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Abstract. Neural networks (NNs) have various applications in
AI, but explaining their decisions remains challenging. Existing ap-
proaches often focus on explaining how changing individual inputs
affects NNs’ outputs. However, an explanation that is consistent
with the input-output behaviour of an NN is not necessarily faith-
ful to the actual mechanics thereof. In this paper, we exploit rela-
tionships between multi-layer perceptrons (MLPs) and quantitative
argumentation frameworks (QAFs) to create argumentative explana-
tions for the mechanics of MLPs. Our SpArX method first sparsifies
the MLP while maintaining as much of the original structure as pos-
sible. It then translates the sparse MLP into an equivalent QAF to
shed light on the underlying decision process of the MLP, produc-
ing global and/or local explanations. We demonstrate experimen-
tally that SpArX can give more faithful explanations than existing
approaches, while simultaneously providing deeper insights into the
actual reasoning process of MLPs.

1 Introduction

The increasing use of black-box models like neural networks (NNs)
in autonomous intelligent systems raises concerns about their fair-
ness, reliability and safety. To address these concerns, the literature
puts forward various explainable AI approaches to render NNs more
transparent, including model-agnostic approaches [43, 33], and ap-
proaches tailored to the structure of NNs [14, 50]. However, they fail
to capture the actual mechanics of the NNs and thus it is hard to
evaluate how faithful these approaches are to the NNs [27, 44, 42].

Some works advocate the use of formal, interpretable approaches
for explainability [35]. Specifically for NNs, recent work [48] pro-
poses regularizing the training procedure of NNs so that they can
be well approximated by interpretable decision trees. While this is
an interesting direction, evaluating the faithfulness of the decision
trees to the NN remains a challenge. Other recent work unearths for-
mal relationships between NNs in the form of multi-layer percep-
trons (MLPs) and symbolic reasoning with quantitative argumenta-
tion frameworks (QAFs) [39, 10, 9, 11, 8, 12] or weighted condi-
tional knowledge bases [24]. The formal relationships indicate that
these approaches may pave the way towards potentially more faithful
explanations than approximate abstractions such as decision trees.

In this paper, we provide explanations for MLPs leveraging on
their formal relationships with QAFs in [39]. Intuitively, QAFs rep-
resent arguments and relations of attack or support between them
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as a graph, where nodes represent arguments and edges relations.
Various QAF formalisms have been studied over the years, e.g.
by [18, 6, 16, 41, 5, 37, 36, 38]. As it turns out, every MLP cor-
responds to a QAF of a particular form under a particular semantics
[39]. This formal relationship between MLPs and QAFs suggests that
QAFs are well suited to create faithful explanations for MLPs. How-
ever, just reinterpreting an MLP as a QAF would not give us a com-
prehensible explanation because the QAF has the same size and den-
sity as the original MLP. In order to create faithful and comprehensi-
ble argumentative explanations, we propose a two-step method. We
first sparsify the MLP, while maintaining as much of its mechanics
as possible. Then, we translate the sparse MLP into a QAF. We call
our method SpArX (Sparse Argumentative eXplanations for MLPs).
In principle, any existing compression method for NNs can be used
for sparsification (e.g. [49]). However, existing methods are not de-
signed for maintaining the mechanics of NNs towards explainability.
We thus make the following contributions:

• We propose a novel clustering method for summarizing neurons
based on their output-similarity. The clustered neurons’ parame-
ters result from aggregating the original parameters so that their
output is similar to the outputs of neurons that they summarize.

• We propose two families of aggregation functions for aggregat-
ing the neurons in a cluster: the first gives global explanations
(explaining the MLP for all inputs) and the second gives local ex-
planations (explaining the MLP for a target input).

• We conduct several experiments demonstrating the viability of our
SpArX method for MLPs and its competitiveness with respect to
other methods in terms of (i) conventional notions of input-output
faithfulness of explanations and (ii) novel notions of structural
faithfulness, while (iii) shedding some light on the tradeoff be-
tween faithfulness and comprehensibility understood in terms of a
notion of cognitive complexity, important towards human usability
of explanations with SpArX. The code is publicly available1.

Overall, we show that formal relationships between black-box ma-
chine learning (with NNs) and interpretable symbolic reasoning in
QAFs can provide faithful and comprehensible explanations.

2 Related Work

While MLPs are most commonly used in their fully connected form,
there has been increasing interest in learning sparse NNs in recent

1 https://github.com/H-Ayoobi/SpArX
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years. However, the focus is usually not on finding an easily inter-
pretable network structure, but rather on decreasing the risk for over-
fitting, memory and runtime complexity and the associated power
consumption. Existing approaches include regularization to encour-
age neurons with weight 0 to be deleted [32], pruning of edges [49],
compression [31] and low rank approximation [47]. Interval NNs
[40] summarize neurons in clusters based on their parameters and
consider interval outputs for the clustered neurons to give lower and
upper bounds on the outputs. We also summarize neurons in clusters,
but cluster neurons based on their output and return an aggregated
output instead of an interval for cluster neurons.

Several approaches exist for obtaining argumentative explanations
for a variety of models [21]. Some approaches use argumentation to
explain models directly [10], others use argumentative counterparts
of the models. Some of them focus on NN explanations [1, 46], but
they are based on approximations of NNs (e.g. using Layerwise Rele-
vance Propagation [14]), rather than summarization as in our method,
and their faithfulness is difficult to ascertain.

Several existing methods make use of symbolic reasoning for
providing explanations [35]. The explanations resulting from these
methods (e.g. abduction-based explanations [28], prime implicants
[45], sufficient reasons [22], and majority reasons [7]) faithfully cap-
ture the input-output behaviour of the explained models rather than
their mechanics. Other methods extract logical rules as explanations
for machine learning models, including NNs [26, 23], but again focus
on explanations that are only input-output faithful.

3 Preliminaries

Intuitively, a multi-layer perceptron (MLP) is a layered acyclic graph
that processes its input by propagating it through the layers. For-
mally, we describe MLPs as follows.

Definition 1 (Multi-Layer Perceptron (MLP)). An MLP M is a tuple
(V,E,B,W, ϕ). (V,E) is a directed graph. V =�d+1

l=0 Vl consists of
(ordered) layers of neurons; for 0 ≤ l ≤ d + 1, Vl = {vl,i | 1 ≤
i ≤ |Vl|}: we call V0 the input layer, Vd+1 the output layer and Vl,
for 1 ≤ l ≤ d, the l-th hidden layer; d is the depth of the MLP.
E ⊆ ⋃d

l=0

(
Vl × Vl+1

)
is a set of edges between adjacent layers;

if E =
⋃d

l=0

(
Vl × Vl+1

)
, then the MLP is called fully connected.

B = {b1, . . . , bd+1} is a set of bias vectors, where, for 1 ≤ l ≤
d + 1, bl ∈ R

|Vl|. W = {W 0,. . . ,W d} is a set of weight matrices,
where, for 1 ≤ l ≤ d, W l ∈ R

|Vl+1|×|Vl| such that W l
i,j = 0 when

(vl,j , vl+1,i) �∈E. ϕ : R → R is an activation function.

An example of MLP is given later in Fig. 1a. In order to process
an input x∈R

|V0|, the input layer of M is initialized with x. The in-
put is then propagated forward through M to generate values at each
subsequent layer and finally an output in the output layer. Formally,
if the values at layer l are xl∈R

|Vl|, then the values xl+1∈R
|Vl+1| at

the next layer are given by xl+1=ϕ(W l xl+ bl), with the activation
function ϕ applied component-wise. We let OM

x :V →R denote the
output function of M, assigning to each neuron its value when the
input x is given. That is, for v0,i ∈ V0, we let OM

x (v0,i) = xi and,
for l > 0, we let the activation value of neuron vl,i be OM

x (vl,i) =
ϕ(W l OM

x (Vl−1) + bl)i, where OM
x (Vl−1) denotes the vector ob-

tained from Vl−1 by applying OM
x component-wise.

Every MLP can be seen as a quantitative argumentation framework
(QAF) [39]. Intuitively, QAFs are edge-weighted directed graphs,
where nodes represent arguments and, similarly to [36], edges with
negative weight represent attack and edges with positive weight rep-
resent support relations between arguments. Each argument is ini-

tialized with a base score that assigns an apriori strength to the argu-
ment. The strength of arguments is then updated iteratively based on
the strength values of attackers and supporters until the values con-
verge. In acyclic graphs corresponding to MLPs, this iterative pro-
cess is equivalent to the forward propagation process in the MLPs
[39]. Conceptually, strength values are from some domain D [15].
As we focus on (real-valued) MLPs, we will assume D ⊆ R. The ex-
act domain depends on the activation function, e.g. the logistic func-
tion results in D = [0, 1], the hyperbolic tangent in D = [−1, 1] and
ReLU in D = [0,∞]. Formally, we describe QAFs as follows.

Definition 2 (Quantitative Argumentation Framework (QAF)). A
QAF with domain D ⊆ R is a tuple (A, E, β, w) that consists of

• sets A of arguments and E⊆A×A of edges between arguments;
• a function β :A→D assigning base scores in D to all arguments;
• a function w : E → R assigning weights in R to all edges.

Edges with negative/positive weights are called attack/support edges,
denoted by Att/Sup, respectively.

The strength values of arguments are usually computed iteratively
using a two-step update procedure [36]: first, an aggregation func-
tion α aggregates the strength values of attackers and supporters;
then, an influence function ι adapts the base score. Examples of ag-
gregation functions include product [16, 41], addition [3, 37] and
maximum [36], with the influence function defined accordingly to
guarantee that strength values fall in D. Here, we focus on the aggre-
gation and influence functions from [39], to obtain QAFs simulating
MLPs with a logistic activation function [39]. The strength values
of arguments are computed by the following iterative procedure: for
every a ∈ A, we let s(0)a := β(a) be the initial strength value; the
strength values are then updated by the next two steps repeatedly
(where the auxiliary αi

a carries the aggregate at iteration i ≥ 0):

Aggregation: α
(i+1)
a :=

∑
(b,a)∈E w((b, a)) · s(i)b .

Influence: s
(i+1)
a := ϕl

(
ln( β(a)

1−β(a)
) + α

(i+1)
a

)
, where ϕl(z) =

1
1+exp(−z)

is the logistic function.

The final strength of argument a is defined via the limit of s(i)a , for i
towards infinity. Notably, the semantics given by this notion of final
strength satisfies almost all desiderata for QAF semantics [39].

4 From General MLPs to QAFs

Here we generalize the connection between MLPs and QAFs be-
yond MLPs with logistic activation functions, as follows. Assume
that ϕ : R → D is an activation function that is strictly mono-
tonically increasing. Examples include logistic, hyperbolic tangent
and parametric ReLU activation functions. Then ϕ is invertible and
ϕ−1 : D → R is defined. We can then define the update function for
an MLP with such activation function ϕ by using the same aggrega-
tion function as before and using the following influence function:

Influence: s
(i+1)
a := ϕ

(
ϕ−1(β(a)) + α

(i+1)
a

)
.

Note that the previous definition of influence in Section 3, from [39],
is a special case because ln( 1

1−x
) is the inverse function of the lo-

gistic function ϕl(x). Note also that the popular ReLU activation
function ϕReLU (x) = max(0, x) is not invertible because all non-
positive numbers are mapped to 0. However, for our purpose of trans-
lating MLPs to QAFs, we can define

ϕ−1
ReLU (x) =

{
x, if x > 0;
0, otherwise.
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In order to translate an MLP M with activation function ϕ and in-
put x into a QAF QM,x, we interpret every neuron vl,i as an abstract
argument Al,i. Edges in M with positive/negative weights are inter-
preted as supports/attacks, respectively, in QM,x. The base score of
an argument A0,i associated with input neuron v0,i is just the corre-
sponding input value xi. The base score of the remaining arguments
Al,i is ϕ(bli), where bli is the bias of the associated neuron vl,i.

Proposition 1. Let M be an MLP with an invertible activation func-
tion ϕ or ReLU. Then, for every input x, the QAF QM,x satisfies
OM

x (vl,i) = σ(Al,i), where σ(Al,i) denotes the final strength of
Al,i in QM,x. (See the Supplementary Material (SM) in [13] for a
proof).

5 SpArX: Explaining MLPs with QAFs

Just translating an MLP into a QAF may not give a comprehensible
explanation because the QAF has the same size and density as the
original MLP. Thus, we first sparsify the MLP and then translate it
into a QAF. The sparsification should maintain as much of the origi-
nal MLP as possible to give faithful explanations. To achieve this, we
exploit redundancies in the MLP by replacing neurons giving similar
outputs with a single neuron that summarizes their joint effect.

Summarizing neurons in this way is a clustering problem. For-
mally, a clustering problem is defined by a set of inputs from an
abstract space S and a distance measure δ : S × S → R≥0. The
goal is to partition S into clusters C1, . . . , CK (where S = �K

i=1Ci)
such that the distance between points within a cluster is ’small’ and
the distance between points in different clusters is ’large’. Finding
an optimal clustering is NP-complete in many cases [25]. Thus, we
cannot expect to find an efficient algorithm that computes an optimal
clustering, but we can apply standard algorithms e.g. K-means [34]
to find a good (but not necessarily optimal) clustering efficiently.

In our setting, S is the set Vl of neurons in layer 0<l<d+1 and the
distance between neurons can be defined as the difference between
their outputs for inputs in a given dataset Δ (e.g. the training dataset):

δ(vl,i, vl,j) =

√∑
x∈Δ

(OM
x (vl,i)−OM

x (vl,j))2. (1)

After clustering, we have a partitioning P = �d
l=1Pl of (the hidden

layers of) our MLP M, where Pl = {Cl
1, . . . , C

l
Kl

} is the clustering
of the l-th layer, that is, Vl = �Kl

i=1C
l
i . We use the clustering to create

a corresponding clustered MLP μ whose neurons correspond to clus-
ters in the original MLP M. We call these neurons cluster-neurons
and denote them by vC , where C is the associated cluster. Then:

Definition 3 (Graphical Structure of Clustered MLP). Given MLP
M and clustering P =�d

l=1Pl of M, the graphical structure of the
corresponding clustered MLP μ is a directed graph (V μ, Eμ) with

• V μ = �d+1
l=0 V

μ
l consists of (ordered) layers of cluster-neurons

such that:

1. the input layer V μ
0 consists of a singleton cluster-neuron v{v0,i}

for every input neuron v0,i ∈ V0;

2. the l-th hidden layer of μ (for 0 < l < d + 1) consists of one
cluster-neuron vC for every cluster C ∈ Pl;

3. the output layer V μ
d+1 consists of a singleton cluster-neuron

v{vd+1,i} for every output neuron vd+1,i∈Vd+1;

• Eμ =
⋃d

l=0

(
V μ
l × V μ

l+1

)
.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: a) MLP for XOR, with cluster-neurons C1, C2. b) Clus-
tered MLP for global explanation. c) Global explanation as a QAF.
d) Word-cloud representation for the global explanation. e) Clustered
MLP for the local explanation for x0=0, x1=1. f) Local explanation
as a QAF. g) Word-cloud representation for the local explanation.

Example 1. Consider the MLP in Fig. 1.a, trained to approximate
the XOR function from the dataset Δ={(0, 0), (0, 1), (1, 0), (1, 1)}
with target outputs 0, 1, 1, 0, respectively. The activation val-
ues of the hidden neurons for the four inputs are (0, 0, 0, 0),
(1.7, 0, 1.8, 0), (0, 2.3, 0, 1.5), (0, 0, 0, 0), respectively. Applying
K-means with δ as in Eq. 1 and K=2 for the hidden layer results in
clusters C1, C2 (indicated by rectangles in the figure). Fig. 1.b shows
the graphical structure of the corresponding clustered MLP.

We define global explanations (for all inputs) and local explana-
tions (for specific inputs) for MLPs by translating their correspond-
ing clustered MLPs into QAFs, leveraging on the formal correspon-
dence in Prop. 1. By doing so, we see QAFs themselves, equipped
with the ‘final strength’ semantics from Section 4, as explanations.
Using the terminology of [21], thus, our approach is in the spirit of
post-hoc approximate approaches for argumentative explainable AI.
Below and in Section 8 we will discuss how QAFs can be tailored to
human users to support varied explanatory experiences.

The clustered MLPs for global and local explanations share the
same graphical structure but differ in the parameters of the cluster-
neurons, that is, (i) the biases of cluster-neurons and (ii) the weights
for edges between cluster-neurons. We define these parameters in
terms of aggregation functions, specifically a bias aggregation func-
tion Aggb : P → R, mapping clusters to biases, and an edge ag-
gregation function Agge : P × P → R ∪ {⊥}, mapping pairs of
clusters to weights if the pairs correspond to edges in μ, or ⊥ oth-
erwise. Given any concrete such aggregation functions (as defined
later), the parameters of μ can be defined as follows.

Definition 4 (Parameters of Clustered MLP). Given an MLP M,
let (V μ, Eμ) be the graphical structure of the corresponding clus-
tered MLP μ. Then, for bias and edge aggregation functions Aggb

and Agge, respectively, μ is (V μ, Eμ,Bμ,Wμ, ϕ) with parameters
Bμ,Wμ as follows:

• for every cluster-neuron vC ∈ V μ, the bias (in Bμ) of vC is
Aggb(C);

• for every edge (vC1 , vC2) ∈ Eμ, the weight (in Wμ) of the edge
is Agge((C1, C2)).
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5.1 Sparse Argumentative Global Explanations

We use the following aggregation functions, which minimize the de-
viation (with respect to the least-squares error) of bias and weights
of cluster-neurons and the neurons they contain (as we explain in the
SM in [13]).

Definition 5 (Global Aggregation Functions). The average bias and
edge aggregation functions are, respectively:

Aggb(C) =
1

|C|
∑

vl,i∈C

bli;

Agge((C1, C2)) =
∑

vl,i∈C1

1

|C2|
∑

vl+1,j∈C2

W l
j,i.

The former simply averages the biases of neurons in the cluster.
For the latter, intuitively, the weight of an edge between cluster-
neurons vC1 and vC2 has to capture the effects of all neurons sum-
marized in C1 on neurons summarized in C2. Every neuron in C1 is
connected to all neurons in C2, thus the aggregated weight between
them encapsulates all the weights between C1 and C2. As vC2 acts
as a replacement of all neurons in C2, it has to aggregate their acti-
vation. We achieve this aggregation by averaging again.

The following example illustrates global explanations drawn from
clustered MLPs via their understanding as QAFs.

Example 2. The QAF corresponding to the clustered MLP from
Fig. 1.b can be visualised as in Fig. 1.c, where attacks are in red, sup-
ports in green, and the thickness of the edges reflects their weight.
The same QAF can be visualized in different ways, e.g. to empha-
size the role of each cluster-neuron. For instance, we can use a word-
cloud representation as in Fig. 1.d (showing, e.g., that x0 and x1 play
a negative and positive role, respectively, towards C1, which supports
the output). This word-cloud representation gives full insights into
the reasoning of the MLP (with the learned rule (x0∧x1)∨(x0∧x1)).

In general, word-cloud representations of cluster-neurons can be
systematically generated by associating each cluster with a set of
“most relevant” features, as follows. Every input neuron is associ-
ated with the corresponding feature; cluster-neurons in the first hid-
den layer are associated with the set of “most relevant” features from
the input layer; cluster-neurons in the second layer are associated
with the “most relevant” sets of sets of features that correspond to
the most “relevant features” from the previous layer; and so on. We
can measure “relevance” by the magnitude of its influence, which
is the absolute value of edge weights for global explanations. For
each word-cloud, the k most relevant features can be selected. As in
Fig. 1.d, these features can be shown in green (red) if their influence
is positive (negative, respectively). Also, the font size of features in
word-clouds can be proportional to the magnitude of their influence.

5.2 Sparse Argumentative Local Explanations

While global explanations attempt to faithfully explain the behaviour
of the MLP on all inputs, our local explanations focus on the be-
haviour in the neighborhood of the input x from the dataset Δ, sim-
ilarly to LIME [43]. To do so, we generate random neighbors of x
to obtain a sample dataset Δ′, and weigh them with an exponential
kernel from LIME [43], assigning lower weight to a sample x′ ∈ Δ′

that is further away from the target x:
πx′,x = exp(−D(x′, x)2/σ2)

with D the Euclidean distance, σ the width of the exponential kernel.

We aggregate biases as before but replace the edge aggregation
function with the following.

Definition 6 (Local Edge Aggregation Function). The local edge
aggregation function with respect to the input x is

Aggex(C1, C2) =∑
x′∈Δ′

πx′,x
∑

vl,i∈C1

1

|C2|.Oμ
x′(vC1)

∑
vl+1,j∈C2

W l
i,jOM

x′ (vl,i)

where OM
x′ (vl,i) is the activation value of the neuron vl,i in the orig-

inal MLP and Oμ
x′(vC1) is the activation value of the cluster-neuron

C1 in the clustered MLP.

Note that, by this definition, the edge weights are computed layer
by layer from input to output.

Example 3. Fig. 1.e shows the clustered MLP for the local expla-
nation of the XOR example (Fig. 1.a) where x0 = 0 and x1 = 1.
Fig. 1.f shows the local explanation as a QAF. The word-cloud rep-
resentation is also shown in Fig. 1.g. In this example, and in general
for word-clouds for local explanations, we can measure “relevance”
by the absolute value of edge weight times activation.

6 Desirable Properties of Explanations

To evaluate SpArX, we propose three measures for assessing faith-
fulness and comprehensibility of explanations. In this section, we as-
sume as given an MLP M of depth d and a corresponding clustered
MLP μ.

To begin with, we consider a faithfulness measure inspired by the
notion of fidelity considered for LIME [43], based on measuring the
input-output difference between the original model (in our case, M)
and the substitute model (in our case, the clustered MLP/QAF).

Definition 7 (Input-Output Unfaithfulness). The local input-output
unfaithfulness of μ to M with respect to input x and dataset Δ is

LM(μ) =
∑
x′∈Δ

πx′,x
∑

v∈Vd+1

(OM
x′ (v)−Oμ

x′(v))
2.

The global input-output unfaithfulness of μ to M with respect to
dataset Δ is

GM(μ) =
∑
x′∈Δ

∑
v∈Vd+1

(OM
x′ (v)−Oμ

x′(v))
2.

The lower the input-output unfaithfulness of the clustered MLP μ,
the more faithful μ is to the original MLP.

The input-output unfaithfulness measures deviations in the input-
output behaviour of the substitute model, but, since clustered MLPs
maintain much of the structure of the original MLPs, we can define a
more fine-grained notion of structured faithfulness by comparing the
outputs of the individual neurons in the MLP with the outputs of the
cluster-neurons summarizing them in the clustered MLP.

Definition 8 (Structural Unfaithfulness). Let Kl be the number of
clusters at hidden layer l in μ (0<l≤d) and Kd+1 be the number of
output neurons. Let Kl,j be the number of neurons in the jth cluster-
neuron Cl,j (0< l≤ d + 1, with Kd+1,j = 1). The local structural
unfaithfulness of μ to M with respect to input x and dataset Δ is:

LM
s (μ) =

∑
x′∈Δ

πx′,x

d+1∑
l=1

Kl∑
j=1

∑
vl,i∈Cl,j

(OM
x′ (vl,i)−Oμ

x′(Cl,j))
2.
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The global structural unfaithfulness GM
s (μ) is defined analo-

gously by removing the similarity terms πx′,x.2

The lower the structured unfaithfulness of the clustered MLP μ,
the more structurally faithful μ is to the original MLP. Note that
our notion of structural faithfulness is different from the notions of
structural descriptive accuracy by [2]: they characterise bespoke ex-
planations, defined therein, of probabilistic classifiers equipped with
graphical structures and cannot be used in place of our notion, tai-
lored to local and global explanations with SpArX.

Finally, we consider the cognitive complexity of explanations
based on their size, inspired by the cognitive tractability notion in
[20]. We use the number of cluster-neurons/arguments as a measure.

Definition 9 (Cognitive Complexity). Let Kl be the number of clus-
ters at hidden layer l in μ (0 < l ≤ d). Then, the cognitive complexity
of μ is defined as

Ω(μ) = Π
0<l<d+1

Kl.

Note that there is a tradeoff between faithfulness and cognitive
complexity. By reducing the number of cluster-neurons, we reduce
cognitive complexity. However, this also results in higher variance
in the neurons summarized in the clusters, so the faithfulness of the
explanation may suffer. We will explore this trade-off in Section 8.

Finally, note that other properties of explanations by symbolic ap-
proaches, notably by [4], are unsuitable for our mechanistic explana-
tions as QAFs. Indeed, these existing properties focus on the input-
output behaviour of classifiers, rather than their mechanics.

7 Experiments

We conducted four sets of experiments to evaluate SpArX with re-
spect to (i) the trade-off between its sparsification and its ability to
maintain faithfulness (Section 7.1 for global and Section 7.2 for lo-
cal explanations), and (ii) SpArX’s scalability (Section 7.3). We used
four datasets for classification: iris3 with 150 instances, 4 contin-
uous features and 3 classes; breast cancer4 with 569 instances,
30 continuous features and 2 classes; COMPAS [29] with 11,000 in-
stances and 52 categorical features, to classify two_year_recid; and
forest covertype5 [17] with 581,012 instances, 54 features
(10 continuous, 44 binary), and 7 classes.

The first three datasets are standard benchmarks in the literature,
from three different domains (biology/medicine/law). We used these
datasets to evaluate the (input-output and structural) unfaithfulness
of the global and local explanations generated by SpArX. These
datasets however only require small MLPs (see the SM in [13]).
We then used the last dataset, which is another standard benchmark
but requires deeper MLPs with more hidden neurons (see the SM in
[13]), to evaluate the scalability of SpArX.

For the experiments with the first three datasets, we used MLPs
with 2 hidden layers and 50 hidden neurons each, whereas for the
experiments with the last dataset we used 1-5 hidden layers with
100, 200 or 500 neurons. For all experiments, we used the RELU
activation function for the hidden neurons and softmax for the output
neurons. We give classification performances for all MLPs and aver-
age run-times for generating local explanations in the SM in [13].

2 See the SM in [13] for the formal definition.
3 https://archive.ics.uci.edu/ml/datasets/iris
4 https://archive.ics.uci.edu/ml/datasets/cancer
5 https://archive.ics.uci.edu/ml/datasets/covertype

When experimenting with SpArX, one needs to choose the number
of clusters/cluster-neurons at each hidden layer: we do so by speci-
fying a compression ratio (for example, a compression ratio of 0.5
amounts to obtaining half cluster-neurons than the original neurons).

7.1 Global Faithfulness (Comparison to HAP)

Since SpArX essentially compresses an MLP to construct a clustered
MLP/QAF, one may ask how it compares to existing compression ap-
proaches.6 To assess the faithfulness of our global explanations, we
compared SpArX’s clustering approach to the state-of-the-art com-
pression method Hessian Aware Pruning (HAP) [49], which uses
relative Hessian traces to prune insensitive parameters in NNs. We
measured both input-output and structural unfaithfulness of SpArX
and HAP to the original MLP, using the result of HAP compression
in place of μ when applying Definitions 7 and 8 for comparison.

Input-Output Faithfulness. Table 1 shows the input-output un-
faithfulness of global explanations (GM(μ) in Definition 7) obtained
from SpArX and HAP using the three chosen datasets and differ-
ent compression ratios. The unfaithfulness of global explanations in
SpArX is lower than HAP, especially for high compression ratios.
Note that this does not mean that SpArX is a better compression
method, but that the compression method in SpArX is better for our
purposes (i.e., compressing the MLP while keeping its mechanics).

Structural Faithfulness. Table 2 gives the structural global un-
faithfulness (GM

s (μ) in Definition 8) for SpArX and HAP, on
the three chosen datasets, using different compression ratios. Our
method has a much lower structural unfaithfulness than HAP by pre-
serving activation values close to the original model.

Method Compression Datasets

Ratio Iris Cancer COMPAS

HAP 0.2 0.05 0.48 0.02
SpArX 0.00 0.02 0.00

HAP 0.4 0.23 0.53 0.11
SpArX 0.00 0.05 0.00

HAP 0.6 0.23 0.58 0.20
SpArX 0.00 0.10 0.00

HAP 0.8 0.28 1.00 0.26
SpArX 0.00 0.21 0.00

Table 1: Global input-output unfaithfulness of sparse MLPs generated
by HAP vs our SpArX method. (Best results in bold)

7.2 Local Faithfulness (Comparison to LIME)

In order to evaluate the local input-output unfaithfulness of SpArX
(LM(μ) in Definition 7), we compared SpArX and LIME [43]7,
which approximates a target point locally by an interpretable sub-
stitute model.8 Table 3 shows the input-output unfaithfulness of the
local explanations for LIME and SpArX. We used the same sampling
approach as LIME [43]. We averaged the unfaithfulness measure for

6 Whereas existing NN compression methods typically retrain after compres-
sion, we do not, as we want to explain the original NN.

7 https://github.com/marcotcr/lime
8 We used ridge regression, suitable with tabular data in LIME. We used the

substitute model as μ when applying Definition 7 to LIME.
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Method Compression Datasets

Ratio Iris Cancer COMPAS

HAP 0.2 0.23 9.54 0.10
SpArX 0.00 0.83 0.02

HAP 0.4 0.89 61.57 0.24
SpArX 0.00 1.04 0.03

HAP 0.6 1.37 61.57 0.46
SpArX 0.00 1.40 0.04

HAP 0.8 3.00 116.20 1.20
SpArX 0.02 2.34 0.05

Table 2: Global structural unfaithfulness of sparse MLPs generated
by HAP vs our SpArX method.

all test examples. The results show that the local explanations pro-
duced by our approach are more input-output faithful to the original
model. Thus, basing local explanations on keeping the MLP mechan-
ics helps also with their input-output faithfulness.

Method Datasets

Iris Cancer COMPAS

LIME 0.3212 0.1623 0.0224
SpArX (0.6) 0.0257 0.0055 0.0071

SpArX (0.8) 0.0707 0.0156 0.0083

Table 3: Local input-output unfaithfulness of LIME vs our SpArX
method (with different compression ratios, in brackets).

#Layers Method #Neurons

100 200 500

1 LIME 0.2375 0.2919 0.3123
1 SpArX 0.0000 0.0018 0.0000

2 LIME 0.2509 0.2961 0.3638
2 SpArX 0.0019 0.0015 0.0034

3 LIME 0.3130 0.3285 0.3127
3 SpArX 0.0028 0.0026 0.0000

4 LIME 0.3395 0.3459 0.3243
4 SpArX 0.0001 0.0049 0.0000

5 LIME 0.3665 0.3178 0.3288
5 SpArX 0.0030 0.0064 0.0000

Table 4: Evaluating scalability of SpArX (forest covertype
dataset): local input-output unfaithfulness of SpArX (with 80% com-
pression ratio) and LIME using various MLPs with different numbers
of hidden layers (#Layers) and neurons (#Neurons).

7.3 Scalability

To evaluate the scalability of SpArX, we measured its input-output
faithfulness on MLPs of increasing complexity, in comparison with
LIME [43], using forest covertype as a sufficiently large
dataset to be tested with various MLP architectures of different sizes.
We have trained 15 MLPs with varying numbers of hidden layers
(#Layers) and different numbers of hidden neurons (#Neurons) at
each hidden layer (see details in the SM in [13]).

Table 4 compares the input-output unfaithfulness of the local ex-
planations by SpArX using 80% compression ratio9 with LIME, all

9 For experiments with lower compression ratios, see the SM in [13].

(a) 20% compression ratio (b) 85% compression ratio

Figure 2: Global explanations by SpArX of an MLP with 20% and
85% compression ratios for COMPAS. Here O0 concerns recommit-
ting a crime after two years. (Sub-figure (a) is given to emphasize
poor interpretability due to size, so readability is not a concern).

(a) 20% compression ratio (b) 85% compression ratio

Figure 3: Local explanations by SpArX of an MLP with 20% and
85% compression ratios for COMPAS. Here O0 = 0 suggests that the
individual will not be recommitting a crime after two years. (Again,
the readability of sub-figure (a) is not a concern).

averaged over the test set. The results confirm that SpArX explana-
tions are scalable to different MLP architectures of different sizes.

8 Towards Tailoring SpArX to Users

The explanations obtained with SpArX are in the form of QAFs
drawn from the sparsified MLPs, in the spirit of much work in argu-
mentative explainable AI [21]. In this section, we explore how they
might be tailored to users. We first consider the property of cognitive
complexity for SpArX (see Definition 9) and the tradeoff between
faithfulness and cognitive complexity (Section 8.1) and then illus-
trate how local and global explanations can be the starting point to
obtain more natural explanations (Section 8.2). Throughout this sec-
tion, we focus on examples only, all drawn in the context of an MLP
trained on the COMPAS dataset with one hidden layer and 20 neu-
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rons in the hidden layer (see details in the SM in [13]). We chose
COMPAS because it is a very popular dataset in the literature, and it
is the largest, amongst those we consider, for binary classification.

8.1 Cognitive Complexity

The cognitive complexity of SpArX depends on the number of clus-
ters per layer. Fewer clusters lead to a more interpretable explanation
at the cost of achieving lower (structural) faithfulness.

Fig. 2a shows a global explanation for the given MLP for
COMPAS, with 20% compression ratio and pruning edges with low
weights.10 The classification results of the clustered MLP underpin-
ning this explanation is 98.32%, the same as the original MLP. This
explanation is clearly hard to interpret by a user. Fig. 2b shows the
global explanation with 85% compression rate and, again, pruning
the edges with low weights. This global explanation is more compre-
hensible (and the classification results are 94.60%, the same as the
original model).

Using the same MLP for the COMPAS dataset, local explanations
of an input example, with 20% and 85% compression ratios, are
shown in Fig. 3 (both clustered MLPs compute the same output
O0 = 0, indicating that the input individual, with the features as
given in the figure, is predicted to not re-offend within two years).
Fig. 3b is more interpretable than Fig. 3a, but the two clustered MLPs
make the same prediction for the given input, faithfully to the MLP.

8.2 From SpArX to Natural Explanations

Global and local explanations obtained by SpArX can be presented
so that humans can progressively inquire about the reasoning of the
underlying MLP, e.g. by instantiating templates as in [19, 20]. For
illustration, consider the global explanation in Fig. 2b again. Unlike
shallow input-output explanations, we can see the role of each hidden
cluster-neuron in the proposed method. There are two sets of hidden
cluster-neurons, namely an attacker (C1) and two supporters (C2 and
C3). They could be shown incrementally, following prompts from a
human user, to explain the output. Specifically, C1 attacks the out-
put, indicating that the input individual will not recommit a crime in
a two-year period. Three features are supporting C1 and two features
are attacking it, and they could also be shown to a human user on de-
mand. The attacking features also support C3. This means that they
strengthen the support by C3 and weaken the attack by C1. There-
fore, priors_count_10 priors or more and is_recid_Yes both strongly
affect the output. Indeed, looking at the COMPAS dataset, more than
99% of individuals that have these two features recommitted the
crime in a two years period. C2 and C3 are supporting the output.
C2 is only supported by the is_violent_recid_Yes feature. This sug-
gests that if individuals have a violent recidivism they are likely to
recommit a crime after two years. In the COMPAS dataset, this con-
jecture is 100% valid. These kinds of interpretations go beyond the
shallow input-output explanations offered e.g. by LIME, but can be
automatically drawn from the QAFs generated by SpArX. C3 is sup-
ported by several features and is attacked by one feature. Looking at
this argumentative global explanation one can understand the effect
of each feature as well as of each hidden neuron on the output.

Similar considerations can be made for local explanations, e.g. the
explanation in Fig. 3b. The class label for this input example is 0,
which means that the individual has not recommitted the crime in
a two-year period. The local explanation shows this fact by empha-
sising C2 as a stronger attacker than the supporter C3. C2 says that

10 Note that pruning is only done here for visualization.

since the sex of the individual is female, she has only 1 prior, she has
no recidivism, she has custody time of 1 to 9 days and the crime was
theft, she will not recommit the crime in a two years period.

For these readings of explanations to be natural, human-
interpretable presentations of the cluster-neurons are needed. Specif-
ically, we could use the word-cloud presentation from Section 5 (see
Examples 2 and 3). For illustration, Fig. 4 shows the local expla-
nation in Fig. 3b with word-clouds for presenting hidden cluster-
neurons and output neurons.11 Other ways to present cluster-neurons
may be useful: we leave the exploration of alternatives as well as
human studies to assess their amenability to humans to future work.

Figure 4: Word-cloud presentation of the cluster-neurons and output
neuron for the local explanation in Fig. 3b. To enhance comprehensi-
bility, we can display the word-cloud of the output node with respect
to the input features instead of the clusters (see dashed lines).

9 Conclusion

We introduced SpArX, a novel method for generating argumentative
explanations for MLPs. In contrast to shallow input-output explain-
ers like LIME, SpArX maintains structural similarity to the origi-
nal MLP in order to give faithful explanations, while allowing tai-
loring them to comprehensibility for users. Our experimental results
show that the explanations by SpArX are more faithful to the original
model than LIME. We have also compared SpArX with a state-of-
the-art NN compression technique called HAP, showing that SpArX
is more faithful to the original model. Further, our explanations are
more structurally faithful to the original model by providing deeper
insights into the mechanics thereof, and can be tailored to users for
cognitive tractability and to obtain natural explanations.

Future research includes extending SpArX to other types of NNs,
e.g. CNNs, as well as furthering it to cluster neurons across hidden
layers. It would also be interesting to explore whether SpArX could
be extended to exploit formal relationships between NNs and other
symbolic approaches, e.g. in [24]. Further, it would be interesting to
explore formalizations such as in [30] for characterizing uncertainty
as captured by SpArX.
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