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Abstract. Unsupervised Representation Learning on graphs is gain-
ing traction due to the increasing abundance of unlabelled network
data and the compactness, richness, and usefulness of the represen-
tations generated. In this context, the need to consider fairness and
bias constraints while generating the representations has been well-
motivated and studied to some extent in prior works. One major lim-
itation of most of the prior works in this setting is that they do not
aim to address the bias generated due to connectivity patterns in the
graphs, such as varied node centrality, which leads to a dispropor-
tionate performance across nodes. In our work, we aim to address
this issue of mitigating bias due to inherent graph structure in an
unsupervised setting. To this end, we propose CAFIN, a centrality-
aware fairness-inducing framework that leverages the structural in-
formation of graphs to tune the representations generated by existing
frameworks. We deploy it on GraphSAGE (a popular framework in
this domain) and showcase its efficacy on two downstream tasks -
Node Classification and Link Prediction. Empirically, CAFIN con-
sistently reduces the performance disparity across popular datasets
(varying from 18 to 80% reduction in performance disparity) from
various domains while incurring only a minimal cost of fairness.

1 Introduction

Due to the prevalence and popularity of online social networks, net-
work data has grown significantly, both in quantity and quality, over
the years [19]. Such rich data can be exploited to gather informa-
tion at both the individual and community levels. The influx of data
having inter-personal connections (represented as graphs) has served
as motivation to develop several unsupervised learning algorithms
for various tasks on graphs [11, 37]. These methods leverage node
features along with neighborhood information to learn node repre-
sentations that do not depend on the domain of the underlying graph
or the desired task at hand.

It is essential that these node representations are generated with
appropriate fairness measures, especially in the context of real-world
deployments, to minimize bias induced by these graph learning
frameworks on downstream tasks. Accordingly, fairness in the con-
text of trained decision-making systems has increased in popularity
recently due to the numerous social distresses caused when systems
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not incorporating adequate fairness measures were deployed in the
wild [29, 25]. The job platform XING is an extreme example that
exhibited gender-based discrimination [4].

Figure 1: Degree vs. Accuracy plot (Twitch dataset) - For the
original GraphSAGE [11] on the Node Classification task, the

accuracy increases steadily with the degree (slope=0.0051). After
the introduction of CAFIN, the slope decreases significantly

(slope=0.0041, a 20% reduction), leading to lower performance
disparity between high and low degree nodes with negligible

reduction (-0.3%) in the overall accuracy.

Previous works aimed to mitigate such unfairness, in this context,
focus on ensuring minimal disparity in performance among individ-
uals or groups defined by some membership criteria. Although sen-
sitive node attributes generally decide these group memberships, a
recent uptick in research considers intrinsic node properties, specifi-
cally node degree, to evaluate the fairness of Graph Neural Networks
(GNNs). For example, recent work [36] provides theoretical proof
that a popular subclass of graph neural networks − graph convolu-
tional networks (GCNs)− are biased (in performance) towards high-
degree nodes. They propose a degree-specific GCN layer targetting
degree unfairness in the model and design a self-supervised learning
algorithm for attaching pseudo labels to unlabelled nodes, which fur-
ther helps low-degree nodes to perform better. Later, RawlsGCN [14]
reveals the root cause of this degree-related unfairness by analyzing
the gradients of weight matrices in GCN and proposes techniques to
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mitigate this bias.
GNNs refine node embeddings by aggregating information from

their neighbors. So, the efficacy of a node’s representation is bound
to be correlated to its abundance of structural information [21]. This
correlation creates a disparity in the richness of embeddings between
structurally rich nodes (highly central) and the rest (less central). Fig-
ure 1 empirically corroborates this claim. This disparity is even more
concerning as the centralities (degree) of most real-world graphs fol-
low the power-law distribution. This implies that a major fraction of
nodes have low centrality scores and hence deficient representations
compared to a small fraction of nodes having high centrality.

Most of the works in the literature focus on imposing fairness
concerning sensitive attributes but often overlook the more inherent
centrality-induced disparity. Recent works [22] also probe into how
masking the sensitive attributes may not be enough, as some of the
characteristics can seep into the inherent network structure. Our work
in this paper focuses exclusively on reducing the performance dispar-
ity induced among groups of nodes due to skewed centrality distri-
butions. Towards this end, we propose a generalized (additive) mod-
ification to the loss function of well-known unsupervised GNNs to
impose group fairness constraints while minimizing the cost induced
by the same. To formally demonstrate our approach, we consider
GraphSAGE [11] − a popular unsupervised graph learning frame-
work and widely adopted in many domains [38, 23, 20] − and then
show how we extend its objective function with fairness constraints.
GraphSAGE, as studied empirically, focuses more on less frequent
higher-degree nodes than on more frequent lower-degree nodes, lead-
ing to a performance disparity between the two groups of nodes. We
remedy this limitation of GraphSAGE through our work.

Note that these fairness constraints can be added to any underly-
ing graph learning algorithm at three different stages: before learning
(Pre-processing), during learning (In-processing), and after learning
(Post-processing) [25]. In-processing is considered robust and gener-
alizable and finds its application across various domains as it directly
adds a secondary objective to the original [39]; hence we adopt this
technique in our proposed framework.

In particular, we propose a framework, Centrality Aware Fairness
inducing IN-processing (CAFIN), 1 that focuses on augmenting the
unsupervised version of GraphSAGE to induce centrality based (ex:
degree) group fairness as an objective while maintaining similar per-
formance on downstream tasks. To the best of our knowledge, CAFIN
is the first work to deal with centrality-driven fairness for unsuper-
vised graph learning, as all other methods work in the supervised
or semi-supervised setting (and also largely do not tackle centrality-
based fairness aspects). Thus, our primary contribution is a novel
in-processing technique to achieve centrality-aware group fairness
for unsupervised graph node representation learning.

2 Related Work

This section briefly reviews relevant literature on (unsupervised)
graph representation learning and existing fairness measures for
these graph representation learning algorithms.

Graph Representation Learning. Unsupervised representation
learning on graphs has seen a recent explosion due to the availabil-
ity of unlabelled structured graph data [37, 11]. In specific, Graph-
SAGE [11], a method that samples and aggregates information from
node neighbors, has found extensive applications in recommender
systems [38], intrusion detection systems [23], traffic networks [20],
and more due to its versatility and applicability on large graphs.
1 Code repository - https://github.com/arvindh75/CAFIN

GraphSAGE [11] is a popular inductive representation learning
framework specifically tailored for efficient performance on large
networks. Instead of training feature representations for each node
in the graph, it learns a set of functions that aggregate feature infor-
mation from the neighborhood of a node to update the node represen-
tation, helping it learn node feature embeddings while accounting for
information flow from neighbors. It also uses a constrastive-learning
based unsupervised loss function for learning embeddings in a task-
agnostic fashion, which removes the dependence of network param-
eters on downstream tasks. It functions efficiently because of the ran-
dom sampling in each stage of the pipeline, drastically reducing the
training time as only a subset of the node neighborhood is utilized.
The downside of random sampling is that it induces stochasticity in
the learned embeddings, making them highly volatile and dependent
on the random seed used during training [32].

Fairness in Graph Learning Algorithms. The influx of deep
learning technologies into the real-world setting and them leading
to possibly undesired conclusions has prompted the inquisition into
the fairness of the algorithms. More specific to graphs, studies like
[3, 28] explore the fairness of algorithms used for recruitment, and
similarly [17] explore the issue of the unfair impact of influential
nodes on the overall graph and introduce performance disparity.

The disparity introduced by these algorithms is quantifiable, and
there are two primary methods to evaluate the fairness of a graph
learning algorithm - individual and group fairness. Individual fair-
ness seeks to attain similar treatment for similar individuals [6],
whereas group fairness aims to reduce the bias that algorithms tend
to possess towards certain groups [12]. Group membership is usu-
ally defined based on sensitive node attributes like gender, race, and
economic background in most studies [18]. However, since a lot of
graph data is unlabelled or does not possess sensitive node attributes,
this information may not always be available. In contrast, very few
studies like [2] divide them based on node characteristics like cen-
trality - characteristics intrinsic to the graph and present irrespective
of domain. Furthermore, [16] confirms that degree disparities exist
in real social networks, encouraging us to alleviate disparities based
on intrinsic node attributes to achieve fairness.

Previous work seeks to make graph algorithms fair by (a) prepro-
cessing the original graph to remove potential bias, for example, Fair-
Drop [34] that adds and removes edges to induce fairness, thereby
altering graph structure, (b) in-processing during the training phase,
for example, [14] that modifies the gradient used in the optimization,
and (c) postprocessing the node embeddings to remove bias [25].

Several metrics have been proposed to evaluate group fairness
along with the proliferation of methods to augment fairness. [27]
present the Assortative Mixing Coefficient, which measures commu-
nities’ dependence on protected attributes and models relations be-
tween communities where connections are considered fair when the
coefficient is 0. The notion of average statistical imparity [13] com-
putes the performance differences across groups but primarily caters
to the two-group setting. We extend the notion of imparity to differ-
ent tasks through minor modifications and utilize it for evaluation.

Previous works utilize in-processing techniques for fairer results,
like [14] that uses the Rawlsian difference principle to mitigate un-
fairness across the degree of Graph Convolutional Networks (GCN)
and [21], which learns robust tail node (low-degree) representations
by transferring information from central nodes. We address similar
concerns in an unsupervised setting through CAFIN, as most prior
works focus primarily on supervised and semi-supervised variants.
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Figure 2: Visual Depiction of CAFIN - GraphSAGE refines node embeddings using positive and negative samples as mentioned in section
3.1.2. In the input graph (a), node 6 is a high-degree node (popular), while node 2 has low-degree (unpopular). As it can be noted from their

computation graphs (blue and orange), node 6 has richer structural information when compared to node 2, which causes a disparity in the
information flow (indicated by the arrow directions). This transitively causes a disparity in the final quality of the representations learned. The

node sizes in graphs (b) and (c) represent the performance distribution in downstream tasks using the final representations learned. The
introduction of CAFIN prioritizes the information flow in the computation graphs of less central nodes (indicated by stronger arrows) by

penalizing them more, leading to a more homogenous distribution performance in downstream tasks, as shown in graph (c).

3 Proposed Approach

This section covers important concepts contextualizing our work and
proposes our new centrality-driven fairness framework for unsuper-
vised graph representation learning.

3.1 Preliminaries

We provide a brief overview of unsupervised representation learn-
ing, focusing on GraphSAGE, followed by group fairness (which we
work with in this paper) and the evaluation metric for fairness.

3.1.1 Unsupervised Representation Learning

Unsupervised Representation Learning involves learning useful and
rich features from unlabeled data. The learned representations com-
press and efficiently encode entity information (each node in the
graph) which can later be used for several downstream tasks. Learn-
ing representations in an unsupervised fashion leads to task-agnostic
representations that provide a general overview of a node’s inherent
characteristics, eliminating the need to re-train large networks to ob-
tain node representations that may not translate well to other tasks.
We focus on GraphSAGE, a popular unsupervised graph learning
framework in our work, as it is empirically shown to have centrality-
based biases.

3.1.2 GraphSAGE

GraphSAGE [11] works by sampling and aggregating information
from the neighborhood of each node. The sampling component in-
volves randomly sampling n-hop neighbors whose embeddings are
then aggregated to update the node’s own embedding. It works in
the unsupervised setting by sampling a positive (nearby nodes) and a
negative sample (distant nodes) for each node in the training batch. It
then attempts: (a) to minimize the embedding distance between the
node and the positive sample, and (b) to maximize the embedding
distance between the node and the negative sample. The unsuper-
vised version of GraphSAGE uses the following loss formulation,

JG(zu) = − log(σ(zTu zv))−Q · Evn∼Pn log(σ(−zTu zvn)) (1)

where v is a node that co-occurs near u on fixed-length random walk,
σ is the sigmoid function, Pn is a negative sampling distribution,
and Q defines the number of negative samples. zu, zv and zvn corre-
spond to the learned embeddings of the training sample, the positive
sample, and the negative sample, respectively. The loss landscape is
formulated in such a way that it is minimized when zu, zv are close
together and zu, zvn are distant in the embedding space.

3.1.3 Graph Centrality Measures

Centrality measures correlate with a node’s influence on a graph and
capture the relative importance of nodes [15]. Among the several
centrality measures that exist, we report results on degree central-
ity due to its popularity in current literature [21, 36, 14, 7]. Another
advantage is that the degree centrality for a graph can be calculated
in linear time with respect to the number of edges, which is compu-
tationally inexpensive, unlike some of the other centralities.

3.1.4 Centrality-driven Group Fairness

Group Fairness concerns the disparity in the performance of a sys-
tem for entities from different groups. Since most graph data does
not possess explicit sensitive attributes, we utilize the connectivity
structure of the graph using centrality measures to naturally catego-
rize nodes into groups - the group of popular (centrality greater than
the median) and unpopular (centrality less than the median) nodes.

3.2 Fairness in GraphSAGE

GraphSAGE aggregates information from its neighbors, does not
consider any intrinsic structural attributes, and focuses primarily on
node attributes. Intrinsic graph structure information is very valuable
irrespective of domain [21], and we believe that the learning pro-
cess can be made fairer by leveraging aspects of this information.
GraphSAGE takes the maximum number of nodes to be sampled
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from each hop neighborhood as a hyperparameter to build the com-
putation graph, which could result in central nodes having complete
and larger computation graphs while the less central ones having less
information-rich subgraphs. As the size of the computation graph
determines how much information the chosen node aggregates and
learns from its neighborhood, the representations of central nodes
encode much more information, giving them an advantage over less
central nodes.

Previous works [14] have theoretically and empirically proven the
above claim for GCNs.

Theorem 1 Suppose we have an input graph G = {VG ,A,X}, the
renormalized graph Laplacian Â = D̃− 1

2 (A + I)D̃− 1
2 , a non-

linear activation function σ and an L-layer GCN that minimizes a
task-specific loss function J . For any l-th hidden graph convolution
(∀l ∈ {1, . . . , L}) layer, the gradient of the loss function J with re-
spect to the weight parameter W(l) is a linear combination of the
influence of each node weighted by its degree in the renormalized
graph Laplacian.

∂J

∂W(l)
=

n∑
j=1

degÂ(j)I(row)
j =

n∑
i=1

degÂ(i)I(col)
i

where degÂ(i) is the degree of node i in the renormalized graph

Laplacian Â, I(row)
j =

(
H(l−1)[j, :]

)T
Ei∼pN̂(j)

[
∂J

∂E(l)[i,:]

]
and

I(col)
i =

(
Ej∼pN̂(i)

[
H(l−1)[j, :]

])T
∂J

∂E(l)[i,:]
are the row-wise influ-

ence matrix of node j and the column-wise influence matrix of node i
correspondingly. H(l−1) is the input node embeddings of the hidden
layer and E(l) = ÂH(l−1)W(l) is the node embeddings before the
nonlinear activation.

Theorem 1, as proved in [14], implies that the node degree in A
is proportional to its importance on the gradient of the weight matrix

∂J

∂W(l) , implying that GCN is biased against low-degree nodes. This
remark also stands true for our case as we use GraphSAGE with a
mean aggregator (GraphSAGE-Mean behaves like a GCN [11]). As
described in detail in the subsequent sections, we propose a fairer
learning process, CAFIN, with higher penalties for less central nodes
to tackle this issue. CAFIN helps prioritize the information flow in
smaller computation graphs, as depicted in Figure 2, alleviating the
disparity caused due to the computation graph sizes.

3.3 Imparity

We focus on inter-group fairness between groups constructed from
intrinsic node characteristics rather than node features. The group
membership is based on degree centrality in our results, however,
CAFIN can be used with any centrality measure. From Figure 1, our
initial analysis shows that GraphSAGE is biased towards nodes with
more neighbors to learn from, and performs better for popular nodes.
We use a modified variant of inter-group imparity [13] to measure
the disparity in the performance of the embeddings between unpop-
ular and popular nodes for different downstream tasks. Fairer repre-
sentations would minimize the imparity between groups. Note that
imparity is not used to train the network, but rather is exclusively an
evaluation method.

3.3.1 Imparity for Node Classification

Node classification involves identifying labels for nodes in a graph
[36, 11]. As explained earlier, we divide the nodes into two groups (1

& 2) based on their centrality. We compute the inter-group accuracy
differences for all classes weighted by the class distribution,

Inc =
∑
c∈C

wc|ac
1 − ac

2| and wc =
fc
|V | (2)

where Inc represents the imparity for the task of node classification,
fc represents the count of nodes labeled with class c in the input
graph, and ac

i represents the average accuracy of nodes labeled with
class c in the ith group (either popular or unpopular nodes). We use
a weighted metric (where the weights are proportional to the respec-
tive class cardinality) in place of the original [13] to avoid skewing
the metric based on classes that are less common than others. In the
case of multi-label node classification (such as in PPI dataset), we
compute imparity as the difference in macro-F1 scores instead of ac-
curacy, as it is a better representative of performance in the case of
multi-label data [9].

3.3.2 Imparity for Link Prediction

Link Prediction involves inferring whether an edge exists between
two nodes solely from their attributes and local connectivity structure
[10]. Based on our prior division of nodes based on popularity, edges
are divided into three groups - between two popular nodes (p − p),
between one popular and one unpopular node (p− up), and between
two unpopular nodes (up − up). We define imparity as the standard
deviation between the accuracies for these three types of edges.

Ilp =

√
(ap−p − μ)2 + (ap−up − μ)2 + (aup−up − μ)2

3
(3)

μ =
ap−p + ap−up + aup−up

3
(4)

where Ilp is the imparity for the task of link prediction and ax−y is
the accuracy of link prediction between nodes of type x and y. This
formulation ensures that the metric is minimized when equal perfor-
mance is observed across all three categories of edges. We choose
standard deviation (SD) over the mean absolute deviation (MAD) to
emphasize the effect of extreme outliers, better quantifying the over-
all fairness.

3.4 Preprocessing the Input Graph

Our proposed augmentations require pre-computed centrality mea-
sures for each node and the pairwise distances between all pairs of
nodes. We pre-compute the pairwise distances using a breadth-first
search (BFS) from each node while incrementally computing the
degree centrality values simultaneously. Our framework utilizes the
pairwise distances during training to impose the fairness constraints,
while the centrality values are used later for defining group member-
ship during evaluation.

Time complexity of this step can be broken down into three com-
ponents. Let |V | denote the number of nodes and |E| denote the num-
ber of edges. Pairwise distance calculation uses BFS from each node
and incurs O(|V |2+|V ||E|) in total but can easily be parallelized for
improved performance. In section 4.5, we also explore efficient ap-
proximate distance measures as a potential replacement for this step
to minimize the complexity, and we observe comparable results even
with approximate distance measures. We calculate the degree cen-
tralities with one pass over all the edges, which incurs O(|E|). We
do not consider the centrality computation as overheads in our work,
as they are used only to evaluate performance or to divide graphs that
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do not contribute to training time. The primary and most significant
overhead is the pairwise distance computation which we consider a
cost of fairness.

3.5 Preparing Graph Data for Inductive Setting

To translate transductive datasets to the inductive setting, we cre-
ate disjoint subgraphs for each part of the pipeline. For both the
downstream tasks (node classification and link prediction), we sam-
ple three subgraphs (g1, g2, and g3) from the original graph: One for
training GraphSAGE (g1), one for training the downstream task clas-
sifier (g2), and the other for evaluating the classifier’s performance in
the downstream task (g3). We allocate more data for training Graph-
SAGE (g1) than the downstream task classifier (g2) as it has more
parameters to learn.

Node Classification: Random vertex-induced subgraphs with 60%
of the nodes for g1, 30% for g2 and the rest 10% for g3.

Link Prediction: The subgraph for training embeddings g1 is con-
structed by sampling 60% of the edges from the original graph. Since
g2 and g3 deal with link prediction, they need positive samples (edges
that actually exist) and negative samples (fabricated edges). We split
the remaining edge set into g2p and g3p randomly (the positive edge
set) and construct g2n and g3n, sets of artificial edges between nodes
that do not have an edge in the graph (the negative edge sets). The
positive and negative edge partitions are merged to obtain the graphs
g2 and g3, g2 = g2p ∪ g2n and g3 = g3p ∪ g3n.

3.6 Centrality Aware Fairness Inducing In-processing
(CAFIN)

We incorporate node degree and pairwise distance measures to aug-
ment GraphSAGE’s loss formulation and achieve more equitable
training between popular and unpopular nodes. Since this informa-
tion is not dataset-specific, our method finds applications across do-
mains without the inclusion of any dataset-specific overhead. Our
proposed novel loss formulation is described below,

fl(u, v) =
maxz deg(z)

deg(u)
· log2

(
D(zu, zv)

k
· maxx,y(d(x, y))

d(u, v)

)

Lf = fl(u, v) + fl(u, vn) (5)

where deg(u) represents the degree of node u, zu the embedding
of node u, D(zu, zv) the distance between the node embeddings of
nodes u and v, and d(u, v) the distance between the nodes in the
graph. x, y, and z represent arbitrary nodes. Using GraphSAGE’s no-
tation, we represent the node of interest with u, the positive sample
with v, and the negative sample with vn. The parameter k normalizes
the embedding distance and brings it to the same range as the normal-
ized node distance. GraphSAGE’s original loss formulation takes a
contrastive form that we improve by considering the actual node dis-
tance. Lf , the final modified loss function, converges to 0 when the
ratio between the two distances is 1, and our loss formulation tries to
make the node embedding distance equal to the actual (normalized)
distance between the nodes in the graph. Most real-world graphs are
assortative in nature (similar nodes are close together) [35]; hence,
the actual node distance is a good proxy for the embedding distance.
We introduce a logarithm to curtail penalties for nodes whose embed-
ding distances are distant from the actual node distances. Addition-
ally, we square the overall formulation to ensure that the loss reaches

a minimum when the embedding distance is equivalent to the ac-
tual node distance. The loss formulation focuses more on nodes with
lower degrees, which conventionally have a lower impact on learning
for GraphSAGE as they have few neighbors that they influence and
are influenced by. Including the inverse of node degree helps shift fo-
cus toward less popular nodes, leading to less overall disparity during
the learning process. We demonstrate that these enhancements lead
to a fairer version of GraphSAGE on tasks that require node repre-
sentations.

Joint Training Strategy. To train CAFIN, we employ a joint train-
ing strategy that uses the original loss formulation as its primary ob-
jective and the modifications as its secondary.

L = Lo + αLf (6)

Equation (6) describes the joint loss function where Lo is the orig-
inal loss JG(zu) described in equation (1), and Lf is the fairness-
inducing constraint described in equation (5). α is a Lagrangian mul-
tiplier (balance factor) used to control the influence of the secondary
fairness-inducing objective.

4 Experimental Results

Here we briefly describe the datasets we work with and the evaluation
criteria we utilize. We then present the experimental results along
with ablation studies.

Table 1: Dataset Description

Dataset Nodes Edges Features Classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
Twitch 7,126 25,468 20 2
AMZN-P 7,650 238,162 745 8
AMZN-C 13,752 491,722 767 10
PPI 56,658 793,617 50 121

(24 graphs) (multilbl.)

4.1 Datasets

We evaluate CAFIN on popular datasets spanning four domains, each
possessing different network characteristics. Table 1 contains the
quantitative description of each dataset. We use Cora [24] and Cite-
Seer [8] from the citation network domain, Twitch (EN) [31] dataset
to study CAFIN’s efficacy on social networks, co-purchase networks
- Amazon Photos (AMZN-P) and Amazon Computers (AMZN-C)
[33], and PPI [40] from the biological networks domain. For further
details on the datasets, refer to Appendix Section 1. 2

4.2 Evaluation Criteria

We evaluate the effective improvement in the model’s fairness by
comparing the change in imparity (refer to Section 3.3) with the orig-
inal model. The lower the imparity value of an experiment, the fairer
it is compared to the original. A decrease in the imparity value in-
dicates the reduction of the model’s performance disparity between
the groups, depicted by a positive percentage in the tables. We also
report the change in accuracy and the time overhead, the two primary
costs of fairness for CAFIN.

2 Appendix link - precog.iiit.ac.in/pubs/CAFIN_Appendix.pdf
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Table 2: Results of CAFIN - (a) Link Prediction, II(CV) indicates a stable increase in fairness across datasets. (b) Node Classification, II
indicates an increase in fairness, however, less consistently than link prediction (as indicated by the higher CV).

(a) Link Prediction (b) Node Classification

Dataset II ↑ (CV ↓) CA ↑ T ↓ II ↑ (CV ↓) CA ↑ T ↓
Cora 20.48% (10.22%) -2.75% 0.50 33.13% (10.86%) 0.19% 0.31
CiteSeer 62.89% (15.68%) 3.87% 0.18 17.71% (11.18%) -1.00% 0.65
Twitch 38.92% (4.10%) -5.67% 1.73 80.34% (12.06%) -3.28% 0.84
AMZN-P 24.32% (5.26%) -3.30% 4.80 32.63% (22.12%) -7.70% 3.58
AMZN-C 53.07% (6.71%) -4.56% 8.06 79.74% (38.30%) -7.53% 5.37
PPI 73.31% (12.98%) -3.28% 3.27 71.58% (3.28%) -3.89% 3.35

Improvement in Imparity (II). The change in the imparity value
measures the effective increase in fairness induced by the new formu-
lations compared to the original. II measures the percentage decrease
in imparity compared to the original. The higher the value of II, the
fairer the formulation is. II is defined as,

II =
Io − I

Io
· 100

where Io corresponds to the imparity values of the original and I
corresponds to the current imparity value.

Change in Accuracy (CA). Imposing fairness comes with a cost,
like in most cases [5, 26], generally in the form of a compromise in
the model’s performance. CA measures the overall model’s accuracy
change compared to the original. In an ideal experimental setting,
CA will be close to 0. CA is defined as,

CA = A−Ao

where Ao corresponds to the overall accuracy of the original and A
corresponds to the current overall accuracy.

Coefficient of Variance (CV). We measure the consistency of our
results with the Coefficient of Variance (CV), which is defined as,

CV =
σ

μ
· 100

where μ corresponds the mean of observed results across runs and σ
to the standard deviation. Low values of CV indicate consistency in
the results. No specific ranges are considered acceptable in general
as that depends on various factors like the experimental setting and
objectives. [1] proposes that a CV value ≤ 10% is considered ex-
cellent and anything between 10 − 20% is considered good in their
experimental setting.

Time Overhead per Increase in Imparity (T). This metric mea-
sures the effective increase in time per unit increase in imparity to
give an idea about the effectiveness of the formulations with respect
to the time overhead. Due to the augmentations, two parts in the
pipeline could potentially incur a time overhead.

• Training (tt) - We observe empirically that the time overhead in
the training loop is insignificant in most cases. The increase for
all datasets is less than 1% of the original time required to train,
which is in milliseconds for 100 epochs. Nevertheless, for com-
pleteness, we add it to the final time overhead.

• Preprocessing (tp) - The majority of the time overhead is con-
stituted by preprocessing. We observe significant differences in
this step as our augmentation requires extra information about the
network to impose proposed constraints, specifically pairwise dis-
tance measures, which is an expensive operation. However, we
propose a solution to this overhead in the form of approximate
distance measures, later discussed in 4.5.2.

Based on the above two observations, we define T as,

T =
t

II

where t = tt + tp corresponds to CPU + I/O time (in seconds) re-
quired to precompute necessary data for the augmented formulation.
We divide it by II to calculate the time spent to increase II by 1%. As
the total time depends on various factors like the load on the hard-
ware and other factors, we report the mean across 100 runs along
with the CV. INF is reported when II is negative.

4.3 Results

The following results were obtained by using a linear SVM classi-
fier for node classification, logistic regression for link prediction and
multiclass node classification (using a one vs. rest strategy), cho-
sen due to their prevalence in the unsupervised learning paradigm,
simplicity, and performance. The classifiers require the embeddings
from GraphSAGE as input and use the train/test sets which were held
out during the embedding training phase.

Table 2(a) captures our results for the link prediction task using all
datasets and their respective fairness costs. We observe an improve-
ment in imparity across the board with relatively low CV values, in-
dicating stable improvements for this task. The drop in accuracy is
reasonable across datasets and even positive in the case of Citeseer
(indicating that in-processing for fairness can lead to performance
enhancements in the case of extreme skews in centrality distribution).
Although the time overhead is significant for larger graphs, we ad-
dress it by including approximate distance measures, which results
in minor reductions to both II and CA but a drastic reduction in T,
which makes our method more feasible for large graphs. The low
value of T, despite the size of the graph for PPI, is due to the distri-
bution of its nodes and edges into multiple subgraphs, reducing the
time overhead, more details in Appendix Section 6.

Table 2(b) contains results for the node classification task, and we
observe improvement in imparity for all datasets. We also observe
that the improvements are much greater than the corresponding im-
provements in the link prediction task, with larger drops in accuracy.
Although the improvement for the node classification task is better
than that of link prediction, it is also more volatile than the improve-
ment for link prediction. The lower variance in the link prediction
task results stems from the task’s simplicity when compared to node
classification - binary classification compared to multiclass classifi-
cation.

4.4 Hyperparameters

As GNNs are known to be sensitive to hyperparameters, we experi-
ment with various combinations to obtain the best-performing values
for each setting. The base configuration for training is 100 epochs, a
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Table 3: Results of Ablation studies for Link Prediction - (a) For CAFIN-N, the results are less consistent than the original. (b) For
CAFIN-P, the results are less consistent than the original and, in some cases, much worse. (c) For CAFIN-AD, the approximations in pairwise

node distances do not impact the II or CA by much, indicating the robustness of CAFIN and reassuring the scope of scalability.

(a) CAFIN-N (b) CAFIN-P (c) CAFIN-AD

Dataset II ↑ (CV ↓) CA ↑ T ↓ II ↑(CV ↓) CA ↑ T ↓ II ↑ (CV ↓) CA ↑ T ↓
Cora -12.98% (7.17%) -3.56% INF -216.01% (1.10%) -1.41% INF -12.68% (14.73%) -5.47% INF
CiteSeer 84.66% (18.17%) 4.03% 0.13 42.26% (0.00%) 1.92% 0.26 77.18% (13.01%) -0.29% 0.07
Twitch 28.24% (5.35%) -6.96% 2.34 48.87% (3.52%) -10.04% 1.36 14.75% (5.70%) -7.26% 0.34
AMZN-P 21.24% (2.44%) -3.87% 5.46 23.47% (0.82%) -6.57% 5.00 21.09% (5.73%) -4.61% 0.24
AMZN-C 46.78% (9.20%) -4.23% 9.14 49.66% (9.31%) -7.03% 8.65 43.17% (4.46%) -4.15% 3.59
PPI 90.73% (26.14%) -3.52% 2.65 76.05% (15.35%) -3.01% 3.16 24.46% (9.91%) -2.96% 0.02

learning rate of 0.0025, and a step learning rate scheduler. We tune
the learning rate for each of the datasets that we do not detail in the
interest of space. We use GraphSAGE with three layers and a hidden
embedding size of 256 across runs and datasets. We experimented
and empirically converged on α = 0.05. We also employ a stricter
negative sampling by defining a minimum distance threshold (Ap-
pendix Section 2). All training runs were performed on an NVIDIA
GeForce RTX 2080 Ti and 20 Intel Xeon E5-2640 v4 CPU cores with
access to a minimum of 20GB of RAM. We also empirically show
the robustness of CAFIN to various seeds in Appendix Section 5.

4.5 Ablation Studies

We focus primarily on the loss formulation design to test which com-
ponents of CAFIN leads to improvements and plausible solutions
for the high time complexity of the dataset preprocessing step. We
showcase the results for Link prediction here and we report the Node
classification results in Appendix Section 4. We also conduct tests to
prove the statistical significance of the distribution changes in these
studies, further details in Appendix Section 7.

4.5.1 Loss Formulation Design

CAFIN treats positive and negative samples equally, but unpopu-
lar nodes have fewer positive samples than popular nodes, and the
utilization of positive and negative samples may provide an unfair
learning advantage to more popular nodes. To verify this theory, we
construct two loss formulations based on the original hypothesis.

Lp(u, v) = fl(u, v) (7)

Ln(u, vn) = fl(u, vn) (8)

Lp (CAFIN-P) adds an additional term only for positive samples, and
Ln (CAFIN-N) adds a term for only negative samples. The model is
trained jointly, similar to Eq. 6 with the same parameter α = 0.05.
From tables 3(a) and 3(b), it can be observed that neither formulation
performs consistently across datasets and either compromises on the
improvement in imparity or the accuracy drop. Although we observe
better performances for some datasets, CAFIN remains the preferred
choice due to its stability.

4.5.2 Approximate Distance Measures

CAFIN and its variants require an O(|V |2 + |V ||E|) overhead to
compute pairwise distances for the entire graph. This computation
increases the time and space requirements during the preprocessing
stage, inhibiting our in-processing technique’s application to larger
graphs. We demonstrate results using the landmark distance method
to overcome this impediment [30]. The landmark distance method

considers several “landmarks” that are randomly chosen and com-
putes the distance of every node to these landmarks during prepro-
cessing. It utilizes the distance from landmarks and uses the trian-
gle inequality to acquire an upper bound on the distance between
any two nodes during inference. The landmark method for approx-
imate distance measures reduces the time overhead from best case
O(|V |2) to O(|V | · l), where l is the number of landmarks chosen.
We consider 100 landmarks for our experiments due to performance-
complexity trade-off (More details in Appendix Section 3). The time
overhead can be approximated to a linear overhead for large graphs.
Table 3(c) reports the results of CAFIN using landmark approxima-
tion (CAFIN-ApproximateDistance or CAFIN-AD) in place of the
original pairwise distances. We observe a nominal drop in II com-
pared to exact distance measures but a drastic reduction in the pre-
processing time required, indicating that our method is robust to aber-
rations in distance measures.

5 Limitations

Our work fills a niche, but a crucial gap in the centrality-driven fair-
ness paradigm, so its focus is targeted. Interpretability and explain-
ability of graph learning algorithms also need to be explored - and
this work does not seek to address these concerns. Further, CAFIN
does not compare and contrast the impact of various centrality mea-
sures on the fairness constraints, as it imposes only degree-centrality-
based fairness constraints.

6 Conclusions and Future Work

We introduce CAFIN, a fairness-inducing in-processing technique,
and demonstrate its efficacy in reducing degree-based disparities in
the embeddings generated by GraphSAGE. CAFIN offers an average
of 49.50% and 52.52% improvement in Imparity for Link Prediction
and Node Classification tasks, respectively, across datasets. We test
CAFIN’s robustness by conducting various ablation studies. We also
introduce the CAFIN-AD variant, which uses approximate distances
for reduced computational complexity, making it highly scalable and
deployable in more extensive settings. We believe that CAFIN can
be extended to any other contrastive-learning-based framework in
this domain. We hope our work promotes further investigation in the
domain of fairness for unsupervised GNNs, explicitly focusing on
graph structure-induced biases.
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