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Abstract. We suggest a simple Gaussian mixture model for data
generation that complies with Feldman’s long tail theory (2020). We
demonstrate that a linear classifier cannot decrease the generalization
error below a certain level in the proposed model, whereas a nonlin-
ear classifier with a memorization capacity can. This confirms that
for long-tailed distributions, rare training examples must be consid-
ered for optimal generalization to new data. Finally, we show that
the performance gap between linear and nonlinear models can be
lessened as the tail becomes shorter in the subpopulation frequency
distribution, as confirmed by experiments on synthetic and real data.

1 Introduction

In classical learning theory [17, 18], generalizing ability and model
complexity are usually opposed to each other: the more complex the
model,' the worse its generalizing ability on new data. This is well
illustrated by typical curves of test and training errors as functions of
the complexity of the model being trained. The training error tends to
decrease whenever we increase the model complexity, that is, when
we try harder to fit the data. With too much fitting, the model adapts
itself too closely to the training data, and will not generalize well
(i.e., have large test error).

However, modern machine learning models such as deep neu-
ral networks (DNN5s) break this principle: they are usually complex
enough to be able to memorize the entire training set, and neverthe-
less show excellent generalization ability. This phenomenon, called
benign overfitting, was discovered empirically by Zhang et al. [20]
and has since attracted the attention of many minds in the field of
machine learning, both experimentalists and theorists. We refer the
reader to the survey of Bartlett et al. [1] and Belkin [2] for a more
comprehensive overview of benign overfitting.

In our opinion, the most adequate explanation for the necessity of
overfitting is the long tail theory of Feldman [8], which considers
learning from natural data (such as texts or images). The fact is that
the distribution of such data usually consists of subpopulations, and
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the frequencies of subpopulations have a so-called long tail, i.e. ex-
amples from rare/atypical subpopulations will regularly occur in both
training and test samples.

As an example, consider a typical dataset consisting of movie re-
views, such as SST-2 [16]. In this dataset, each review (more pre-
cisely, each sentence) is labeled as positive or negative. If we look at
a typical positive sentence,

The large-format film is well suited to capture these musicians in
full regalia and the incredible IMAX sound system lets you feel the
beat down to your toes.

we will notice that it contains positive phrases (underlined). At the
same time, a typical negative sentence, for example

The images lack contrast, are murky, and are frequently too dark to
be decipherable.

includes mostly negative phrases. However, the richness of human
language allows one to write negative review sentences, which nev-
ertheless abound in positive phrases:

Starts out with tremendous promise, introducing an intriguing and
alluring premise, only to become a monumental achievement in
practically every facet of inept filmmaking.

These kinds of negative reviews are not typical, and according to
Feldman’s long-tail theory, they constitute a separate subpopulation
(or several subpopulations) in the class of negative reviews.

A similar situation is observed in the image domain. Consider
the popular MNIST dataset [7], which consists of handwritten digits
from O to 9. Typically, this dataset is used for 10-class classification,
where each digit is a class. If we take one of the classes, say 3, then
most of the examples in this dataset look like in Figure 1. However,
there are rare and atypical examples of writing digit 3, such as in Fig-
ure 2, which are easily confused with other digits (for example, 7).
Again, according to the long-tail theory, such rare examples should
be allocated to a separate subpopulation (or several subopulations)
within the class 3.

Feldman [8] showed that if the distribution over subpopulations
has a long-tail (as in the examples above), then to achieve optimal
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Figure 1. Typical examples of Figure 2. Atypical examples of
writing 3 in MNIST dataset. Source: ~ writing 3 in MNIST dataset. Source:
[91. [9].

performance, the learning algorithm needs to memorize rare/atypical
examples from the training set. This is formalized via a lower bound
on the generalization error, which is proportional to the number of
mislabeled training examples (and the proportionality coefficient de-
pends on the long-tailed distribution over subpopulations). Thus, in
order for the learning algorithm to be able to reduce the generaliza-
tion error to a minimum, it needs to fit all examples from the training
set, including rare/atypical ones. And this, in turn, entails the need
to use more complex models (with a larger number of parameters),
since simple and underparameterized models are not able to memo-
rize such atypical cases. However, Feldman’s work does not provide
conditions that guarantee successful learning from natural data, i.e.
there are no upper bounds on the generalization error.

At the same time, it should be noted that recently we have seen
an increase in the number of works in which guarantees of success-
ful learning for interpolating methods are mathematically proved.
For example, Chatterji and Long [5] showed that an overparame-
terized max-margin linear classifier trained on a linearly separable-
with-noise data can perfectly fit the training sample (interpolate), yet
generalize to new data nearly optimally. A similar result was shown
by Shamir [15], and extensions to neural networks with one hid-
den dense layer and one hidden convolutional layer were recently
given by Frei et al. [11] and Cao et al. [4] respectively. We are
mainly concerned with the assumptions on data generation made
in these works: the setup of a single, albeit noisy, subpopulation
within each class is completely different from what Feldman [8] sug-
gested in his long-tail theory. Moreover, in such a setup, there are
non-interpolating algorithms with the same (or better) generalization
guarantees. Accordingly, memorizing rare noisy examples is not nec-
essary to achieve optimal generalization error.

In this paper, we propose a simple Gaussian mixture model for
data generation that is consistent with Feldman’s long-tail theory.
Further, we show that, within the framework of the proposed model,
a linear classifier cannot reduce the generalization error below a cer-
tain limit, regardless of the number of parameters used. At the same
time, there is a nonlinear model with a larger number of parame-
ters, which can reduce the generalization error below this limit. Thus
we show that fitting rare/atypical training examples is necessary for
optimal generalization to new data. Finally, we prove that the perfor-
mance gap between linear and non-linear models can be decreased
as the tail shortens in the subpopulation frequency distribution. This
result is confirmed by experiments on both synthetic and real data.

2 Data Generating Model

Motivating Example. To motivate our choice of data-generating
model, let us go back to the movie review examples. For simplicity,
let us imagine that we can identify positive and negative phrases in
the reviews. Next, let us represent each review sentence as a single
number

x = (F#positive phrases) — (#negative phrases)

It is intuitively clear that for most positive sentences, x > 0, and for
most negative sentences, x < 0. However, as we mentioned in the
Introduction, there are rare examples of negative review sentences
that abound in positive phrases, i.e. for which z > 0.> This observa-
tion leads us to the following data distribution model: for all positive
reviews, z is concentrated at the point 414 > 0; for most negative
reviews, x is concentrated at the point ™ < 0; while there is a
minority of negative reviews for which z is concentrated at the point

min

w2 > 0 (Figure 3). In what follows, we formalize this model.
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Figure 3. Simplified data
distribution model.

Figure 4. A sample from our data
generating model.

Notation. We let R denote the real numbers. Bold-faced lowercase
letters (x) denote vectors in R?, bold-faced uppercase letters (A, X)
denote matrices and random vectors, regular lowercase letters (x) de-
note scalars, regular uppercase letters (X') denote random variables.
|| - || denotes the Euclidean norm: ||x|| := vx T x. N'(p, ) denotes
multivariate Gaussian with mean vector p € R? and covariance ma-
trix X € R4 ‘p.d.f’ stands for ‘probability density function’,
and ‘c.d.f’ stands for ‘cumulative distribution function’. The p.d.f.
of X ~ N(u, X) is denoted by f(x; p, X). The p.d.f. and c.d.f. of
Z ~ N(0,1) are denoted by ¢(z) and ®(z) respectively. We also
use the standard big O notation, such as O(-), O(-), Q(-), O(-), [6,
Chapter 3].

The Model. Let X € R? be the feature vector,and Y € {—1, +1}
its class label. We assume that Y is a Rademacher random variable,
ie.
Pr[Y = —1] = Pr[Y = +1] = % )
For the positive class, we assume that the class-conditional distri-
bution of X is a spherical (a.k.a. isotropic) Gaussian centered at
ueRY e
(XY =+1) ~ N(p,0°T). ©)

Whereas for the negative class, the class-conditional distribution of
X is a mixture of two spherical Gaussians centered at —p and 3

(X‘Y:717K:1)NN(7M’702I)7 (3)
(X|Y =—-1,K =2) ~N(3u,o’I). 4)
Here, the latent random variable K represents the mixture compo-
nent. With K = 1, features are generated from the distribution of
typical negative examples, whose proportion is p > 1/2 of all nega-

tive examples (i.e., this is the cluster of a majority of negative exam-
ples). With K = 2, features are generated from the distribution of

2 And vice versa: there are rare examples of positive review sentences that
abound in negative phrases. However, for ease of analysis, we will omit
this case.



A. Bolatov et al. / Long-Tail Theory Under Gaussian Mixtures 111

atypical/rare negative examples, whose proportion is (1 — p) < 1/2
of all negative examples:

1
PrK =1]Y=-1]=p, p>g ()

Pr[K=2|Y=-1]=1—p. 6)

We center the atypical examples at 3 so that the distance between
the means of neighboring Gaussians is 2||p||, and this simplifies the
analysis. The assumption that the Gaussians are isotropic with equal
covariances is also made to simplify the analysis. The centers of the
Gaussians are located on the same straight line to prevent the linear
separability of finite samples generated from our model. We empha-
size that our goal is to build a simple data generating model that
is consistent with Feldman’s long-tail theory. Building a model that
better agrees with real data is beyond the scope of this work and is
a reasonable direction for further research. However, we believe that
our model captures important features of the distribution of real data,
such as the presence of rare subpopulations. We also emphasize that
our model makes sense when p > 1/2, but not too close to 1 for rare
examples to occur in a finite sample.

The distribution over R x {—1,+1} given by (1)—(6) will be
denoted by D. Figure 4 shows a sample of size 50 from our data
model with d = 2 and p = 0.9.

3 Classifiers

In this section, we consider two classifiers—Linear discriminant
analysis and Mixture discriminant analysis—and examine their per-
formance on data generated from our model. Let P be a distribution
over RY x {—1,+1}. For a classifier h : R — {—1,+1}, we de-
fine its generalization error (or misclassification error rate, or simply
error) with respect to P as

e7rjr[h] = _Pr [M(X)#Y] @)

T

XY ~P
When h is parameterized (as is the case for the classifiers that we
consider), and the parameters are estimated based on a sample S :=
{(Xi,Y;) iy of i.i.d. observations from P, we denote the resulting
classifier as hs and consider its expected error Egpn [errp[hs]],
where expectation is over samples S of size n from P.

3.1 Linear Discriminant Analysis (LDA)

LDA [10] is a generative classifier whose simplest version makes al-
most the same assumptions about data distribution as our data gener-
ating model D. The only difference is that for the negative class, not
a mixture, but one Gaussian is used, i.e. instead of the assumptions
(3)-(6), one has

(XY =-1) ~ N(u_,oT). ®)

The LDA classifier that has access to the true p, o, and p can be
written as

BPA () — {+1 if f(x;p, 0tpal) > f(x; p_, ofpal) )

-1 otherwise

where p_ and ofp, are functions of u, o2, and p, that can be de-
rived under the assumptions of the data generating model D (see Ap-
pendix A.2 [3]). It is well known [13, Section 4.3] that in this case the
decision boundary of the LDA consists of a set of points equidistant

from @ and p_, i.e. it is a hyperplane, which is the perpendicular
bisector of the line segment connecting gt and p_. It is easy to see
that the data distribution used in LDA is a special case of our model
when p = 1, i.e. when the proportion of atypical examples (1 — p)
is zero and the classes are linearly separable.” At the same time, in
our data model, for 1 — p = Q(1/n), classes cannot be linearly sep-
arated, which means that LDA will fundamentally lack the ability to
fit examples from the minority subpopulation of the negative class.
This is formalized in the following lemma.

Lemma 1. Let S ~ D" be a random sample from our data generat-
ing model D with unknown . and known o* and p. Let h¥* be the
LDA classifier trained on S with the method of moments under the
assumptions (1), (2), and (8). Then

E [enr(n$™] = % {<1> (7(21? - 1)U>

S~Dn g
(3 — oy Ill _ llell
2 (-B-2p)7 = |+ (1 -p)®((2p+1)7
+0 <\/E> . (10)
n
Proof. See the full version [3]. O

The right-hand side (RHS) of (10) without the last term
0] (\ /d/ n) is the misclassification error of the LDA classifier given

by (9), i.e. when the true parameter g is known to the classifier. In
practice, it is estimated from S adding a so-called estimation error in
the RHS of (10).

Forp € (1/2,1), we have (2p — 1) € (0,1) and 3 — 2p € (1, 2).
Using the Chernoff bound ®(—x) < exp(—z?/2) for z > 0, and
®(xz) =1 — ®(—z), we can qualitatively assess the bound (10) as

E [e%;r[thA}]

S~Dn
1y I\ L 5 ([
- +wpﬁﬂ(2ﬂ)>+o<wn. (an

This confirms the impossibility of the LDA classifier to reduce the
generalization error arbitrarily close to zero, no matter how far we
place the Gaussians from each other. Moreover, we note that the first
term in (11) does not depend on d, the dimensionality of the sample
space. Therefore, regardless of the dimensionality, the LDA classifier
will not be able to interpolate the training sample when p < 1, i.e.
when there is a minority subpopulation in the negative class. This
is in stark contrast with the previous studies on interpolating linear
methods [5, 15].

3.2 Mixture Discriminant Analysis (MDA)

MDA [12] is a generative classifier that in general assumes that the
data in each class is generated from a mixture of Gaussians. In our
case, we can consider a version of MDA that makes precisely the
assumptions (1)—(6) that our data generating model D makes. Hence,
the MDA classifier (that knows the true values of the parameters) can

3 with high probability over a choice of a finite sample given sufficiently large
llell
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be written as

+1if 3 f(xp,0%T) > %( —p,0°T)
MD.
WP (x) = and  §f(x;p,0°T) > 52 f(x; 3, 0°T)
-1 otherwise
(12)

Obviously, such an MDA classifier can take into account the pres-
ence of a minority subpopulation in the negative class, since it has
the ability to fit a separate third Gaussian to this subpopulation. Not
surprisingly, the MDA classifier (12) has a near-to-optimal general-
izing ability, as presented in the following lemma.

Lemma 2. Let S ~ D" be a random sample from our data generat-
ing model D with unknown p and known o and p. Let h'¥P* be the
MDA classifier trained on S with the method of moments under the

assumptions (1)—(6). Then
oln p)
T 3flul

E [eér[h’gm]] <1 {@ (—

S~D -2

Lo <,M+M> H,_q,(,i alnp)
2| el o 2pl

In
a-p)o (-l ol g <\/§> -y

Proof. See the full version [3]. O

Arguing as in the case of LDA, we can estimate the order of the
bound (13) as

JE, [eg[h'g‘m}] < exp (—Q (%)) +0 (ﬁ) . (4

Thus, by placing the Gaussians far enough apart, the optimal error
of the MDA classifier can be made arbitrarily close to zero. We em-
phasize that this is only due to the ability of the MDA classifier to fit
(memorize) examples from the minority subpopulation A/ (3, o*I)
of the negative class. Roughly speaking, MDA has the ability to allo-
cate some of its parameters for fitting atypical examples, while LDA
simply does not have such an opportunity.

Finally, we remark that the term 0 (\/ d/ n) in the RHS of (13)
is due to the error in estimating the model parameter p from the
training sample S.

4 Performance Gap between LDA and MDA

Using the bounds (11) and (14) we can already estimate the expected
difference between the LDA and MDA errors as

E [eg[th ] - en [hMDA]]

S~Dn
1—-p |2 ~( /d

However, a closer analysis gives us the following

Theorem 1. Let S ~ D" be a random sample from our data gen-
erating model D, and let P! be the LDA classifier trained on S
under the assumptions (1), (2), (8), and let h¥P* be the MDA classi-
fier trained on S under the assumptions (1)—(6). Then

LDA MDA
E [egr[hs - eér[hs ]]

S~Dn
1-p ||I"H2 > /d
> = — — — 1.
2 exp( 952 + O " (16)

Proof. See the full version [3]. O

The advantage of the bound (16) is that, in comparison with (15),
here the second term in the RHS is written explicitly, i.e., without
using the big O notation. This was done through careful analysis of
the original bounds from Lemmas 1 and 2.

Theorem 1 implies the main conclusion of our work: there is a
performance gap between a simple model that is unable to memorize
rare examples from the tail of the distribution, and a complex model
that is able to fit such examples. Moreover, the gap can be made
smaller when the proportion of atypical examples is smaller. From
(10) and (13), it is easy to see that for the “ideal” LDA and MDA
(that have access to the true p), we have

err [hLDA} Lmd (—M) , err [hMDA} Lnd (—M) .
D o D o

Le., the gap between LDA and MDA is minimal at p = 1 (when
there is no minority subpopulation in the negative class), which is
expected.

Implications for Real Data. Unfortunately, our conclusion is
practically impossible to test directly on real data, since we cannot
be sure that its distribution resembles our model D, and can be more
complex. Moreover, our conclusion is drawn within the framework
of generative classification models LDA and MDA, while in practice
discriminative models such as logistic regression and multilayer neu-
ral networks are usually used, which make much fewer assumptions
about the distribution of data. However, we will be able to test our
conclusion indirectly in realistic settings if there is a way to identify
training examples from rare subpopulations. Fortunately, this is ex-
actly what the memorization score introduced by Feldman and Zhang
does [8, 9].

For a learning algorithm A operating on a dataset S =
{(%4,yi) }i=1, the amount of label memorization by A on example
(x4,y:) € S is defined as

mem(A, S, i

= Pr [h(x

L el =yl= Pr [h(x

[h(xi) =wi], A7)
hA(S\?)

where S\ denotes the dataset S with (xi, yi) removed and probabil-
ity is taken over the randomness of the algorithm A (such as random
initialization). One thing to keep in mind is that the memorization
score itself must be calculated through a learner that can memorize,
for example, an MDA with enough components, a neural network, or
a nearest neighbor classifier.

As we can see, the memorization score will be high for exam-
ples that are difficult (or even impossible) to correctly classify using
other examples in .S, provided that the learning algorithm is flexi-
ble enough to (almost) completely fit the training set. For example,
under our data generating model, for p close enough to 1 (so that
1 — p = O(1/n)), these are precisely the points generated by the
minority subpopulation of the negative class. Accordingly, the short-
ening of the tail, i.e. making p closer to 1 can be simulated by dis-
carding examples from the training set for which the memorization
score is high. But the distribution of the test sample will not change,
since we are not discarding top memorized examples from it. This is
because the memorization score can only be calculated on the train-
ing sample and, accordingly, the most memorized examples can only
be discarded from the long tail of the training sample.
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For clarity, let us re-denote the distribution given by formulas (1)—
(6) as D,. Then we are interested in the expected error of the clas-
sifier, which was trained on a sample from Dg, but is tested on a
sample from Dy, i.e. Es~p, [errp, [hs]]. Fortunately, the analysis
of this case resembles the analysis of the case when ¢ = p. Denoting

=1- %, t > 2, we can prove the following (asymptotic in t)
results for the LDA and MDA classifiers.

Theorem 2. Let S ~ DY, ;. Then for the LDA and MDA classifiers
trained on S but evaluated on examples from Dy, we have

E {err[hfqm]} _ 1#@ (_M)

S~Di_1/t | Pp o

Llor w+e()+o<\/z> (18)
@

E {err[hgm]} < ﬂ@( L)
S~Dy_1/¢

1-—p _u olnt 1 ~ d
+ <I>( - o) o) ol

Proof. See the full version [3]. O

19

As we can see, the difference between the bounds (18) and (19)

@ and . It is clear that

@ > as long as t < exp(8||u)?>/o?). For example, when
|l = 2, and o = 1, we have exp(8|p|*/o?) ~ 8 - 10*3. Thus,
the gap between LDA error and the upper bound on MDA error re-
mains feasible even for large values of ¢ (i.e. when q is close to 1).

is mainly in the terms marked as

5 Experiments

In this section, we empirically validate the predictions from our the-
ory for synthetic data (generated from our model D) as well as for
real data, the distribution of which is not necessarily the same as D,
but shares its main characteristics, such as the presence of minority
subpopulations in at least one of the classes.*

5.1 Synthetic Data

First of all, we verify our error bounds from Lemmas 1 and 2 ex-
perimentally. To do this, we generate training and test sets from our
data model D, fit LDA and MDA to the training set, compute the
misclassification errors on the test set, and compare with theoretical
bounds (10) and (13) modulo the asymptotic terms O(4/d/n). Since
the bounds depend on several parameters, we vary each of these pa-
rameters while keeping the others fixed. Unless otherwise specified,
the default values of the parameters are: d = 50, p = 0.9, ||p|| = 2,
o = 1, n = 7000. Test samples are of size ness = 3000. For each
variable parameter value, we generate 10 training and test samples
and estimate the generalization errors with 95% confidence intervals
across test samples.

4 The code for reproducing the experiments is at https:/github.com/
armanbolatov/long_tail. The random seeds we used are indicated in the
code.

Dependence on ||u||. To test the dependence of error bounds on
lee||, we vary ||p]| in the interval [2, 6] with a step 0.08. For each
value of |||, we take a random direction in R?, and place p, —p,
and 3 along that direction. The results of the experiments are shown
in Figure 6. As we can see, the empirical errors are generally consis-
tent with our bounds. The LDA test error is statistically close to our
LDA error bound (10), as the latter is mainly within the 95% con-
fidence band. Meanwhile, the MDA test error is significantly lower
than our MDA error bound (13). This is not surprising because, as
we already mentioned in Section 3, for LDA we derived the exact
misclassification error modulo O(4/d/n), while for MDA we got
the upper bound for the error.

Dependence on p. To test the dependence of error bounds on p,
we vary p in the interval [0.5,1] with a step 0.01. The results are
shown in Figure 5. As we can see, the situation is similar to the pre-
vious one: for LDA, the empirical error agrees well with our formula
(10), especially for p closer to 1; while for MDA, in most cases, it is
significantly below our bound (13).

Dependence on n. To check the correctness of the order
O(4/d/n) of the estimation error, we consider the expression

n
dlnn

| Test Error — Error Bound| - (20)
for increasing n. The results are shown in Figure 7. Here we observe

the boundedness of the expression (20), which confirms that the order
O(+4/d/n) of the estimation error is correct.

Training on D, but Testing on D,,. Finally, for experimental ver-
ification of the conclusions from Theorem 2, we generate training
samples from D;_, /;, and test samples from D,. We vary t in the
interval [10, 2000] and observe the behavior of the LDA and MDA
test errors. The results are shown in Figure 8. As we can see, the
empirical error curves agree with the predictions of our Theorem 2.
Namely, the LDA error exceeds the MDA error, and the gap between
the two remains feasible with the increase of ¢.

5.2 Real Data

We conduct our experiments5 on SST-2 [16], which is a dataset for
sentence-level binary (positive vs. negative) sentiment classification.
It has 6920 training, 872 validation, and 1821 test examples. We
use the pre-trained Distill-BERT model [14] that consists of 6 trans-
former layers, where each layer is composed of 12 attention heads.
We take the representation of the [CLS] token from the 6™ layer for
classification. We train the network with Adam, setting the learning
rate and batch size to 107 and 100, respectively.

Calculating the memorization score according to (17) requires re-
training the network for every training example (that is being re-
moved) which is not computationally feasible. Thus we approximate
the memorization score using the method of Zheng and Jiang [21].

We finetune two versions of the pre-trained Distill-BERT on SST-
2: in one we freeze all layers except the top classification layer, in
the second we finetune all layers. The first model—called Linear—
is essentially a linear classifier (logistic regression), which receives

5 Our computing infrastructure for these experiments is as follows. CPU: Intel
Core 19-10900X CPU @ 3.70GHz, GPU: 2x Nvidia RTX 3090, RAM:
128 Gb, Operating System: Ubuntu 22.04.1 LTS, torch: 1.13.1, cuda: 11.7,
pandas: 1.5.3.
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Figure 5. Comparison of empirical errors (solid) and theoretical error bounds (dashed) when p varies. The shaded areas are 95% confidence bands around the
average across 10 runs. The values of the remaining parameters are fixed as follows: d = 50, ||u|| = 2, 0 = 1, n = 7000, nest = 3000.
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text representations from the 6th layer of Distill-BERT as input, and
the representations are not trained. It is clear that such a model
is not capable of memorizing rare atypical examples. The second
model—called DNN—is a full-fledged deep neural network that has
enough capacity (66 million parameters) to memorize atypical ex-
amples from rare subpopulations. We also consider an intermedi-
ate option—called DNN (3 layers)—when the three lower layers are
frozen, and the remaining layers are finetuned.

The experiment is as follows: (1) we compute the memorization
score for each training example through DNN.° (2) remove m% of
the top memorized examples from the training set, (3) train the Linear
and DNN models on such a set with hyperparameters tuned on the
validation set, (4) and finally evaluate both models on the test set.
The results of this experiment for different m are shown in Figure 9.
As we can see, the error of the Linear classifier is always greater than
the DNN error. Further, when the tail is shortened (i.e., when a larger
number of top memorized examples from training are discarded), the
gap between the errors of Linear and DNN slightly decreases. This is
consistent with the predictions of our theory, albeit built with simpler
assumptions on the distribution of data and for more interpretable
classifiers.

At certain point, the difference between the errors is not statisti-
cally significant. This happens because at a high percentage of re-
moval, examples are removed not only from the tail, but also from
the main subpopulations, which sharply worsens the performance of
both the Linear and DNN classifiers. Note that this regime is not con-
sidered in our theory.

A careful reader may notice that the DNN error is not close to
zero, even when no examples are removed from the training set. This
is because there are examples in the test set that the DNN cannot clas-
sify correctly, even though it fits the training set perfectly. In princi-
ple, such difficult examples can be simulated in our data-generating
model by introducting label flipping noise, and we defer such modi-
fication to our future work.

6 Discussion on Benign Overfitting

As was already mentioned in the Introduction, Feldman’s long-tail
theory explains the need for overfitting, but does not explain how ex-
actly modern overparameterized learning algorithms manage to over-
fit without harming generalization [20]. Despite the availability of the
answer for some model classes [5, 15, 11, 4, 19], our main concern
with the current trend in theoretical studies of benign overfitting is in
the assumptions about the data generating process, namely that only
one subpopulation is allowed in each class, and linear inseparability
is achieved by introducing random label-flipping noise. We repeat
once again that such a setup does not fit in with Feldman’s long-tail
theory, in which the presence of rare subpopulations in classes is a
prerequisite. Without this condition, there is no need for overfitting.
Therefore, we would like to draw the attention of the learning theory
community to the existing gap between theoretical setups and reality
regarding the distribution of data.

In the theoretical part of our work, we do not deal with overparam-
eterized models like deep neural networks. Our “complex” classifier
(MDA) is actually only as complex as the data requires. Therefore,
we cannot claim to have shown benign overfitting under the condi-
tions of our data-generating model. We have shown the underfitting

6 This means that in the definition of the memorization score (17), we use a
DNN trained by gradient-based method as a learning algorithm A. How-
ever, we approximate Eq. 17 via the method of Zheng and Jiang [21] to
avoid repeated retraining for each example.

of the linear classifier (LDA) and the proper fitting of the MDA clas-
sifier with the right number of components.

However, we are curious about what happens if we give the MDA
classifier the ability to fit many more Gaussians than necessary. To
do this, we conduct the following experiment. The data is generated
from the same model D that we used earlier (we fixed d = 50,
n = %(1,...,1), n = 300, 0 = 1, p = 0.9). For data points
from the positive class, we fit k4 Gaussians, and for points from the
negative class, we fit k_ Gaussians. Since in this case, we have no
simple way to estimate the parameters by the method of moments,
all parameters are estimated by the approximate maximum likeli-
hood method through the EM algorithm. Let f4(x) and f_(x) be
the resulting estimated p.d.f.’s for the positive and negative classes,
respectively. Then the MDA classifier can be written as

i > f_
hMDA(X; by k) = {"‘17 if f+(x) > f-(x)
-1 otherwise

We vary k4 and k_ in the interval [1, 71] with a step 10 and calculate
the classifier error on the test sample. The results of this experiment
are shown in Figure 10, which is a heatmap of test errors for differ-
ent pairs (k4, k—). The training error is zero for all pairs (k+, k—),
except for k1 = k_ = 1. Notably, there is a clear pattern: when k.
and k_ are close to each other, the performance can be better than
when there is a heavy imbalance between k4 and k_.

To understand how an overparametrized MDA classifier manages
to overfit benignly, we plot a decision curve for the case d = 2,
k+ = k_— = 30 (Figure 11, left). As we can see, despite the potential
to overfit malignantly with a complex decision curve, the EM algo-
rithm chooses a fairly simple classifier that is not so different from
the optimal one (Figure 11, right), thatuses k+ = 1, k— = 2.

It is noteworthy that an overparameterized MDA classifier is able
to overfit beningly on data generated from our model, because such a
framework is more interpretable and amenable to analysis than over-
parameterized deep neural networks trained on real data. Accord-
ingly, it becomes possible to study the phenomenon of benign over-
fitting in a simplified setting without linking it to deep learning, in
which it is usually considered.

7 Conclusion

In this work we have focused on building an interpretable mathe-
matical framework for the analysis of learning algorithms capable
of memorizing rare/atypical examples that usually occur in natural
data, such as texts and images. The key point in our work is the data-
generating model based on Gaussian mixtures, which demonstrates
the inability of a simple classifier without sufficient memory to cor-
rectly label rare and atypical test examples. At the same time, for a
more complex (but not too complex) classifier with sufficient mem-
ory, the near-to-optimal generalization ability is shown. Moreover,
the dynamics of the performance of these classifiers with tail short-
ening has been studied both theoretically and experimentally, and the
experiments were carried out both on synthetic and real data.

The last but not least property of our framework is that it allows for
benign overfitting, and this is what we plan to study in the near future.
In this regard, it will be interesting to analyze the behavior of over-
parameterized learning algorithms (such as MDA with a redundant
number of components, deep neural networks, and nearest-neighbor
classifiers) on data generated from our model. This will require ob-
taining new results in terms of sufficient conditions for benign over-
fitting to happen under the assumptions of our model.
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