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Abstract. In this paper, we study the Maximum Vertex-weighted
b-Matching (MVbM) problem on bipartite graphs in a new game-
theoretical environment. In contrast to other game-theoretical set-
tings, we consider the case in which the value of the tasks is public
and common to every agent so that the private information of every
agent consists of edges connecting them to the set of tasks. In this
framework, we study three mechanisms. Two of these mechanisms,
namely MBFS and MDFS , are optimal but not truthful, while the
third one, MAP , is truthful but sub-optimal. Albeit these mechanisms
are induced by known algorithms, we show MBFS and MDFS are
the best possible mechanisms in terms of Price of Anarchy and Price
of Stability, while MAP is the best truthful mechanism in terms of
approximated ratio. Furthermore, we characterize the Nash Equilib-
ria of MBFS and MDFS and retrieve sets of conditions under which
MBFS acts as a truthful mechanism, which highlights the differences
between MBFS and MDFS . Finally, we extend our results to the case
in which agents’ capacity is part of their private information.

1 Introduction

Managers of large companies are periodically required to submit a
list of the projects they carried out for external evaluations. Along-
side the list of projects, a manager needs to identify a worker liable
for the achievement of every project. Due to the workload cap, every
worker can be found responsible for only a finite number of projects.
Moreover, every project has a different prestige, which can be re-
garded as its overall value. The manager aims to maximize the total
value of the reported projects by deploying its staff following the
aforementioned constraints. Meanwhile, every worker is interested
in being associated with high-value projects rather than low-value
ones. Therefore, there might be workers that benefit by hiding part
of their connections to low value projects. A similar situation occurs
in the universities of several European countries. Indeed, to assess
the research impact of their higher education institutions, the coun-
try asks the universities for a list of their best publications, along with
the name of the main author.1 On one hand, every university wants to
find a matching between its lecturers and the publications that maxi-
mize the total impact. On the other hand, individual academics want
to be designated as the main author of their best publications. In both
scenarios, we need to allocate a set of resources that does possess an
objective and publicly known value, be they projects and their pres-
tige or publications and their impact score, to a set of self-interested
agents.
∗ Corresponding Author. Email: ga647@bath.ac.uk
1 This, for example, is a common practice in the United Kingdom, see https:

//www.ref.ac.uk for a reference.

Aside from these two examples, there are many other real-life
situations that can be rephrased as matching problems with self-
interested agents. Matching problems were first introduced to min-
imize transportation costs [30, 34] and to optimally assign workers
to job positions [20, 43]. Thereafter, bipartite matching found ap-
plication in several applied problems, such as sponsored searches
[11, 41], school admissions [1, 12], scheduling [46, 29], and general
resource allocation [24, 44]. Indeed, characterizing matching through
the maximization or minimization of a functional allows to define
mathematical objects that arise in several applied contexts. For ex-
ample, Maximum Cardinality Matchings have connections with the
computation of perfect matchings [26], bottleneck matchings [21],
and Lévy-Prokhorov distances, [37]. Another example is the Maxi-
mum Edge-weighted Matching problem, which has been widely used
in clustering problems [18], machine learning [10], and also to com-
pute Wasserstein-barycenters [5]. For a complete discussion of the
matching problems and their applications, we refer to [38].

Game-theoretic aspects of matching problems. Matching prob-
lems have been extensively studied from a game-theoretical perspec-
tive in various contexts, including one-sided matching (such as house
allocation [31, 17] and the resident/hospital problem [39]) and two-
sided matching (such as stable marriage [27], student admission [9],
PhD grants assignment [14], and market matching [35]). Numerous
variants of these basic models have been proposed, often with mean-
ingful constraints such as regional constraints [32, 28], diversity con-
straints [40, 8, 16, 22], or lower quotas [13, 45]. Perhaps the most
generic variation on this framework has been studied in [23] and
[6], where the authors adapt the game-theoretical framework to the
class of Generalized Assignment Problems. In every setting contain-
ing self-interested agents, it is important to assess the impact that the
mechanism has on the social problem. Consequently, several papers
have examined the social aspects of these mechanisms, including ma-
nipulability [25, 36, 15], fairness [33], and envy-freeness [3, 2]. For
a comprehensive survey of the game-theoretical properties of mech-
anisms in matching problems, we refer the reader to [7]. All these
works, however, assume that the values of the tasks are subjective,
meaning that the same task may have a different value for different
agents. Yet, in many cases, the value of the objects to be assigned is
publicly known. Thus, we cannot model the agents’ private informa-
tion as their ordinal or cardinal preferences over the set of tasks. In
this paper, we focus on this distinct class of problems.

Our Contributions. In this paper, we consider a game-theoretical
framework in which the agents’ private information is the set of edges
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Table 1. The mechanisms we study and their properties in the two
game-theoretical settings we consider . The "Yes*" indicates that the

mechanism is group strategyproof under minor assumptions.

Truthful Group SP Optimal Efficiency
MBFS No No Yes PoA = PoS = 2
MDFS No No Yes PoA = PoS = 2
MAP Yes Yes* No ar = 2

connecting the agent to the tasks. We assume that the values of the
tasks are public and common to every agent. Moreover, we assume
that the agents are bounded by their statements so that agents can hide
edges, but they cannot report non-existing edges. In this framework,
we study three mechanisms induced by known algorithms. Two of
them, namely MBFS and MDFS , are induced by the algorithm pro-
posed in [42]. The third one, namely MAP , is induced by the algo-
rithm proposed in [19], which is an approximation of the one pro-
posed in [42]. First, we study the truthfulness and the group strate-
gyproofness of these mechanisms. Both MBFS and MDFS are opti-
mal, but not truthful nor group strategyproof. On the contrary, MAP

is not optimal, but truthful and, under mild assumptions, also group
strageyproof. We show that MAP has an approximation ratio (ar)
equal to 2 and that this value is tight, i.e. no other deterministic and
truthful mechanism can beat this constant value. We then study the
Nash Equilibrium induced by MBFS and MDFS , we use these char-
acterizations to prove that the Price of Anarchy (PoA) and the Price
of Stability (PoS) of both mechanisms is equal to 2. As for MAP ,
these efficiency guarantees are tight: there does not exist a mecha-
nism that can achieve a smaller PoA or PoS. We then characterize
some classes of inputs on which MBFS is truthful, while MDFS is
not. In particular, we infer that, despite their similarities, MBFS and
MDFS do possess different game-theoretical properties. Finally, we
extend our results to the case in which the agents are able to report
their capacity along with their edges. In Table 1, we summarize our
main findings.

Due to space limitations, we defer part of the proofs to the Ap-
pendix.2

2 Preliminaries

In this section, we recall the basic notions on the MVbM problem
and introduce the algorithm defining the mechanisms we study.

The Maximum Vertex-weighted b-Matching Problem. Let G =
(A ∪ T,E) be a bipartite graph. Throughout the paper we refer
to A = {a1, a2, · · · , an} as the set of agents and refer to T =
{t1, t2, · · · , tm} as the set of tasks. The set E contains the edges
of the bipartite graph. We say that an edge e ∈ E belongs to agent
ai if e = (ai, tj) for a tj ∈ T . We denote with M = |E| and
N = |A∪T | = n+m the number of edges and the total number of
vertices of the graph, respectively. Since the graphs are undirected,
we denote an edge by (ai, tj) and (tj , ai) interchangeably. More-
over, for any given agent ai ∈ A, we define the set TE,i as the set of
tasks in T that are connected to agent ai through the set of edges E.
When it is clear from the context which set E we are referring to, we
drop the subscript from TE,i and use Ti. Let b = (b1, b2, . . . , bn) be
the vector containing the capacities of the agents, where bi ∈ N for
every i = 1, . . . , n. A subset μ ⊂ E is a b-matching if, for every
vertex ai ∈ A, the number of edges in μ linked to ai is less than or
equal to bi and, for every vertex tj ∈ T , the number of edges in μ

2 See full version at https://arxiv.org/abs/2307.12305.

Algorithm 1 Algorithm for MVbM, [42]
Input: A bipartite graph G = (A ∪ T,E); agents’ capacities bi, i =
1, · · · , n; task weights qj , j = 1, · · · ,m.
Output: An MVbM μ.

1: μ0 ← ∅;
2: Sort qj , j = 1, · · · ,m, in decreasing order;
3: for each j ∈ T do

4: if there is augmenting path P starting from j w.r.t. μj−1 then

5: μj = μj−1 ⊕ P ;
6: else

7: μj = μj−1;
8: end if

9: end for

10: return μ = μm;

linked to tj is, at most, one. Given a b-matching μ, the vertex ai ∈ A
is saturated with respect to μ if the number of edges in μ linked to
ai is exactly bi. Otherwise, the vertex ai is unsaturated with respect
to μ. We denote with q = (q1, q2, . . . , qm) the vector containing the
values of the tasks, in our framework, we have qj > 0 for every j.
The value of a matching μ is w(μ) :=

∑
tj∈Tμ

qj , where Tμ ⊂ T

is the set of tasks matched by μ. Given a bipartite graph and a vec-
tor b, the MVbM problem consists in finding a b-matching μ that
maximizes w(μ).

Finally, given two sets of edges μ1 and μ2, denote with μ1 ⊕
μ2 = (μ1\μ2) ∪ (μ2\μ1) their symmetric difference. A path P =
{(tj1 , ai1), (ai1 , tj2), (tj2 , ai2), · · · , (tjL , aiL)} in G is a sequence
of edges that joins a sequence of vertices. We say that P has a length
equal to λ if it contains λ edges. Given a path P and a b-matching
μ, P is an augmenting path with respect to μ if every vertex ai� , for
� = 1, . . . , L − 1, is saturated with respect to μ, aiL ∈ A is unsat-
urated with respect to μ, and the edges in the path alternatively do
not belong to μ and belong to μ. That is, (tj� , ai�) /∈ μ, � ∈ [L] and
(ai� , tj�+1) ∈ μ, � ∈ [L−1], where [L] is the set containing the first
L natural numbers, i.e. [L] := {1, 2, . . . , L}.

The Algorithm Outline. In this paper, we consider two well-
known algorithms from a mechanism design perspective. The first
algorithm is presented in [42] and its routine consists in defining a
sequence of matchings, namely {μj}j=0,1,...,m, of increasing cardi-
nality. Indeed, the first matching is set as μ0 = ∅ and, given μj−1,
μj is defined as follows: if there exists Pj an augmenting path (with
respect to μj−1) that starts from tj , then μj = μj−1 ⊕Pj , otherwise
μj = μj−1. In Algorithm 1, we sketch the routine of the algorithm.

In [42] it has been shown that Algorithm 1 returns a solution to the
MVbM problem in O(NM) time, regardless of whether we find the
augmenting path using the Breadth-First Search (BFS) or the Depth-
First Search (DFS). Both the DFS and the BFS when they traverse
the graph in search of an augmenting path implicitly assume that
there is an ordering of the agents. We say that agent ai has a higher
priority than agent aj if ai is explored before aj . In particular, a1

has the highest priority. We say that Algorithm 1 is endowed with the
BFS (or endowed with the DFS) if we use the BFS (or DFS) to find
an augmenting path.

The second algorithm is introduced in [19] and [4] and is an ap-
proximation version of Algorithm 1 that searches only among the
augmenting paths whose length is 1. The authors showed that this
approximation algorithm finds a matching whose weight is, in the
worst case, half the weight of the MVbM. Notice that for this ap-
proximation algorithm, using the BFS or the DFS does not change
the outcome thus we omit which traversing graph method is used.
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3 The Game-Theoretical framework

In this section, we formally define the space of the agents’ strategies
and the mechanisms we study throughout the paper.

The Strategy Space of the Agents. Given a bipartite graph G =
(A ∪ T,E), a capacity vector b, a value vector q, and a b-matching
μ over G, we define the social welfare achieved by μ as the total
value of the tasks assigned to the agents. Since the social welfare
achieved by μ is equal to the total weight of the matching, we use
w(μ) to denote it. We then define the utility of agent ai as wi(μ) :=∑

tj∈Tμ,i
qj , where Tμ,i is the set of tasks that μ matches with agent

ai. Notice that w(μ) =
∑n

i=1 wi(μ).
In this paper, we focus on two settings: (i) The private information

of each agent consists of the set of edges that connect the agent to
the tasks’ set. We call this setting Edge Manipulation Setting (EMS).
(ii) The private information of each agent consists of the set of edges
and its own capacity. We call this setting Edge and Capacity Manip-
ulation Setting (ECMS). In both cases, we assume that every agent
is bounded by its statement, thus every agent is able to report incom-
plete information, but they are not allowed to report false informa-
tion. In EMS, this means that an agent can hide some of the edges
that connect it to the tasks, but it cannot report an edge that does
not exist. The set of strategies of agent ai, namely Si, is, therefore,
the set of all the possible non-empty subsets of Ti, where Ti is the
set containing all the existing edges that connect ai to the tasks. In
ECMS, this means that an agent can report only a capacity that is
lower than its real one and that it cannot report an edge that does not
exist. In this case, the set of strategies of agent ai is then Si × [bi],
where bi is the real agent’s capacity.

For the sake of simplicity, from now on all the results and defi-

nitions we introduce are for the EMS, unless we specify otherwise.
We generalize our results to the ECMS in Section 7.

The Mechanisms. A mechanism for the MVbM problem is a
function M that takes as input the private information of the agents
and returns a b-matching. We denote with IM the set of possible in-
puts for M in the EMS. In our paper, we consider three mechanisms:

(i) MBFS , which takes in input the edges of the agents and uses Al-
gorithm 1 endowed with the BFS to select a matching3.

(ii) MDFS , which takes in input the edges of the agents and uses Al-
gorithm 1 endowed with the DFS to select a matching.

(iii) MAP , which takes in input the edges of the agents and uses the
approximated version of Algorithm 1 to select a matching.

Notice that MBFS and MDFS are optimal since they are both in-
duced by Algorithm 1.

Given a mechanism M, every element I ∈ IM is composed by the
reports of n self-interested agents, so that IM = ⊗n

i=1Ii, where Ii is
the set of feasible inputs for agent ai. We say that a mechanism M is
strategyproof (or, equivalently, truthful) for the EMS if no agent can
get a higher payoff by hiding edges. More formally, if Ii is the true
type of agent ai, it holds true that

wi(M(I ′i, I−i)) ≤ wi(M(Ii, I−i))

for every I ′i ∈ Si. Another important property for mechanisms is
the group strategyproofness. A mechanism is group strategyproof for
agent manipulations if no group of agents can collude to hide some

3 Throughout the paper, we use MBFS to denote both the mechanism that
takes as input the edges and both the edges and the capacity of every agent.
It will be clear from the context which is the input of the mechanism. The
same goes for the other two mechanisms.

of their edges in such a way that (i) the utility obtained by every agent
of the group after hiding the edges is greater than or equal to the one
they get by reporting truthfully, (ii) at least one agent gets a better
payoff after the group hides the edges.

To evaluate the performances of the mechanisms, we use the Price
of Anarchy (PoA), Price of Stability (PoS), and approximation ratio
(ar), which we briefly recall in the following.

Price of Anarchy. The Price of Anarchy (PoA) of mechanism M

is defined as the maximum ratio between the optimal social welfare
and the welfare in the worst Nash Equilibrium, hence

PoA(M) := sup
I∈I

w(μ(I))

w(μwNE(I))
,

where μwNE(I) is the output of M when the agents act according to
the worst Nash Equilibrium, i.e. the Nash Equilibrium that achieves
the worst social welfare.

Price of Stability. The Price of Stability (PoS) of a mechanism M

is defined as the maximum ratio between the optimal social welfare
and the welfare in the best Nash Equilibrium, hence

PoS(M) := sup
I∈I

w(μ(I))

w(μbNE(I))
,

where μbNE(I) is the output of M when the agents act according to
the best Nash Equilibrium, i.e. the Nash Equilibrium that achieves
the maximum social welfare. Notice that, by definition, we have
PoS(M) ≤ PoA(M).

Approximation Ratio. The approximation ratio of a truthful
mechanism M is defined as the maximum ratio between the optimal
social welfare and the welfare returned by M. Hence, we have

ar(M) := sup
I∈I

w(μ(I))

w(μM(I))
,

where μM(I) is the output of M when I is given in input.

4 The Truthfulness of the Mechanisms

In this section, we study the truthfulness of the three mechanisms
induced by Algorithm 1 and its approximation version. We show that,
although MBFS and MDFS are optimal, they are not truthful due to
an impossibility result. Furthermore, we show that the manipulability
of a mechanism is related to the length of the augmenting paths found
during the routine of Algorithm 1 and use this characterization to
prove that MAP is truthful.

Theorem 1 There is no deterministic truthful mechanism that al-
ways returns an MVbM.

Proof. We show this using a counterexample. Consider two agents
a1 and a2 and three tasks t1, t2, t3. The edge set is E =
{(a1, t1), (a1, t2), (a2, t1), (a2, t3)}. The values of the three tasks
are q1 = 1, q2 = 0.1, and q3 = 0.1, respectively, while the capac-
ity of both agents is b1 = b2 = 1. It is easy to see that the optimal
matching is not unique. In particular, both {(a1, t1), (a2, t3)} and
{(a1, t2), (a2, t1)} are feasible solutions whose total weight is 1.1.
Let us assume that the mechanism returns {(a1, t1), (a2, t3)}. In
this case, if agent a2 does not report edge (a2, t3), the maximum
matching becomes {(a1, t2), (a2, t1)}. According to this, agent a2’s
utility increases from 0.1 to 1. Similarly, if the mechanism returns
{(a1, t2), (a2, t1)}, agent a1 can manipulate the result by hiding the
edge (a1, t2). Therefore, there is no deterministic truthful mecha-
nism that always returns a maximum matching.
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From Theorem 1, we infer that both MBFS and MDFS are not
truthful and, thus, not group strategyproof. In the following, we char-
acterize a sufficient condition under which agents’ best strategy is to
report truthfully. This characterization will allow us to deduce that
MAP is truthful and to present sets of instances on which MBFS

and MDFS are truthful.

Lemma 1 Let us consider an instance in which Algorithm 1 com-
pletes its routine using only augmenting paths of length equal to 1.
If an agent cannot misreport edges in such a way that the algorithm
will find an augmenting path of length greater than 1 in its imple-
mentation, then the agent’s best strategy is to report truthfully.

Proof. Let us denote with μk the matching found at the k-th step.
It is easy to see that Algorithm 1 concludes its routine using only
augmenting paths of length equal to 1 if and only if the sequence of
matching that it finds is monotone increasing. That is, μk ⊂ μk+1 for
every k. Since the sequence {μk}k is increasing, the matching μk+1

is defined by adding (at most) an edge to μk. Let us now assume
that an agent hides a set of edges in such a way that the matching
sequence found by the algorithm is still monotone increasing. Thus,
after the manipulation, the final matching is still obtained by adding
(at most) an edge at every iteration. By the definition of MBFS and
MDFS , the edge added at step j, is taken from the ones that are
connected to the task tj . Therefore, by hiding one or more edges,
the manipulative agent can only reduce the total value of the tasks
assigned to it, which concludes the proof.

Since MAP uses only augmenting paths of length at most equal
to 1, regardless of the input, Lemma 1 allows us to conclude that
MAP is truthful. Moreover, due to the results proven in [19], we can
characterize the approximation ration of MAP .

Theorem 2 The mechanism MAP is truthful with respect to agent
manipulation. Moreover, its approximation ratio is 2.

The approximation ratio achieved by MAP is actually the best pos-
sible ratio achievable, as the next result shows.

Theorem 3 There does not exist a truthful and deterministic mech-
anism for the MVbM problem that achieves an approximation ratio
better than 2.

Proof. Toward a contradiction, assume that there exists a mechanism
M whose approximation ratio is equal to 2 − δ, where δ is a posi-
tive value. Let us now consider the following instance. We have two
agents, namely a1 and a2, and two tasks, namely t1 and t2. The ca-
pacity of both agents is set to be equal to 1. The value q1 of t1 is 1+ε
and the value q2 of t2 is equal to 1. Finally, we assume that, accord-
ing to their truthful inputs, both agents are connected to both tasks,
so that E = {(a1, t1), (a1, t2), (a2, t1), (a2, t2)}. It is easy to see
that the maximum value that a matching can achieve is 2 + ε. If the
mechanism M does not allocate both the tasks, we have that the value
achieved by the mechanism is, at most 1+ ε. Therefore, we have that
the approximated ratio of M is at least equal to 2+ε

1+ε
= 1 + 1

1+ε
. If

we take ε < δ
1−δ

, we get that the approximated ratio of M should be
greater than 2− δ, which is a contradiction. Hence M allocates both
the tasks in the previously described instance. Without loss of gener-
ality, let us assume that M allocates t1 to a2 and t2 to a1. Let us now
consider the instance in which a1 is not connected with the task t2,
so that E′ = {(a1, t1), (a2, t1), (a2, t2)}. The maximal value that a
matching can achieve is still 2 + ε. However, since the mechanism

is truthful, the agent a1 cannot receive any task. Indeed, the only
task that M can assign to a1 is t1, however, if M assigns t1 to a1, it
means that agent a1 can manipulate M by reporting the set of edges
{(a1, t1)} over {(a1, t1), (a1, t2)} in the instance when the truthful
input is E. Since the first agent cannot receive any tasks from M,
we have that the maximum matching value achieved by M when the
input is E′ is, at most, 1 + ε, so that the approximation ratio of M
is, at least 2+ε

1+ε
. Again, by taking ε < δ

1−δ
, we conclude a contradic-

tion.

From Theorem 3, we then infer that MAP is the best possible de-
terministic and truthful mechanism for our game theoretical setting.
To conclude, we show that, MAP is also group strategyproof if all
the tasks have different values.

Theorem 4 If all the tasks in T have different values, then MAP is
group strategyproof.

Proof. Toward a contradiction, let us assume that there exists a coali-
tion of agents C = {ai1 , . . . , ai�} that is able to collude. Since hid-
ing edges that are not returned by MAP does not alter the outcome
of the mechanism, we assume, without loss of generality, that at least
agent ai1 , hides one of the edges that are in the matching found by
MAP when all the agents report truthfully. Let us denote with tl the
task connected to ai1 through the hidden edge. After misreporting
agent ai1 cannot be allocated with tl. Furthermore, due to the rou-
tine of MAP , each task is allocated independently from the others,
hence ai1 cannot be allocated with a better task. Finally, since there
are no tasks with the same value, ai1 ’s payoff is necessarily lowered
by misreporting, even if in a coalition, which is a contradiction.

The condition of Theorem 4 are tight. Indeed, as we show in the
next example, even if just two tasks have the same value, the mecha-
nism is no longer group strategyproof.

Example 1 Let us consider the following instance. The set of agents
is composed of three elements, namely a1, a2, and a3. The capacity
of each agent is set to 1, so that b1 = b2 = b3 = 1. The set of tasks is
composed of two elements, namely t1 and t2. The value of both tasks
is equal to 1. Finally, let E = {(a1, t1), (a1, t2), (a2, t2), (a3, t1)}
be the truthful input. Then, MAP (E) = {(a1, t1), (a2, t2)}. How-
ever a1 and a3 can collude: if agent a1 hides the edge (a1, t1), the
MAP returns μ′ = {(a1, t2), (a3, t1)}.

5 The Price of Anarchy and the Price of Stability

In this section, we study to what extent an agent can manipulate
MBFS or MDFS in its favor. First, we show that an agent who is
not matched to any task when reporting truthfully cannot improve its
utility by manipulation.

Lemma 2 Given a truthful input, if an agent receives a null utility
from MBFS , then its utility cannot be improved by hiding edges. The
same holds for the mechanism MDFS .

The latter Lemma ensures us that, without loss of generality, if an
agent is able to manipulate MBFS or MDFS , then the same agent
is assigned at least one task when it reports truthfully. We now show
that the first agent processed by either MBFS or MDFS , hence a1,
is always able to get its highest possible payoff by misreporting.

Theorem 5 For both MBFS and MDFS , agent a1’s best strategy is
to report only the top b1-valued tasks to which it is connected.
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Proof. Let us denote with tj1 , . . . , tjb1 the top b1 tasks agent a1 is
connected to. For every tjr , at the jr-th step of Algorithm 1, agent
a1 will not be saturated; therefore the path Pjr = {(tjr , a1)} is aug-
menting with respect to matching μjr−1. Moreover, since the BFS
searches among the vertices in lexicographical order, the path Pjr is
always the first one being explored and, since it is augmenting, it will
be the one returned. To conclude, we notice that, after the jr-th iter-
ation, there are no augmenting paths that pass by a1 as all the edges
connected to a1 are already in the matching, thus the set of tasks al-
located to a1 will not change in later iterations of the algorithm. By
a similar argument, we infer the same conclusion for MDFS .

In the next example, we show that the advantage described in The-
orem 5 is only due to the fact that agent a1 is self-aware of its position
in the processing process.

Example 2 Let us consider the following instance. There are 3
agents, namely α, β, and γ whose capacities are bα = 2 and
bβ = bγ = 1. Let us consider a set of 4 tasks, namely tj with j ∈ [4]
whose respective values are qj = 2−j . In the truthful input, agent α
is connected to all 4 tasks, while agent β is connected only to task t1
and agent γ is connected only to task t2. Let us consider the mecha-
nism MBFS: the maximum matching for the truthful input allocates
t1 to agent β, t2 to agent γ, and the other two tasks to agent α. Let
us now assume that the processing order of the agents is α, β, and
γ. That is, a1 = α, a2 = β, and a3 = γ. Then, if agent α applies
the strategy highlighted in Theorem 5 and reports only the first two
edges, it improves its utility from q3 + q4 to q1 + q2. However, in a
different order of agents in which agent α is the second, i.e., a2 = α,
if it applies the same strategy, then agent α gets only one of the two
tasks (depending on who is the agent going first) while if it goes as
the third, it receives no tasks. We also note that, if agent α is the sec-
ond, its best strategy is to report the edges connecting it to tasks t1
and t3 if agent γ goes first or tasks t2 and t3 if β goes first. Hence,
the priority of agent α and the priority of the other two agents de-
termines what the best strategy for agent α is. Similarly, the same
conclusion can be drawn for the mechanism MDFS .

In general, the best strategy of an agent depends on its priority and
the reports of the agents whose priority is higher than its. Indeed,
once the agents’ order is fixed, it is possible to describe the Nash
Equilibria of both MBFS and MDFS . For every i = 0, 1, . . . , n,
let us define the sets T (i) and B(i) in the following iterative way:
(i) T (0) = T where T is the set of all the tasks and B(0) = ∅;
(ii) T (i) = T (i−1)\B(i−1)

i , where B
(i−1)
i is the set containing the

top bi-valued tasks among the ones in T (i−1) that agent i is con-
nected to. If agent i is connected to less than bi tasks, then B

(i−1)
i

contains all the tasks in T (i−1) to which agent i is connected to.
We then define agent ai’s First-Come-First-Served (FCFS) policy as
FCFSPi = {(ai, tj)}tj∈B

(i−1)
i

. Notice that FCFSPi ∈ Si for

every i ∈ [n], so that it is a feasible strategy for every agent.

Theorem 6 Given an MVbM problem, the FCFS policies constitute
a Nash Equilibrium that achieves the lowest social welfare for both
mechanisms MBFS and MDFS . Moreover, we have

MBFS(∪ai∈AFCFSPi) = MDFS(∪ai∈AFCFSPi)

= ∪ai∈AFCFSPi. (1)

Proof. We prove the first part of the theorem in two steps. First, we
prove that the FCFS policies constitute a Nash Equilibrium. Second,

we show that the Nash Equilibrium they form is the one with the
lowest possible social welfare.

Let us then consider agent ai and, toward a contradiction, let us
assume that, when all the other agents report their FCFS policy, re-
porting the set of edges Sai 
= FCFSPi gives ai a bigger payoff
than what it would get from reporting FCFSPi. Let us set si =
min(ai,tj)∈FCFSPi

qj . Let us assume that Sai contains an edge that
connects ai to a task that has a higher value than si, namely tl. We
now show that, since the other agents are applying their FCFS poli-
cies, the task tl is allocated to an agent with higher priority unless the
edge already belongs to FCFSPi. Indeed, since |FCFSPj | ≤ bj
for every aj ∈ A, there cannot be augmenting paths that pass by
any of the agents playing their FCFS policy. Indeed, since the union
of the FCFS policies is a b-matching, either (ai, tl) ∈ FCFSPi

or there exists another agent whose FCFS policy connects it to tl.
If tl is connected to an agent ak, (ak, tl) ∈ FCFSPk, and agent
ak’s priority is higher than agent ai’s priority, the final output of
the mechanism assigns tl to ak. We can then assume that Sai does
not contain edges that connect agent ai to tasks with values higher
than si and that do not belong to FCFSPi. To conclude, we notice
that if Sai contains an edge connecting agent ai to a task that has
a value lower than si, then the payoff of agent ai can only be low-
ered. Indeed, if |FCFSPi| = bi, then ai cannot improve its payoff
by reporting edges that connect ai to tasks that have a value lower
than si. This follows from the fact that all the other players are us-
ing their FCFS policies and therefore agent ai is allocated the set
B

(i−1)
i = {tj ∈ T s.t. (ai, tj) ∈ FCFSPi} if it uses its FCFS

policy. If |FCFSPi| < bi, by definition, it means that there are no
tasks that agent ai can be connected to and that have a value lower
than si. Therefore Sai does not contain edges connecting ai to a task
with a value lower than si nor edges connecting it with tasks that
have a value greater than si and that are not included in FCFSPi.
Since reporting a subset of FCFSPi would result in a lower payoff,
we deduce that Sai = FCFSPi, which is a contradiction since we
assumed FCFSPi 
= Sai .

We now prove that the Nash Equilibrium induced by the FCFS
policies is one of the worst equilibria. Toward a contradiction, let us
consider another set of strategies, namely {Sai}ai∈A, such that the
social welfare achieved by this equilibrium is strictly lower than the
one obtained if every agent uses its FCFS policy. By the definition
of social welfare, there must exist at least one agent that, according
to the equilibrium defined by {Sai}ai∈A, receives a payoff that is
strictly lower than the one it would obtain by using its FCFS policy.
Let us denote with ak the first agent that, according to the priority
order of the mechanism, receives a lower value. Agent ak cannot be
the first agent, as it otherwise could apply its FCFS policy and get a
better payoff. Then, agent ak is among the remaining agents and it is
not getting any of the tasks that are given to the first agent according
to its FCFS policy, as otherwise, agent a1 could increase its payoff
by manipulating and the set of strategies {Si}ai∈A would not be a
Nash Equilibrium. From a similar argument, we infer that agent ak

cannot be the second agent, as otherwise, it could get a better payoff
by using its FCFS policy. Moreover, the second agent is allocated the
tasks that are granted to it from its FCFS policy. Both of which we
have already proved cannot be. By applying the same argument to the
other agents, we get a contradiction, since no agent can be agent ak.
We, therefore, conclude that the set of strategies given by the FCFS
policies is one of the worst Nash Equilibrium.

The last part of the Theorem follows from the fact that
∪ai∈AFCFSPi is itself a b-matching, hence it is also an MV bM
with respect to the edge set E = ∪ai∈AFCFSPi.
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Following the same argument presented in the proof of The-
orem 6, we infer that any set of strategies {Si}ai∈A for which
it holds FCFSPi ⊂ Si and mintj , (ai,tj)∈FCFSPi

qj =
mintj , (ai,tj)∈Si

qj for every i, defines a Nash Equilibrium. Among
this class of Nash Equilibria, {FCFSPi}ai∈A is the only one for
which the identities in (1) hold. Moreover, this equilibrium achieves
the same social welfare of the matching returned by MAP .

Theorem 7 Given an MVbM problem, let μE be the matching re-
turned by MAP . Then, it holds that μE = ∪ai∈AFCFSPi. That is,
the output of MAP on any given instance is equal to the union of the
agents’ FCFS policies. Hence, the social welfare achieved by MAP

is equal to the social welfare achieved by MBFS and MDFS in one
of their worst Nash Equilibria.

Proof. We prove this Theorem by induction. First, we prove that
MAP allocates a1 with the set of tasks FCFSP1. Second, we show
that if all the agents a1, . . . , ak receive FCFSP1, . . . , FCFSPk

from MAP , then also agent ak+1 receives FCFSPk+1.
Let us consider a1. Since MAP checks the agents following their

orders, a1 is always the first agent checked. Hence, a task tj is not
allocated to a1 if and only if there are b1 other tasks that have a higher
value than tj and that are all connected to a1. This means that the set
of tasks allocated to a1 is FCFSP1.

Let us now assume that agents a1, a2, . . . , ak are given the tasks
contained in FCFSP1, FCFSP2, . . . , FCFSPk respectively, and
let us consider ak+1. We have that MAP allocates a task tj to ak+1

if, at step j of Algorithm 1, all the agents with priorities higher than
ak+1 that are connected to tj are already saturated and ak+1 is not
saturated. However, by assumption, agents with a higher priority than
ak+1 are getting the tasks that they would get from their FCFS poli-
cies. We, therefore, conclude that the tasks allocated to agent ak+1

from MAP consist of a subset of T (k). From an argument similar to
the one used for agent a1, we infer that ak+1 receives the top bk+1

higher valued tasks among the ones in T (k), which coincides with
the set FCFSPk+1. We conclude the proof by induction.

Finally, we show that Theorem 7 along with Theorem 2 allows us
to compute the PoA of both MBFS and MDFS .

Theorem 8 The PoA of MBFS and MDFS is equal to 2.

Proof. From Theorem 7, the matching returned by MAP achieves a
social welfare equal to the social welfare of one of the worst Nash
Equilibrium of MBFS . Since MBFS returns an MVbM, we have

PoA(MBFS) = sup
I∈I

w(μ(I))

w(μwNE(I))
= sup

I∈I

w(MBFS(I))

w(MAP (I))
. (2)

Since the matching found by MBFS achieves the maximum social
welfare, the last term in equation (2) is bounded from above by
the a.r.(MAP ), so that PoA(MBFS) ≤ ar(MAP ) = 2. To con-
clude PoA(MBFS) = 2 we show a lower bound of 2. The set
of agents is composed of two agents, namely a1 and a2, we as-
sume the agents to be ordered according to the algorithm priority.
The capacity of both agents is equal to 1. The set of tasks con-
tains two tasks, namely t1 and t2, whose values are 1 + ε and 1,
respectively. Finally, let us assume that the truthful input is given by
E = {(a1, t1), (a1, t2), (a2, t1)}. The social welfare is then equal to
2 + ε. However, in the worst Nash Equilibrium, the welfare is 1 + ε.
By taking the limit for ε → 0, we conclude that the PoA is equal to
2. By a similar argument, we infer PoA(MDFS) = 2.

The previous bound is tight: there does not exist a deterministic
mechanism for the MV bM problem that has a PoA lower than 2.

Theorem 9 For every deterministic mechanism M, we have
PoA(M) ≥ 2 with respect to agent manipulations.

Proof. Toward a contradiction, let M be a deterministic mechanism
whose PoA is lower than 2. Let us consider the following instance.
We have two tasks, namely t1 and t2, whose values are 1 + ε and 1,
respectively. We then have two agents, namely a1 and a2 and both
have a capacity equal to 1. Let us now consider the instance in which
both the agents are only connected to task t1, hence the truthful input
is E = {(a1, t1), (a2, t1)}.

Since PoA(M) is finite, we have that M allocates t1 to one agent.
Indeed, if no agent receives a task, no one can improve its own payoff
by hiding its only edge (we recall that each agent is bounded by its
statements). Hence, the truthful instance is already a Nash Equilib-
rium. Furthermore, since the social welfare of this Nash Equilibrium
is 0, this is also one of the worst Nash Equilibria, thus we find a
contradiction since we assumed that M has a finite PoA.

Let us then assume that one agent gets t1. Without loss of gener-
ality, let us assume that M allocates t1 to a1, the other case is com-
pletely symmetric with respect to the one we are about to present.

Let us now consider the instance whose truthful input is E =
{(a1, t1), (a1, t2), (a2, t1)}. If M allocates t1 to a2, we have that
a Nash Equilibrium is obtained when agent a1 hides arc (a1, t2).
Indeed, if agent a1 hides (a1, t2), the input of the mechanism is
E = {(a1, t1), (a2, t1)} which gives the first task to a1. Since a2

is bounded by its statements and its only alternative is to report no
edges, it has no better strategy to play. Similarly, since a1 is getting
its best possible payoff, it has no better strategy to play. We then
conclude that when a1 hides the edge (a1, t2), we have a Nash Equi-
librium. Finally, we observe that, by taking ε small enough, we get
a contradiction with the assumption PoA(M) < 2, since the max-
imum social welfare is 2 + ε, while the social welfare returned by
the mechanism in the worst Nash Equilibrium is at most 1 + ε. No-
tice that there might be another Nash Equilibrium in which the social
welfare is even lower, however, it suffice to notice that the social wel-
fare achieved in the worst Nash Equilibrium is lower than 1 + ε to
conclude the proof. Similarly, if the mechanism does not allocate t1
to a2, the instance is already a Nash Equilibrium. Indeed, by the same
argument used before, a2 cannot improve its own payoff, since it is
getting no tasks. If a1 is allocated with the task, it cannot improve
its payoff either, since it is getting the maximum payoff it can get.
Finally, if a1 is not getting t1, it can hide (a1, t2) and return to the
instance we considered before. Again, by taking ε small enough, we
retrieve that the PoA(M) cannot be less than 2.

We close the section by studying the PoS of MBFS and MDFS .
We recall that the PoA of every mechanism is greater than its PoS,
thus we infer that both MBFS and MDFS have a PoS at most equal
to 2. Moreover, since the Nash Equilibrium in the example we used in
the proof of Theorem 9 is unique, the best and worst Nash Equilibria
achieve the same social welfare. In particular, this allows us to prove
that the PoS of both MBFS and MDFS is equal to 2. Furthermore,
this value is tight for the class of deterministic mechanisms.

Theorem 10 The PoS of MBFS and MDFS is equal to 2. Moreover,
no deterministic mechanism can achieve a lower PoS.
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6 The Truthful Inputs for MBFS and MDFS

In this section, we describe three sets of inputs in which MBFS and
MDFS are truthful. In particular, we consider the three following set-
tings. In Theorem 11, we consider the case in which there is a short-
age of tasks, so that the capacity of each agent exceeds the number
of tasks to which it is connected. In particular, no agent can be satu-
rated. In Theorem 12, instead, we describe what happens when every
task can be contended by another agent. In Theorem 13, we study the
case in which the private information of the agents can be clustered,
that is different agents are connected to the same set of tasks and
the same capacity. Going back to the worker-project example at the
beginning of the paper, this means that the connection between the
worker and the project depends, for example, on the field of expertise
of the worker or their background formation.

Theorem 11 Let us consider the set of inputs such that, according
to E, all the agents’ degrees are less than or equal to their capacity,
that is

∑
tj∈Ti

ei,j ≤ bi for every i ∈ [n], then MBFS and MDFS

are truthful on this set of inputs.

Proof. Since no agents can be saturated, any augmenting path found
by the mechanisms has length equal to 1. Moreover, since hiding
edges cannot lead an agent to be saturated, Lemma 1 allows us to
conclude the proof.

This is the only class of inputs we are considering on which MBFS

and MDFS behave in the same way. In the other two frameworks,
MDFS is not truthful, while its counterpart MBFS is. This is due to
the fact that BFS searches for the shortest possible augmenting path
in its execution.

Theorem 12 Let μ be the matching returned by MBFS . If for ev-
ery task tj there exists an edge e /∈ μ that connects tj to an un-
saturated agent, then no agents can increase their utility by hid-
ing only one edge. In particular, if the truthful input is a com-
plete bipartite graph and the vector of the capacities b is such that
m ≤ ∑n

i=1 bi − maxi∈[n] bi, then the best strategy for every agent
is to report truthfully.

Proof. Assume, toward a contradiction, that an agent, namely ai gets
a benefit by hiding an edge, namely e = (ai, tj). By hypothesis, we
have that every task is connected to an unsaturated agent. Let ak be
one of the unsaturated agents to which tj is connected to. Then BFS
will always find an augmenting path whose length is 1 when it is
asked to allocate tj , since there exists the augmenting path (ak, tj).
Therefore, by Lemma 1 we infer a contradiction.

Let A = {A(1), . . . , A(r)} be a partition of A. We say that A(�)

is the �-th class of the agents. Since A is a partition, every agent
ai ∈ A belongs to only one class. Let us assume that the capacity
bi and the set of edges Ti of every agent ai ∈ A depends only on
the class A(�) to which ai belongs, so that bi = b(�) and Ti = T (�).
Using an argument that is similar (but more delicate) to the one used
in Theorem 12, we are able to prove that MBFS is truthful if every
class contains enough agents.

Theorem 13 In the framework described above, if |A(�)| >
⌈ |T (�)|

b(�)

⌉
+ 1, then no agents belonging to the �-th class can bene-

fit by misreporting to MBFS .

In the appendix, we report two examples that show that both The-
orem 12 and Theorem 13 do not hold for MDFS .

7 Agents Manipulating their Edges and Capacity

Finally, we extend our study on the truthfulness of MBFS , MDFS ,
and MAP to the ECMS, i.e. we allow the agents self-report their ca-
pacity along with their edges. As for the EMS, we assume the agents
to be bounded by their statements, thus they can manipulate only by
hiding edges or by reporting a lower capacity than their real one. In
this setting, a mechanism M is truthful if, for every i ∈ [n], it holds
wi((I

′
i, b

′
i), J−i) ≤ wi((Ii, bi), J−i), for every (I ′i, b

′
i) ∈ Si × [bi],

where J−i are the reports of the other agents. Once we fix the set of
strategies of each agent, we can define the PoA, PoS, and approxima-
tion ratio of a mechanism M as for the EMS by carefully changing
the set of strategies to fit the ECMS case.

With a slight abuse of notation, we still use MBFS , MDFS , and
MAP to denote the mechanisms obtained from Algorithm 1 and
its approximation version. As we show, neither the truthfulness nor
the efficiency guarantees of MBFS , MDFS , and MAP change from
EMS to ECMS. Furthermore, all the bounds are still tight.

Theorem 14 In the ECMS, MBFS and MDFS are both not truth-
ful. The PoA and the PoS of both MBFS and MDFS are equal to 2.
Moreover, these bounds are tight, hence there is no other determin-
istic mechanism whose PoA or PoS is lower.

Similarly, MAP is still truthful in the ECMS, and its approxima-
tion ratio is unchanged.

Theorem 15 In the ECMS, MAP is truthful, its approximation ratio
is equal to 2. Moreover, there is no deterministic truthful mechanism
with a better approximation ratio. Finally, if the tasks have different
values, MAP is group strategyproof.

8 Conclusion and Future Work

In this paper, we propose a new game-theoretical framework for
MVbM problems, where one side of the bipartite graph consists of
agents and the other side consists of tasks with objective values. We
consider scenarios where agents can behave strategically by hiding
connections with tasks or lowering their capacity. We analyze three
mechanisms in this framework: MBFS , MDFS , and MAP . We first
show that these mechanisms are either optimal (MBFS and MDFS)
or truthful (MAP ). Then, we demonstrate that these mechanisms are
also the best in terms of PoA (Price of Anarchy), PoS (Price of Stabil-
ity), and approximation ratio. In other words, no other mechanisms
can outperform these ones with respect to these performance mea-
sures in our setting.

A future direction of our work is to study the effect of shuffling the
agents’ order on the manipulability of MBFS . Specifically, we are in-
terested in investigating whether randomizing the priority of agents
further highlights the differences between MBFS and MDFS . More-
over, it would be interesting to explore how placing bounds on the
number of edges that each agent can report affects the performance
and manipulability of the mechanisms we studied. Finally, we plan
to investigate more in details other classic game-theoretical aspects
of our model, such as fairness and envy-freeness.
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