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Abstract. Hierarchical Text Classification (HTC) has recently
gained traction given the ability to handle complex label hierarchy.
This has found applications in domains like E- commerce, customer
care and medicine industry among other real-world applications. Ex-
isting HTC models either encode label hierarchy separately and mix
it with text encoding or guide the label hierarchy structure in the
text encoder. Both approaches capture different characteristics of
label hierarchy and are complementary to each other. In this pa-
per, we propose a Hierarchical Text Classification using Contrastive
Learning Informed Path guided hierarchy (HTC-CLIP), which learns
hierarchy-aware text representation and text informed path guided
hierarchy representation using contrastive learning. During the train-
ing of HTC-CLIP, we learn two different sets of class probabilities
distributions and during inference, we use the pooled output of both
probabilities for each class to get the best of both representations.
Our results show that the two previous approaches can be effectively
combined into one architecture to achieve improved performance.
Tests on two public benchmark datasets showed an improvement of
0.99 - 2.37% in Macro F1 score using HTC-CLIP over the existing
state-of-the-art models.

1 Introduction

In the literature, the problem of categorizing text into a set of labels
that are organized in a structured hierarchy is defined as Hierarchical
Text Classification (HTC) [18, 19, 13]. HTC is a particular multi-
label text classification (MLC) problem, where the classification re-
sult corresponds to one or more nodes of a taxonomic hierarchy. The
class dependency in HTC is usually assumed to follow a hierarchical
structure represented by a tree or a directed acyclic graph as shown
in Figure 1.

HTC approaches can be broadly classified as local approaches and
global approaches. Algorithms that perform local learning attempt to
discover the patterns that are present in regions of the class hierar-
chy, later combining the predictions to provide the final classifica-
tion. The local approaches [22, 17, 1] exploit the parent and child hi-
erarchy to overcome data imbalance in child node. Local approaches
generally suffer from the error-propagation problem and are often
computationally expensive. Global approaches for HTC, on the other
hand, usually consist of a single classifier capable of associating ob-
jects with their corresponding classes in the hierarchy at once [7, 24].
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Global approaches are usually less likely to capture local information
from the hierarchy and eventually suffer from underfitting. [21] pro-
posed a hybrid approach by combining local and global loss. Many
researchers tried to encode text and label hierarchy separately and
aggregate the two representations before being classified by a mixed
feature [28, 5] (as shown in Figure 2b). Recently [20] proposed a
state-of-the-art model by encoding label hierarchy in a text encoder
using contrastive learning during training time (as shown in Figure
2c). This model doesn’t have a hierarchical encoder explicitly during
inference time. The explicit label hierarchical encoder might learn
information complement to the text encoder.

Therefore, in this paper, we introduce path-guided hierarchy us-
ing chained architecture and embedded hierarchy information in text
using contrastive learning as shown in Figure 2d. We propose Hierar-
chical Text Classification using Contrastive Learning Informed Path
guided hierarchy (HTC-CLIP), which exploits embedded hierarchy
in the text along with path-guided hierarchy during inference time.
We learn two sets of classifiers: one with linear layer and another
with path-guided hierarchy, on top of hierarchy encoded text encoder.
Graphormer [26] is used to embed hierarchy in BERT based text en-
coder [20]. Linear and hierarchy classifiers learn different probability
distributions. Therefore, during inference we use maximum pooling
to get the final classifier probability.

The main contributions of our paper are summarised as follows:

• We propose an architecture that can encode hierarchy information
in text and explicitly learns path-guided hierarchy with contrastive
learning.

• We introduce two sets of classifiers during training and pooling
operation during inference to imitate ensemble behaviour.

• Experiments demonstrate that the proposed model achieves an im-
provement of 0.99-2.37% in Macro F1 on two public datasets,
WOS and NYT.

2 Related Work

Work on HTC can broadly be categorized into local and global ap-
proaches [20]. In local approaches, a classifier can be built per node,
per parent, or per level. In global approaches only one classifier is
built for the entire graph. [1] uses a local approach to build a classi-
fier per label and transfers parameters of the parent model to the child
model. [21, 22] use a hybrid approach to build a common classifier
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Figure 1. Input query is tagged with "missing items" from two different
paths "order status" or "refund an item."

that optimizes global and local loss. [14] decomposes the hierarchy
into subgraphs and conducts Text-GCN on n-gram tokens, whereas
[17] applies CNN to utilize the data in the upper levels to contribute
to categorization in the lower levels.

In early global approaches, HTC is solved by reducing the prob-
lem to a flat multi-layer classification problem [9]. Later approaches
try to improve the MLC by embedding hierarchy information. [7] in-
troduced the label structure by recursive regularisation. Some works
use deep learning based architecture to learn hierarchical structure
of labels, by employing sequence to sequence network [25], rein-
forcement learning [12], meta-learning [24] and capsule network
[15]. These models mainly focus on improving decoders based on
the constraint of hierarchical paths. Later literature focused on en-
coding the hierarchy information using structure encoders. [28] pro-
posed GCN and LSTM-based hierarchical encoder and methods to
fuse those embeddings with text encoder outputs. [27] extracts text
features according to different hierarchy levels. [5] introduces infor-
mation maximization to constrain label representation learning. [2]
views the problem as semantic matching and tries BERT as a text
encoder. All these works tried to model structure encoder and text
encoder separately and later create mixed representations for classifi-
cation. Recently [20] has shown that infusing hierarchy information
in text encoder using Graphomer can further improve the state-of-
the-art on three HTC datasets.

3 Problem Definition

Hierarchical Text Classification (HTC) is the task of classifying in-
put text x = {x1, x2, ..., xn} to subset y of label set Y, where n is
the number of tokens in x. Size of label set Y is |C|. The label hi-
erarchy mainly contains a tree-like structure and a directed acyclic
graph (DAG) structure. We formulate label hierarchy as DAG, G =
(Y, E), where node set Y is labels and edge set E denotes the relation
between parent and child node. Since a non-root label of HTC has
one and only one parent, the label hierarchy can be converted to a
tree-like hierarchy. Each sample x corresponds to a subset y that in-
cludes multiple classes. Those corresponding classes belong to either
one or more sub-paths in the hierarchy as shown in Figure 1.

4 Methodology

In this section, we will describe the proposed HTC-CLIP in detail.
Figure 3 shows the overall architecture of the model.

4.1 Text Encoder

BERT [6] is one of the state-of-the-art encoders for text. We use it
as the text encoder similar to [2, 20]. BERT uses WordPiece algo-
rithm to tokenize the input text. Given an input text x, it gets tok-
enized into sequence of tokens x1, x2, ...xn−2. BERT adds [CLS]
and [SEP], two special tokens indicating the beginning and the end
of the sequence. Therefore, the final sequence of tokens of length n
is represented as:

x = {[CLS], x1, x2, ..., xn−2, [SEP]} (1)

BERT encodes input tokens and outputs encodings corresponding
to each token. We use encoding corresponding to [CLS] token as
input to the path-guided hierarchy encoder and linear classifier.

P = BERT(x) (2)

Where, P ∈ R
n×dh , dh is hidden dimension and n is number of

tokens. Hidden state corresponding to [CLS] token is p = P[CLS].

4.2 Hierarchy Encoder

[20] proposed a contrastive learning-guided hierarchy in text encoder
and [22] suggested a path-guided hierarchy to improve the HTC
task. Experiments suggest that probability class distributions learnt
by these two methods are complementary to each other. In order to
leverage the representation learnings of both HTC approaches, we
have proposed a hybrid method capable of simultaneously learning

two sets of classifiers, one using path-guided hierarchy classifier

and the other using linear classifier on top of hierarchy encoded

text using contrastive learning as shown in Figure 3.

4.2.1 Path Guided Hierarchy Classifier

Path-encoded hierarchy helps in forcing the hierarchy structure be-
tween levels. [22, 21] created the hierarchy on top of text encoder. We
have proposed the configuration of linear layers with ReLU activa-
tion to learn better hierarchy relations between children and parents.

Formally, let p ∈ R
dh be the pooled output (hidden state corre-

sponding to [CLS] token) from BERT text encoder as described in
section 4.1, Ch be the set of classes of the hth hierarchical level, |H|
the total number of hierarchical levels, and |C| the total number of
classes. Let AP

1 denote the activations for the first level using BERT
pooled output, given by:

AP
1 = φ(WP

1 p+ bP1 ) (3)

where WP
1 ∈ R

C1×dh is a weight matrix and bP1 ∈ R
C1×1 is the

bias vector, which are the parameters for learning level 1 classifier
based on text and hierarchy encoded pooled output, and φ is a non-
linear activation function, in our work we have used ReLU. Similarly,
activation AP

h for level h using pooled output is given by:

AP
h = φ(WP

h p+ bPh ) (4)

where WP
h ∈ R

Ch×dh is a weight matrix and bPh ∈ R
Ch×1 is the

bias vector.
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Figure 2. Different ways of introducing hierarchy information. (a) Previous work of modelling path-guided hierarchy, on top of text encoder [22]. (b)
Previous work of modelling text and labels separately and finding a mixed representation [28, 5]. (c) Previous work of incorporating hierarchy information into
text encoder for a hierarchy-aware text representation [20]. (d) Our work where the model learns two classifiers, one with text-encoded hierarchy and another

with path-guided hierarchy, and pooled output from both classifiers is used during inference.

We have introduced a linear layer, that maps activation from level
h−1 to k hidden neurons, and then a linear layer to map k activation
to Ch classes at level h. These hidden layers help in learning a better
representation of the parent and child nodes relationship. Let Ah−1

h

denote activation for the h level using h− 1 level activation.

Ah−1
k = φ(Wh−1

k AP
h−1 + bh−1

k ) (5)

Ah−1
h = φ(W k

hA
h−1
k + bkh) (6)

where Wh−1
k ∈ R

k×Ch−1 , W k
h ∈ R

Ch×k are weight matrices
and bh−1

k ∈ R
k×1, bkh ∈ R

Ch×1 are the bias vectors.
Let Ah be the final activation for level h, which is sum of acti-

vation based on pooled output, Ap
h and activation based on previous

level Ah−1
h . For level 1, A0

1 is a vector of all ones.

Ah = AP
h ⊕Ah−1

h (7)

Following previous work [20], we flatten the hierarchy for multi-
label classification therefore the output of each classifier is equal to
the total number of classes |C|. Hence, all activations from each level
are concatenated and passed through sigmoidal activation to get class
probabilities, Pc of path-guided hierarchy classifier.

Pc = σ(A1 �A2 � · · · �A|H|) (8)

4.2.2 Positive Sample Generation for Contrastive Learning

The goal for the positive sample generation is to keep a fraction of
tokens while retaining the labels. Given a token sequence as Equation
1, the token embedding of BERT is defined as:

e1, e2, ..., en = BERT_emb(x) (9)

The scale-dot attention weight between token embedding and label
feature is first calculated to determine the importance of a token on a
label,

qi = eiWQ, kj = ljWk, Aij =
qik

T
j√
dh

(10)

The query and key are token embeddings and label features re-
spectively, and WQ ∈ Rdh×dh and WK ∈ Rdh×dh are two weight
matrices. Thus, for a certain xi, its probability of belonging to label
yj can be normalized by a Softmax function.

Next, given a label yj , we can sample key tokens from that distri-
bution and form a positive sample x̂. To make the sampling differen-
tiable, we replace the Softmax function with Gumbel-Softmax [8] to
simulate the sampling operation:

Pij = gumbel_softmax(Ai1, Ai2, ..., Aik)j (11)

Notice that a token can impact more than one label, so we do not
discretize the probability as one-hot vectors in this step. Instead, we
keep tokens for positive examples if their probabilities of being sam-
pled exceed a certain threshold γ, which can also control the fraction
of tokens to be retrained. For multi-label classification, we simply
add the probabilities of all ground-truth labels and obtain the proba-
bility of a token xi regarding its ground-truth label set y as:

Pi =
∑
j∈y

Pij (12)

Finally, the positive sample x̂ is constructed as:

x̂ = {xi if Pi > γ else 0} (13)

where 0 is a special token that has an embedding of all zeros so
that key tokens can keep their positions. The select operation is not
differentiable, so we implement it differently to make sure the whole
model can be trained end-to-end.
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Figure 3. HTC-CLIP architecture. It contains a BERT based encoder, which generates a hierarchy-aware text representation and a positive sequence output
representation. Both representations are passed through two classifiers (linear classifier and path-guided hierarchy classifier) to minimize binary cross-entropy

loss, which helps in generating text-aware hierarchy representations.

4.2.3 Contrastive Learning for Text Encoder

Contrastive loss helps in bringing token sequence and their positive
counterpart representation closer, and the examples which are not
from the same pair will be moved farther away. Encoding hierarchy
information in text encoder using contrastive loss is proven to im-
prove the result for HTC [20], we have used the same implementa-
tion for contrastive learning for text encoder. First, positive samples
(x̂) are generated for contrastive loss as discussed in 4.2.2. The pos-
itive sample is fed to the same BERT as the original one in section
4.1.

P̂ = BERT(x̂) (14)

We get a sequence representation p̂ with the first token correspond-
ing to [CLS] before being classified.

With a batch of N hidden states of positive pairs (pi, p̂i), with non-
linear activation ReLU:

ci = W2ReLU(W1pi)

ĉi = W2ReLU(W1p̂i)
(15)

where W1 ∈ R
dh×dh , W2 ∈ R

dh×dh .
For a batch of size N, we generate N positive examples so there

will be total 2N pairs. For a given utterance there will be 2 positive
pairs and remaining 2(N-1) pairs will be negative examples. Thus,
in a batch of size N with 2N examples Z = {z ∈ {ci} ∪ {ĉi}}, we
compute the NT-Xent loss [4] for zm as:

Lcon
m = −log

exp(sim(zm, μ(zm)/τ)∑2N
i=1,i �=m exp(sim(zm, zi)/τ)

(16)

where sim is the cosine similarity function as:

sim(u, v) = u · v/‖u‖‖v‖ (17)

and μ is a matching function as:

μ(zm) =

{
ci, if zm = ĉi

ĉi, ifzm = ci
(18)

τ is a temperature hyperparameter.
The total contrastive loss is the mean loss of all examples:

Lcon =
1

2N

2N∑
m=1

Lcon
m (19)

4.3 Contrastive Learning Informed Classifiers

To improve the representation of linear classifier and path-guided hi-
erarchical classifier, the constructed positive sample BERT represen-
tation p̂i is passed through each classifier separately.

The probability of text representation p̂i on label j is:

p̂Lij = σ(Linear(p̂i))j (20)

= σ(WL · p̂i + bL)j (21)

p̂Hij = σ(Hierarchical(p̂i))j (22)

Where WL ∈ R
|C|×dh , bL ∈ R

|C|×1. σ is sigmoid function. The
hierarchical classifier is explained in section 4.2.1.

Positive sample representation, p̂i learned using contrastive loss
tunes classifiers’ weights during training using binary cross entropy
loss as explained in the next section. The path-guided classifier’s
weights tuning helps in encoding text representation in a path-guided
network.

4.4 Classification and Objective Function

Similar to positive constructed sequence output (p̂i), the hidden fea-
ture (pi) from the text encoder is fed into a linear and hierarchical
classifier. Outputs from classifiers are fed into sigmoid (σ) activation
to calculate class probability distribution.
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Dataset |L| Depth Avg(|Li|) Train Val Test
WOS Dataset 141 2 2.0 30,070 7,518 9,397
NYT Dataset 166 8 7.6 23,345 5,834 7,292

Table 1. Statistics of three datasets for hierarchical multi-label text classification. |L|: Number of target classes. Depth: Maximum level of hierarchy.
Avg(|Li|): Average Number of classes per sample. Train/Val/Test: Size of train/validation/test set.

The probability of text representation p on label j is:

pLij = σ(Linear(pi))j (23)

pHij = σ(Hierarchical(pi))j (24)

For multi-label classification, we use the binary cross-entropy loss
function for text i on label j,

LC
ij = −yij log(pij)− (1− yij) log(1− pij) (25)

LC =
N∑
i=1

k∑
j=1

LC
ij (26)

where yij is the ground truth. LC will be LC
L , LC

H for pij as pLij ,
pHij respectively.

The classification loss of the positive sample representation L̂C
L ,

L̂C
H can be calculated similarly by p̂Lij , p̂Hij using Equation 20, 22 and

26.
The final loss function is the combination of classification loss of

original text, classification loss of the constructed positive samples,
and the contrastive learning loss:

L = LC
L + LC

H + L̂C
L + L̂C

H + λLcon (27)

where λ is a hyperparameter controlling the weight of contrastive
loss. During testing, we use the text encoder and path-guided encoder
for classification and the model degenerates to a BERT encoder with
two classification heads. The maximum pool output of both the linear
classifier and path-guided classifier is used as a class probability. This
output is used for assigning classes for a given input text.

5 Experiments

In order to assess the effectiveness of the proposed architecture and
compare it against existing models, we have run several experiments.

5.1 Experiment Setup

Datasets and Evaluation Metrics We performed experiments on
Web-of-Science (WOS) [10] and NYT [16] datasets for comparison
and analysis. WOS dataset includes abstracts of published papers
from Web of Science. NYT is an archive of manually categorized
newswire stories. For WOS and NYT datasets we have followed the
train/val/test distribution of [20] and [28]. Statistics of these datasets
are listed in Table 1.

Evaluation Metrics We measure the experimental results by
Micro-F1 and Macro-F1. Micro-F1 is calculated from the overall pre-
cision and recall of all the instances, while Macro-F1 is equal to the
average F1-score of labels.

Implementation Details We use bert-base-uncased from Trans-
formers [23, 20] as the base architecture for text encoder. As [20]
suggested, for Graphormer, attention head is set to 8 and feature size
dh to 768. We use 1 GPU of Nvidia A100 for computing. We set

the batch size to 56. Similar to [20], we use Adam optimizer with
a learning rate of 3x10-5. The threshold γ is set to 0.02 on WOS,
0.005 on NYT dataset. The loss weight λ is set to 0.05 on WOS, 0.3
on NYT dataset. The temperature of the contrastive module is fixed
to 1 [20]. The hidden layer size (k) for the path-guided hierarchy is
set to 128 for all three datasets. We implemented our model in Py-
Torch and trained end-to-end, and stopped training if the Macro-F1
does not increase for 6 epochs. We evaluated the test subset with the
model having the best Macro-F1 on the validation subset.

Comparison Models We compare the performance of our HTC-
CLIP model with a few recent works on HTC as strong baselines.
HGCLR [20], HiAGM [28], HTCInfoMax [5] and HiMatch [3]. Hi-
AGM applies soft attention to text features and label features for the
mixed feature. HTCInfoMax improves HiAGM by regularizing the
label representation with a prior distribution. HiMatch matches text
representation with label representation in a joint embedding space
and uses joint representation for classification. HGCLR directly em-
beds the hierarchy into a text encoder. HGCLR is the state-of-the-art
before our work. Except for HiMatch and HGCLR, all of the above
approaches adopt TextRCNN [11] as text encoder therefore we used
[20] implementation of these with BERT for a fair comparison. Re-
sults are shown in Table 2.

Weight Parameters Size Table 3 shows the size of weight pa-
rameters. We observe that the number of parameters due to the path-
guided hierarchy network in our proposed model doesn’t increase the
weight parameters significantly compared to HGCLR.

5.2 Experiment Results

Table 2 reports the performance of our approach against other meth-
ods. On WOS dataset, our proposed HTC-CLIP model shows 2.06%
and 2.44% improvement on Micro-F1 and Macro-F1 respectively
compared to BERT. Our HTC-CLIP model also achieves competitive
improvement over HGCLR and Hi-Match in terms of both Macro-
F1 and Micro-F1. We could not reproduce the BERT and HGCLR
results reported in [20], so we report the results of our implementa-
tion of BERT and HGCLR. We ran the experiment 5 times on WOS
dataset and the standard deviation for Micro-F1 is 0.26 and Macro-F1
is 0.17. The mean of Micro-F1 and Macro-F1 for HGCLR are statis-
tically different from that for HTC-CLIP as per t-test. HGCLR mean
is more than three standard deviations away from that of HTC-CLIP
for both Micro and Macro F1 scores. This shows that in compari-
son to the state-of-the-art model, our model’s results are statistically
better.

On NYT, our approach shows 1.00% and 2.74% improvement on
Micro-F1 and Macro-F1 respectively compared to BERT and per-
forms significantly better than previous methods on both of the above
measurements. The results show that HTC-CLIP achieves consistent
improvement on the performance of Hierarchical Text Classification
among WOS and NYT datasets.
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Model WOS Dataset NYT Dataset
Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT (Our implement) 85.80 79.20 78.22 65.85
BERT+HiAGM [20] 86.04 80.19 78.64 66.76

BERT+HTCInfoMax [20] 86.30 79.97 78.75 67.31
BERT+HiMatch [3] 86.70 81.06 - -

HGCLR [20] (Our implement) 87.01 80.30 78.34 66.22
HTC-CLIP (Ours) 87.86 81.64 79.22 68.59

Table 2. Experimental results comparing the proposed model (HTC-CLIP) with other state-of-the-art models on WOS and NYT datasets. For a fair
comparison, we implemented the same baseline as the BERT encoder. We cannot reproduce the BERT and HGCLR results reported in [20], so we report the

results of our implementation of BERT and HGCLR.

Model WOS NYT
BERT(Our implement) 110.9 110.9

HGCLR(Our implement) 120.5 120.6
HTC-CLIP 120.7 120.8

Table 3. Number of weight parameters in the proposed model with other
state-of-the-art models on WOS and NYT datasets. The numbers displayed

in the table are in millions.

5.3 Analysis

In this section, we investigate the independent effect of each compo-
nent in our proposed model.

Ablation Models Micro-F1 Macro-F1
BERT 85.80 79.20

HTC-CLIP 87.58 80.88

-r.m. L̂C
H 86.65 80.09

-r.m. L̂C
L 86.95 80.13

-r.m. L̂C
H& L̂C

L 86.18 79.16
-r.m. l.c. and L̂C

H 86.70 79.75

Table 4. Performance of HTC-CLIP on the validation set of WOS after
removal of BCE loss components from Equation 27. L̂C

H and L̂C
L are BCE

loss of positive sample output representation learned through a contrastive
loss for linear and path-guided hierarchy classifiers respectively, l.c. stands

for a linear classifier, r.m. stands for remove

5.3.1 Effect of Contrastive Learning on Classifiers

To demonstrate the advantage of contrastive information, we tested
our model with and without BCE loss of constructed positive se-
quence output representation on the WOS Dataset. We first removed
L̂C

H from Equation 27, results are shown in Table 4. We observed
that Macro-F1 and Micro-F1 scores drop significantly after remov-
ing L̂C

H . BCE loss of positive sequence output learned through con-
trastive loss helps the path-guided hierarchy classifier in learning the
text representation in its weights (section 4.3). We also removed the
L̂C

L and saw a similar trend of decreased Macro-F1 and Micro-F1
scores. As evident from Table 4, BCE loss of positive sequence out-
put representation learned through contrastive loss helps in tuning
weights and boosts performance in both linear classifier as well as
path-guided hierarchy classifier.

Ablation Models Micro-F1 Macro-F1
BERT 85.80 79.20

HTC-CLIP 87.58 80.88
-r.m. h.c. 86.69 80.38
-r.m. l.c. 87.16 80.11

-r.m. hidden layers from h.c. 86.38 79.88

Table 5. Performance of HTC-CLIP on the validation set of WOS after
removal of classifiers. r.m. stands for remove, h.c. stands for path-guided

hierarchy classifier and l.c. stands for the linear classifier.

5.3.2 Effect of Path Guided Hierarchy

To study the influence of path-guided hierarchy, we tested our model
on the WOS Dataset after removing the path-guided hierarchy clas-
sifier. Without the path-guided hierarchy classifier, we found a drop
in Macro-F1 and Micro-F1 scores. Results are shown in Table 5. We
also experimented with the modified version of path-guided hierar-
chy after removing the hidden layers (Equation (5) and (6), Figure 3).
As shown in Table 5, these layers contribute positively to the model
and help in learning a better representation of the hierarchy.

Ablation Models Micro-F1 Macro-F1
BERT 85.80 79.20

Only h.c. model 87.16 80.11
Only l.c. model 86.69 80.39

Both l.c. & h.c. with avg pool 87.35 80.69
Both l.c. & h.c. with max pool 87.01 80.42
Both l.c. & h.c. with max pool

87.58 80.88during inference (HTC-CLIP)

Table 6. Performance of HTC-CLIP on the validation set of WOS after
changing some components. h.c. stands for path-guided hierarchy classifier

and l.c. stands for linear classifier

5.3.3 Effect of Pooling Classifiers’ Outputs

We trained the path-guided hierarchy model and linear classifier
model with text-encoded hierarchy using contrastive loss. In our
model, we propose to use both path-guided hierarchy and linear clas-
sifier in a single architecture, and a method to combine the out-
put probabilities during inference. As seen from Table 6, our pro-
posed architecture works better than individually trained models.
This shows that the individual models capture complementary in-
formation and can be effectively combined into one architecture to
achieve improved performance. We find that adding or taking the
maximum of the probabilities of classifier outputs during training
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yields better results than both the individual models, but is not able
to outperform our proposed architecture where we do max pooling
during inference.

6 Conclusion

In this paper, we present hierarchical text classification using con-
trastive learning-informed path-guided hierarchy (HTC-CLIP). The
method combines the strength of two existing approaches: con-
trastive learning guided hierarchy in text encoder and path guided
hierarchy. Our paper shows that the two previous approaches capture
complementary information and can be effectively combined into
one architecture to achieve improved performance. Our approach
empirically achieves consistent improvements over the state-of-the-
art on two public benchmark datasets. All of the components we de-
signed are proven to be effective.
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