create a correlogram
based on the Pearson correlations between the RDMs of the sentence
embedding models (see Appendix E).

3.5 Linguistic Probing

To better understand what linguistic properties a neural fit is captur-
ing, we aim to gain deeper insights into how the previously deter-
mined neural fits are affected by sentence context (R3). For that, we
use text-based RSA and an evaluation of neural fits based on different
sentence contexts to examine the changes in the respective pairwise
accuracies and correlations obtained with RSA caused by variations
in textual inputs.

Text-Based RSA To compare the impact of sentence context on
the resulting RDMs between the different sentence embedding mod-
els, we perform linguistic probing in the form of text-based RSA
[26]. The general goal is to test different hypotheses about sentence
processing based on correlating respective RDMs. Analogous to the
method used in [26], we define a reference model, which functions
as a starting point for comparing two different hypothesis models:

• Reference model: For each passage in the dataset (see Section
3.1), we extract the middle two sentences

• Hypothesis model: We extract the full passages from the dataset,
i.e., the middle two sentences with the original preceding and sub-
sequent sentences

• Alternative hypothesis model: We concatenate the middle two
sentences with the first and last sentences that are randomly cho-
sen from other passages

We argue that if a sentence embedding model is correctly encod-
ing sentence context, there should be a high correlation ρhyp between
the reference and hypothesis models. On the contrary, adding two
random sentences to the original should significantly affect the rep-
resentations in the alternative hypothesis and therefore lead to a de-
crease in the correlation ρalt between the reference and alternative
hypothesis model. Again, we calculate RDMs for all sentence em-
bedding models and all three linguistic models using cosine distance,
and determine the Spearman’s rank correlation. Finally, we calculate
the difference Δρ = ρhyp − ρalt between the two hypotheses for each
sentence embedding model, which indicates whether it is encoding
original and random contexts distinctly (high Δρ) or not (low Δρ).

Sentence Context Against Neural Fit Next, to better understand
how sentence context is affecting the neural fits, we re-calculate the
pairwise accuracies for the neural encoding approach by varying the
sentence input based on the three models, resulting in the follow-
ing three text inputs: (i) full paragraphs, (ii) middle two sentences
and (iii) random first and last sentences appended to the middle two
sentences. Importantly, we use the same fMRI features Y as in the
previous sections in order to attribute the changes in the neural fit to
the variations in text input X (namely Xfull, Xmiddle, Xrandom) rather
than variations in brain activation patterns. To assess how removing
the first and last sentences as well as replacing first and last sen-
tences with random sentences affect the resulting neural fits, we cre-
ate two conditions, respectively: only-middle and random-first-last.
More specifically, we report the differences in performance in the
only-middle and the random-first-last conditions based on the differ-
ence in the average pairwise accuracy of each sentence embedding
model across all four brain networks for the respective two inputs.

4 Results

4.1 Neural Fit

The neural fits of all 12 sentence embedding models for RSA and
neural encoding are presented in Table 1 and Table 2, respectively.
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Paradigm Model Language DMN Task Vision

BERT 0.598 0.593 0.571 0.624
RoBERTa 0.610 0.604 0.578 0.636
DeBERTa 0.613 0.604 0.590 0.633Masked language modeling

Mean 0.607 0.600 0.580 0.631

SkipThoughts 0.636 0.599 0.593 0.668
GPT-2 0.602 0.591 0.558 0.627
GPT-3 0.632 0.612 0.604 0.667Pragmatic coherence

Mean 0.623 0.600 0.585 0.654

S-RoBERTa 0.581 0.569 0.559 0.618
sup-SimCSE 0.567 0.553 0.524 0.586

S-T5 0.637 0.606 0.599 0.662Semantic comparison

Mean 0.595 0.576 0.561 0.622

unsup-SimCSE 0.579 0.555 0.558 0.595
DiffCSE 0.554 0.550 0.546 0.573

DeCLUTR 0.593 0.580 0.573 0.616Contrastive learning

Mean 0.575 0.562 0.559 0.595

Table 2: Neural encoding-based neural fit results (R1). This table lists all pairwise accuracy scores for each possible pair of brain network and
sentence embedding model, again grouped by the sentence embedding paradigm. The Mean rows in each paradigm indicate the mean accuracy
for a given brain network for all models for that paradigm. Best results are indicated in the same manner as in Table 1.

Overall, with regard to research question R1, the average of the
pragmatic coherence models leads to the highest RSA correlations
across the language and vision networks, whereas the masked lan-
guage modeling-based models lead to the highest correlations for the
DMN and task network. For neural encoding, the pragmatic coher-
ence paradigm results in the highest pairwise accuracy scores across
all four networks. In both approaches, on average, the contrastive
learning-based models result in the lowest performances across all
networks. With respect to the individual models, SkipThoughts per-
forms best for the language and vision networks for both neural fit ap-
proaches, whereas RoBERTa and GPT-3 perform best for the DMN
and task network for RSA and neural encoding, respectively. More-
over, the RSA correlations were significant across all four brain net-
works for S-RoBERTa (p ≤ 0.001), S-T5 (p ≤ 0.01), SkipThoughts
(p ≤ 0.01), DeBERTa (p ≤ 0.05) and unsup-SimCSE (p ≤ 0.05).
Finally, there are only minimal variations across neural encoding re-
sults obtained with different hyperparameters (see Appendix B).

We observe that some models show similar correlations across all
brain networks, whereas others are more specific to a subset of net-
works. For instance, while models such as BERT and DiffCSE re-
sult in rather comparable (albeit low or even negative) correlations
across all brain networks, there are large variations for models like
GPT-2 and SkipThoughts, which are more specific to the vision and
language networks than the DMN and task network. Conversely, the
correlations observed for RoBERTa are highly specific to the DMN
and task network. Furthermore, in both Table 1 and Table 2, the vi-
sion network is resulting in better performances in most cases.

Moreover, there are notable differences across models belonging
to the same paradigm, specifically for the observed RSA correlations.
For instance, while the GPT-2-based sentence representations lead to
significant correlations for the language and vision brain networks,
GPT-3 does not significantly correlate to any brain network apart
from the vision network (see Table 1). However, for neural encoding,
GPT-3 performs better than GPT-2 across all networks, presenting a
complementary finding to the RSA results.

4.2 Sentence Embedding Model Properties

To examine whether the neural fits of the sentence embedding mod-
els can be explained by their inherent properties, we derived correla-
tions between the sentence embedding models (Figure 3a) as well as
SentEval benchmark and RSA scores (Figure 3b) (R2). We observe
a negative, non-significant correlation (r = −0.11, p ≥ 0.05) be-

tween the RSA and SentEval transfer scores in Figure 3b, suggesting
that the benchmark scores of a sentence embedding model are not
necessarily indicative of its neural fit. However, the correlations dif-
fer across the networks, including negative correlations for the DMN,
language and task networks and a slightly positive correlation for the
vision network. Furthermore, as shown in Figure 3a, there is a sig-
nificantly positive correlation between the embedding size of a sen-
tence embedding model and its pairwise accuracies, and the vision
and language networks yield higher correlations than the DMN and
task network. In addition, the correlogram across all sentence embed-
ding models (see Appendix E) shows that while there are moderate to
high correlations (r ≥ 0.5 for all model pairs) across models within
the contrastive learning and semantic comparison paradigms, the cor-
relations within the masked language modeling and pragmatic coher-
ence paradigms tend to be lower (r ≤ 0.5 for some model pairs).

4.3 Linguistic Probing

To gain a deeper understanding about how the neural fit depends on
the sentence context (R3), we apply linguistic probing in the form
of text-based RSA. We test the ability of the models to produce dis-
tinct representations for matching versus random context sentences
that are added to a shared reference, resulting in a hypothesis and an
alternative hypothesis model (see Section 3.5). Table 3 summarizes
the observed correlations between reference and hypothesis models
(ρhyp), reference and alternative hypothesis models (ρalt) and their re-
spective differences (Δρ). Moreover, Table 4 shows how the neural
encoding results are affected by removing the first and last sentences
from the paragraphs or by replacing them with random sentences.

On average, the contrastive learning models result in the largest
differences between the two hypotheses, followed by the semantic
comparison paradigm, indicating that the two types of surround-
ing sentence context most distinctly alter the representations for
these models. In addition, there are substantial differences across the
paradigm-specific models. For instance, GPT-3 led to a much larger
Δρ than GPT-2 and SkipThoughts, and the reported difference for
BERT was more than four times as large as the difference observed
for RoBERTa. Furthermore, Table 4 indicates that while removing
the first and last sentences only slightly affects the performances (ex-
cept for RoBERTa), the insertion of random sentences results in a
more drastic decrease in pairwise accuracy scores for all models, in
particular GPT-3.
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Paradigm Model ρhyp ρalt Δρ

BERT 0.508*** -0.012 0.520
RoBERTa 0.142*** 0.018 0.124
DeBERTa 0.458*** 0.048*** 0.410

Masked
language
modeling

Mean 0.369 0.018 0.351

SkipThoughts 0.511*** 0.297*** 0.214
GPT-2 0.263*** 0.001 0.262
GPT-3 0.808*** 0.313*** 0.495

Pragmatic
coherence

Mean 0.527 0.204 0.324

S-RoBERTa 0.81*** 0.448*** 0.362
sup-SimCSE 0.621*** 0.098*** 0.388

S-T5 0.722*** 0.319*** 0.403
Semantic

comparison
Mean 0.718 0.288 0.384

unsup-SimCSE 0.409*** 0.022 0.387
DiffCSE 0.353*** 0.047*** 0.306

DeCLUTR 0.530*** 0.044** 0.486
Contrastive

learning
Mean 0.431 0.038 0.393

Table 3: Text-based RSA (R3). This table contains the Spearman’s
rank correlations between the reference and hypothesis model
(ρhyp) as well as between the reference and alternative hypothesis
model (ρalt) for each sentence embedding model, grouped by the
respective paradigms. The Mean rows indicate the mean of the
two hypotheses across all models belonging to a given paradigm.
The column Δρ indicates the difference ρhyp − ρalt. Significance
levels and best results are indicated in the same manner as in Ta-
ble 1.

Paradigm Model only-middle random-first-last

BERT -0.013 -0.065
RoBERTa -0.039 -0.085
DeBERTa -0.024 -0.078

Masked
language
modeling

Mean -0.025 -0.076

SkipThoughts 0.011 -0.069
GPT-2 -0.001 -0.074
GPT-3 0.002 -0.090

Pragmatic
coherence

Mean 0.004 -0.078

S-RoBERTa -0.013 -0.028
sup-SimCSE 0.004 -0.019

S-T5 -0.019 -0.089
Semantic

comparison
Mean -0.009 -0.045

unsup-SimCSE 0.005 -0.036
DiffCSE 0.020 -0.036

DeCLUTR -0.013 -0.044
Contrastive

learning
Mean 0.004 -0.039

Table 4: Sentence context against neural fit (R3). The only-middle column
reports the difference in performance when replacing the full paragraphs
with the middle two sentences, whereas the random-first-last column re-
ports the difference when replacing the original first and last sentences
with random sentences. Both conditions are based on the difference in the
average pairwise accuracy of each sentence embedding model across all
brain networks for the respective text inputs. The Mean rows indicate the
mean of the differences across all models belonging to a given paradigm.
The model and paradigm with the largest difference are underlined.

5 Discussion

The objective of this study was to gain a deeper understanding of
linguistic hypotheses (i.e., sentence embedding model paradigms) in
terms of their neural fit to several brain networks (R1). We found
that models from the pragmatic coherence, semantic comparison and
masked language modeling paradigms result in larger correlations for
RSA as well as in higher pairwise accuracy scores for neural encod-
ing compared to contrastive learning-based models. SkipThoughts,
GPT-2 (for RSA) and GPT-3 (for neural encoding) proved to be the
models with the best individual neural fits specifically for the lan-
guage network, potentially providing further evidence for predictive
processing playing a key role in language processing [38].

Furthermore, RSA and neural encoding seem to reveal comple-
mentary properties about the tested sentence embedding models, as
indicated by variations in the respective neural fits. This observation
becomes particularly apparent for GPT-3: Although it demonstrates
superior performance in neural encoding, it does not yield signif-
icant correlations with any of the brain networks as measured by
RSA. While neural encoding results are reflecting the predictive per-
formance of the sentence embeddings as such, RSA is focusing on
comparing distances between the sentences for fMRI and sentence
embedding model representations. For neural encoding, we show that
the embedding size and pairwise accuracies of the models are corre-
lated to each other (see Figure 3a). A possible explanation for this re-
sult might be that embeddings of higher dimensionality are less com-
pressed, and thus more informative. Taken together, these findings
indicate that the high neural fit of GPT-3 based on neural encoding
may be driven by its embedding size rather than the inherent prop-
erties of its representational space, as reflected by its comparatively
low neural fit based on RSA. These results show the importance of
using both neural fit approaches. Neural encoding and RSA comple-
ment each other, as they are driven by the predictive ability and the
(dis)similarities across the sentence embeddings, respectively.

The variations across models belonging to the same paradigm
highlight that caution is advised when drawing conclusions about
language processing based on a high neural fit of a single model

representing a particular linguistic hypothesis. For instance, closely
related models (e.g., BERT/RoBERTa and GPT-2/GPT-3) lead to dif-
ferent neural fits, specifically for RSA. This result may be explained
by the large difference in the linguistic probing results across the
models (R3, see Table 3). More specifically, these differences indi-
cate that the specific approach and pre-training setup (such as the
aforementioned embedding size) for modeling the same paradigm
substantially influence the sentence representations and thereby the
neural fits. Moreover, the distinct encoding of correct versus random
sentence context (i.e., large Δρ values, see Table 3) for contrastive
learning-based models can be attributed to their training objective,
which aims to maximize the distance between embeddings of unre-
lated sentences. However, this characteristic does not seem to lead to
higher neural fits (see the smaller differences shown for contrastive
learning-based models in the rightmost column in Table 4 compared
to pragmatic coherence models), implying that predictive processing
may be a more plausible hypothesis for language processing.

Next, with regard to differences in the brain networks, we observe
a general tendency of certain sentence embedding models being sig-
nificantly correlated to all four brain networks versus others that are
more specifically correlated to only some of the networks. Interest-
ingly, models trained on inter-sentence context such as S-RoBERTa,
S-T5 and SkipThoughts result in strongly significant (p ≤ 0.01) cor-
relations across all four brain networks, which can be seen as ev-
idence for globally distributed semantic processing across the en-
tire brain (cf. [2]). Conversely, word-level models such as GPT-2 or
RoBERTa are specifically linked to a subset of the examined brain
networks, which could be interpreted as models of language pro-
cessing that resemble localized processing in these networks in the
human brain. Moreover, the consistently high correlation of many
sentence embedding models to the vision network can likely be ex-
plained by the experimental design of the dataset used in this study,
which is focused on presenting definitions of mostly concrete con-
cepts in written form. It can be argued that a biologically plausible
sentence embedding model should only result in correlations specific
to the language network and possibly the vision network in the case
of visual imagination of concrete objects [11, 20].
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Concerning question R2, our results are in line with previous liter-
ature. We found that neural fits do not correlate with SentEval bench-
mark scores, indicating a generalization of the lacking correlation of
neural fits to GLUE benchmark scores reported in [38]. This suggests
that benchmark performances used in NLP might not accurately re-
flect how well PLMs resemble language processing in the human
brain. The recent success of several contrastive learning-based sen-
tence embedding models, which is not reflected in their neural fit,
provides evidence for this hypothesis. For SimCSE and DiffCSE, we
hypothesize that using dropout-based positive examples and in-batch
negative examples might explain the low neural fit of these models,
especially because dropout is modifying (part of) the sentence repre-
sentations at random, which is not necessarily cognitively plausible.

Overall, there remain many open questions regarding the qualities
of language models that present the best match to language process-
ing in the brain. Future work should perform controlled experiments
for model comparisons based on neural fits to account for factors
such as training data or model size. Finally, additional studies should
examine how well findings regarding certain hypotheses tested with
neural fits generalize to multimodal or multilingual settings.

6 Conclusion

In this work, we examined how linguistic hypotheses in the form
of sentence embedding paradigms and their properties are related to
their neural fit. We were able to confirm the important role of predic-
tive processing at the level of sentences and the lacking coherence to
sentence benchmark performances, indicating that sentence embed-
ding models with high benchmark scores do not necessarily resemble
language processing in the human brain. Moreover, we have shown
the need for both neural encoding and RSA as complementary meth-
ods to provide a complete understanding of the neural fit of sentence
embedding models. Finally, the high correlations between the sen-
tence representations and the vision network point at their intercon-
nectedness, inspiring further work on hypothesized brain regions in
human language processing, the inner workings and future improve-
ments of pre-trained language models, and brain-computer interfaces
in general.
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