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Abstract. An opinion diffusion scenario is considered where two
marketers compete to diffuse their own opinions over a social net-
work. In particular, they implement social proof marketing ap-
proaches that naturally give rise to a strategic setting, where it is
crucial to find the appropriate order for targeting the individuals to
which provide the incentives to adopt their opinions. The setting is
extensively studied from the theoretical and empirical viewpoint, by
considering strategies defined in a compact way, such as those that
can be defined by selecting the individuals according to their degree
of centrality in the underlying network. In addition to depicting a
clear picture of the complexity issues arising in the setting, several
compact strategies are empirically compared on real-world social
networks. Results suggest that the effectiveness of compact strate-
gies is moderately influenced by the characteristic of the network,
with some centrality measures naturally emerging as good candidates
to define heuristic approaches for marketing campaigns.

1 Introduction

The opinions that individuals populating a social environment form
and express are significantly impacted by the social pressure of the
opinions manifested by their friend/neighbors. Such pressure leads
them to exhibit a kind of conformist behaviour, resulting in an opin-
ion diffusion process over the underlying network [15, 21]. In fact,
the dynamics of opinion diffusion is a central topic of research in
areas such as social psychology and political sciences, but it has
been recently attracting much attention in the artificial community
too (see, e.g., [3, 7, 10, 13, 17, 18, 20] and the references therein).

By abstracting from their specific technical differences, diffusion
models can be classified in two main groups [22, 27], namely pro-
gressive and non-progressive ones. In a non-progressive model, an
individual that has adopted and manifested an opinion can well
change her mind and adopt a different opinion later [25]. Instead,
progressive models assume that once an individual adopts an opin-
ion, she remains with that opinion forever. This perspective is appro-
priate in contexts such as viral marketing [16, 31] or to predict the
adoption of new technologies or trends, where the crucial problem is
influence maximization [11, 14, 23, 24] via target set selection, that
is, to identify a small number of individuals that can be profitably
used as seeds for a marketing campaign.

In the paper, we precisely consider a progressive scenario in a con-
text where two opinions, say b (black) and w (white), compete for
diffusing over the social environment [2, 8, 11, 26, 33]. However,

we depart from classical studies related to target set selection, by as-
suming that the seeds are given and they are not under the control of
the marketers, who can instead provide incentives to the individuals
to change their opinions in some desired order. In particular, this can
practically be done by exhibiting a social proof of the opinion, that is,
a list of “friends” or influential individuals that have already adopted
it. In fact, this setting has been considered in some earlier works in
the literature too [4, 5], where it is shown that the specific order used
to pick individuals for changing their mind can dramatically affect
the number of individuals that eventually hold some desired opinion.
However, the questions of how to define an optimal strategy for a
marketer and of how the strategies of the marketers interplay have
been not explored so far, neither from the theoretical viewpoint nor
empirically by analyzing the dynamics of some real-world networks.

Our work embarks in a systematic study of the above questions
within a setting where marketing strategies are defined in a compact
way. Indeed, in a general setting, a diffusion strategy might well de-
pend on the history of the evolution of the network as well as by the
specific configuration given to hand. However, modeling and reason-
ing with such arbitrary strategies would require extremely demand-
ing computational resources and an assumption of complete knowl-
edge, which is unrealistic in real-world scenarios. In fact, in order
to identify the individuals to target for the propagation of the opin-
ion, marketers are often guided by some heuristic parameters aimed
at estimating the social “power” of the individuals in the network. A
noticeable example is when such power is modeled in terms of some
well-known centrality measures [30], and where a strategy might be
specified by just picking the individual with the highest rank (ac-
cording to the desired measure) over all possible individuals that can
potentially change their mind with a social proof marketing strategy.

In more details, we provide the following contribution:

� We define a strategic setting for reasoning about progressive dy-
namics determined by compact strategies. Our modeling takes
care of the speed of the propagation, which reflects the efforts
spent by the marketer to spread her opinion, and of the interplay
between the strategies of the competing opinions. Moreover, to de-
fine the social pressure of the individuals, we assume a determin-
istic linear threshold [22] setting, that is, an individual can adopt
an opinion only if (at least) a given fraction of her neighbors did.

� We formalize some relevant problems arising in our strategic set-
ting and we study their computational complexity. The study is
conducted for strategies defined in a compact way, but not neces-
sarily restricted to those induced by centrality measures.
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Figure 1. Illustrations for examples in Section 2.

� And, finally, we focus on some well-known centrality measures
and we performed an extensive experimental evaluation aimed at
assessing the quality of the strategies they naturally induce. Our
campaign considers real social networks, and diffusion processes
with different characteristics determined by the initial seeds and
the speed of propagation.

The rest of the paper is organized as follows. The model for opin-
ion diffusion is presented in Section 2. Our formal and empirical
studies are reported in Section 3 and Section 4, respectively. Some
final remarks on our findings as well as some directions for further
works are eventually discussed in Section 5.

2 Compact Strategies for Opinion Diffusion

Social networks and dynamics. A social network is modeled as an
undirected graph G = (N,E) over a set N of individuals/nodes.
Two competing opinions, denoted as b (black) and w (white), are
spreading over the network, by starting from some initial seeds. A
special opinion g (gray) is associated with any individual v ∈ N
that has not already adopted an opinion in {w, b}; in this case, v is
influenced by her neighbors in G, i.e., by the individuals in the set
δ(v) = {x | {v, x} ∈ E}, under a linear threshold model [22] for
some fixed threshold 0 ≤ t ≤ 1.

Formally, a configuration for G is defined as a pair S = (Sb, Sw)
such that Sb, Sw ⊆ N is the set of all individuals that hold opinion
b and w, respectively. For each individual v ∈ N \ (Sb ∪ Sw) that
has not already adopted an opinion, let σ(v) = �t · |δ(v)|�. Then,
we say that v is stable with respect to the configuration (Sb, Sw) if
|δ(v) ∩ Sb| < σ(v) and |δ(v) ∩ Sw| < σ(v). The configuration S
is stable if all individuals in N \ (Sb ∪ Sw) are stable. A dynamic
for G is a sequence of configurations π = (S0, ..., Sk) such that Sk

is stable and, for each i ∈ {1, ..., k}, Si is obtained from Si−1 by
picking an individual in N \ (Si−1

b ∪Si−1
w ) that is not stable in Si−1

and by setting her opinion to b or w. Note that we are considering
progressive dynamics; therefore, for each initial configuration S0,
k ≤ |N \ (S0

b ∪ S0
w)| always holds.

Example 1 Consider the network in Figure 1(a), the configuration
({1}, {2}) and the threshold t = 0 (meaning that one neighbor that is
not g is enough to make the node not stable). Then, the configuration
is not stable, as individuals in {3, 8, 9} can change their opinion to
b, and individuals in {6, 8, 9} can change to w. �

Compact Startegies. We consider a strategic setting for opinion dif-
fusion, where dynamics originate from the interactions of two play-
ers, say Pb and Pw, competing to maximize the spread of b and w,
respectively. Formally, a strategy for Pb (resp., Pw) is a function τb
(resp., τw) associating with any configuration S over the network
G a node τb(S) ∈ N (resp., τw(S) ∈ N ) that is not stable and
that can change her opinion to b (resp., w). In particular, note that

we are considering strategies that do not depend on the history of
the evolution of the network, which is a rather natural assumption
in all those settings where strategies are a-priori defined in terms of
structural/topological properties of the social network. For instance,
a strategy of interest to our analysis can be the one of selecting the
individual that can change the opinion and that have the maximum
possible degree. Such strategies will be hereinafter called compact.
In formal terms, a strategy τb (resp., τw) is compact if it is given as a
polynomial-time computable function defined over some internal en-
coding, say ε(τb) (resp. ε(τw)), whose size is polynomially bounded
in the size of G. In fact, if a strategy is not compact, than its encod-
ing would naturally require to list all possible network configurations
with their associated outcomes, hence requiring exponential space
(rather than polynomial). We refer the reader to Section 4 for further
relevant compact strategies that we consider in our experimentation.

Speed of Diffusion. We assume that players act in turns. Moreover,
as a way to formalize the efforts spent in spreading their opinions, we
define the speed of diffusion as a pair ρ = (ρb, ρw) of natural num-
bers characterizing, at each turn, the number of individuals selected
by Pb or by Pw, respectively, to change their mind.

In fact, given an initial configuration S0 and the speed ρ, the strate-
gies τb and τw univocally determine a dynamic S0, ..., Sk for G,
which we hereinafter denote as π[S0, ρ, τb, τw] and which is defined
as follows. W.l.o.g., the first turn of player Pb starts in S0. When the
turn of Pb (resp., Pw) starts in some configuration Si, then the dy-
namic evolves by iteratively changing the mind to m individuals ac-
cording to τb (resp., τw), such that either m = ρb (resp., m = ρw) or
Si+m contains no individual that can change her opinion to b (resp.,
w); eventually, the turn of the other player starts in Si+m+1.

Example 2 Consider a strategy Db (resp., Dw) for Pb (resp., Pw)
that selects, for each configuration S, the node that is not stable
in S and can change her opinion to b (resp., w) having the maxi-
mum degree. By starting from the configuration in Figure 1(a), and
by considering the speed (1, 1), the network evolves as follows:
8 	→ b; 9 	→ w; 3 	→ b; 6 	→ w; 4 	→ b; 5 	→ w; 7 	→ b; 10 	→
w; 11 	→ b. Eventually, the dynamic induced by Db and Dw, say π̇,
will lead to the stable configuration reported in Figure 1(b). �

Coverage. In the following, we shall study opinion diffusion from
the perspective of maximizing the spread of the opinions b and w.
Hence, in order to finalize the formalization of the framework, it is
natural to define the coverage of b (resp, w) over G of the given
dynamic π = S0, ..., Sk as the number γb(π) (resp., γw(π)) of indi-
viduals holding opinion b (resp., opinion w) at the end of π, that is
γb(π) = |Sk

b | (resp., γw(π) = |Sk
w|).

Example 3 The coverage of b (resp., w) in the dynamic π̇ of Exam-
ple 2 is γb(π̇) = 6 (resp., γw(π̇) = 5). �

3 Reasoning about Opinion Diffusion

Now that we have defined a formal framework for reasoning about
opinion diffusion under compact strategies, we can turn to study
some relevant computational problems arising therein. In particular,
we next embark on the definition and study of the opinion maximiza-
tion problem by considering two kinds of setting determined by the
strategic interplay emerging between players Pb and Pw.
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3.1 Brave and Cautious Reasoning

Let S0 be an initial configuration and ρ be the speed. Recall that we
are considering strategies τb and τw that are functions of the config-
uration S at hand only. We take the perspective of player Pb and we
assume that τw is private to w. In particular, Pb is in charge of de-
termining her best possible strategy and, given the uncertainty about
τw, two approaches can be considered.

• On the one hand, player Pb might take an optimistic perspective,
according to which her coverage is defined as the maximum pos-
sible coverage over all the possible strategies of τw. Accordingly,
we say that the strategy τ�b is brave-optimal for Pb if there exists
a strategy τ�w for Pw such that:

(τ�b , τ�w ) = arg max
τb,τw

γb(π[S
0, ρ, τb, τw]).

• On the other hand, player Pb might take a pessimistic viewpoint,
in that she assumes that Pw always plays the strategy that maxi-
mally reduce her coverage. Accordingly, we say that the strategy
τ⊥b is cautious-optimal for Pb if:

τ⊥b = argmax
τb

(
min
τw

γb(π[S
0, ρ, τb, τw])

)
.

Example 4 Consider the network and the initial configuration re-
ported in Figure 1(a). Assume that Pb adopts the strategy Db of se-
lecting, for each configuration S, the individual having the maximum
degree that is not stable in S and can change her opinion to b. Then,
according to a cautious perspective, the maximum coverage that can
be obtained is the one in Figure 1(b) and discussed in Example 2.

Consider now the brave perspective. In this case, the maximum
coverage for Pb is associated with the strategy Mw for Pw that se-
lects, for each configuration S, the node that is not stable in S and
can change her opinion to w, having the minimum degree. By starting
from the configuration in Figure 1(a), and by considering the speed
(1, 1), the network evolves as follows: 8 	→ b; 6 	→ w; 9 	→ b; 5 	→
w; 3 	→ b; 4 	→ b; 7 	→ b; 10 	→ b; 11 	→ b. Eventually, the dy-
namic π induced by Db and Mw, will lead to the stable configuration
reported in Figure 1(c) where the coverage of b is γb(π) = 8. �

Armed with the above notions, we can naturally define the follow-
ing two (Opinion Maximization) problems, receiving as input G, the
initial configuration S0, the speed ρ, and a real number α ∈ [0, 1]:

BRAVE-OM: Is γb(π[S0, ρ, τ⊥b , τ⊥w ]) ≥ α× |N |?
CAUTIOUS-OM: Is γb(π[S0, ρ, τ⊥b , τw]) ≥ α× |N |, for each pos-

sible strategy τw for Pw?

The complexity of these two problems will be next analyzed.

3.2 Complexity Analysis

Given that we are considering compact strategies, it is immediate to
check that problem BRAVE-OM belongs to the class NP of all prob-
lems that can be solved in polynomial time by a non-deterministic
Turing machine. Indeed, we can just guess the strategy τ⊥b (whose
encoding ε(τ⊥b ) requires polynomially-many bits) and then check
in polynomial time whether γb(π[S0, ρ, τ⊥b , τ⊥w ]) ≥ α × |N | ac-
tually holds. Things are more complex with CAUTIOUS-OM. In-
deed, in this case, we can still guess in polynomial time τ�b over a
non-deterministic Turing machine; but, now the problem of checking
whether γb(π[S0, ρ, τ⊥b , τw]) ≥ α× |N | holds for each τw requires

Figure 2. Illustration of the reduction in the proof of Theorem 5.

solving another problem in NP (which amounts at checking whether
there exists some τ∗w such that γb(π[S0, ρ, τ⊥b , τ∗w ]) < α × |N |).
Hence, CAUTIOUS-OM belongs to the complexity class Σp

2 [28].
We next complete the picture by showing the above results are

tight. In fact, we start by showing that BRAVE-OM is NP-hard, by
exibithing a reduction to the 3Hitting Set problem [19] (shortly 3HS),
that, given a collection C = {S1, . . . , Sm} of subsets of size three
of a finite set S = {a1, ..., an} and an integer k, is the problem of
checking whether there exists a subset S′ ⊆ S such that |S′| ≤ k
and S′ contains at least one element from each subset in C.

Theorem 5 BRAVE-OM is NP-complete.

Proof (Sketch). Let C = {S1, ..., Sm} be a collection of subsets
of size three of a finite set S = {a1, ..., an} and let k be a positive
integer. Consider the network G = (N,E), depicted in Figure 2,
where we have one node ai for each element ai ∈ S and a node Sj

for each subset Sj ∈ C – in the figure nodes ai, ak, ap represent
the elements belonging to the set Sj . Note that the network is built
such that each node has exactly 1 or m+6 neighbors, and from each
Sj node there is a chain of g nodes S

1
j , ..., S

α
j of length α, where

α is chosen to be far greater than max{m,n}. Consider a threshold
t = 3/(m+ 6), then, according to such a threshold, only ai, Sj and
S

t
j nodes can change their opinions, since the gadgets reported in the

right part of Figure 2 prevent other nodes of being able to change
their opinion. We now claim that the (C, S, k) is a yes instance of
3HS if, and only if, BRAVE-OM returns yes on G, with the initial
configuration reported in Figure 2, where all nodes are 3/(m + 6)-
individuals, and by considering a speed of diffusion (k, n− k) and a
final coverage threshold of 3 ∗m ∗ α/|N |.

(if part) Let S′ be a set witnessing that (C, S, k) is a yes instance
to 3HS. A strategy for b is to diffuse to the nodes ai ∈ S′ in the first
k steps (if |S′| < k, the remaining k − |S′| nodes can be chosen
randomly among the remaining ai). Then, the only possibility for w
in the subsequent n − k steps is to diffuse in the ai that are still g.
Then, w cannot diffuse anymore. In fact, note that all three ai, ak, ap

must be w to enable Sj to switch to w, while just one of them is
required to be b for Sj being able to switch to b. Since S′ is a solution
to 3HS, it means that at least one element, say ai, for each Sj ∈ C
is in S′ and, thus, the corresponding node ai has switched to b in the
first k steps of the dynamic. Thus, in the subsequent steps all nodes
Sj will switch to b thus enabling the m Sj chains of length α to also
switch to b. This conclude the proof since at the end of the dynamic
the number of nodes holding opinion b is greater than 3 ∗m ∗ α.
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Figure 3. Illustration of the reduction in the proof of Theorem 6.

(only-if part) Let (Sb
k, S

w
k ) be the final configuration of a dynamic

witnessing that BRAVE-OM returns yes. Note that, to be able to
reach the coverage threshold, all Sj nodes had to become b at some
point so enabling the m Sj chains of length α to switch to b too.
Thus, it means that for each node Sj there is at least one ai neighbor
holding opinion b. The set S′ = {ai | ai ∈ Sb

k} covers all the
subsets Sj ∈ C. To conclude, note that according to the speed of
diffusion the nodes ai that have opinion b are at most k (and these
are the nodes that changed their opinion in the first k steps), since
opinion w can only cover the other ai nodes, that are (at least) n−k,
since they are the only nodes that are enabled to switch to w in every
dynamic witnessing a yes instance of BRAVE-OM. �

We next complete the picture by showing that CAUTIOUS-OM is
Σp

2-hard, by exhibiting a (rather elaborated) reduction to the prob-
lem of deciding the validity of a Quantified Boolean Formula (QBF)
having the form ∃x∀y.ϕ and where ϕ is given in disjunctive nor-
mal form [28]. Practically, this means that—unlike BRAVE-OM,
that is a “classical” NP-complete problem–we cannot design a flat-
backtracking algorithm for CAUTIOUS-OM, i.e., where the search-
space is a tree having a polynomial number of levels (and such that
moving along the tree edges does not take exponential time).

Theorem 6 CAUTIOUS-OM is Σp
2-complete.

Proof (Sketch). Let ∃x1, ..., xn∀y1, ..., ynϕ be a 2QBF formula
in disjunctive normal form with m clauses1. Consider the network
G = (N,E), depicted in Figure 3, where we have two nodes vTi and
vFi for each variable vi, that are meant to encode the truth assignment
for variable vi. Moreover, there is a node dj for each disjunct (in the
figure nodes l1j , l

2
j , l

3
j represent the nodes associated to the variables

directed or negated that appear in the disjunct dj) and a node ϕ rep-
resenting the formula. Note that the network is built such that each
node has exactly 1 or m+ 11 neighbors (see the gadgets reported in
the right part of the figure), and from each xT

i and xF
i node there is a

chain of g nodes of length α, while from each yT
i and yF

i node there
are a chain of g nodes of length γ and a chain of g nodes of length β
with α � β � γ � max(n,m). Furthermore, there is also a chain
of g nodes of length β−nγ starting from the node ϕ. If we consider

1 Note that, w.l.o.g., we consider a formula with 2n variables, n quantified
existentially and n quantified universally.

a threshold t = 4/(m+11), only the nodes xT
i , xF

i , yT
i , yF

i , dj and
ϕ (as well as the α, β and γ chains) can change their opinions, since
the gadgets reported in the right part of Figure 3 prevent other nodes
of being able to change their opinion.

We now claim that ∃x1, ..., xn∀y1, ..., ynϕ is valid if, and only if,
the answer to CAUTIOUS-OM is yes on G, with the initial configura-
tion reported in Figure 3, where all nodes are 4/(m+11)-individuals,
and by considering a speed of diffusion (n, n) and a final coverage
threshold of (n ∗ α+ β)/|N |.

(if part) Let X be a satisfying assignment for the ex-
istentially quantified variables witnessing the validity of
∃x1, ..., xn∀y1, ..., ynϕ. A strategy for b is to diffuse to nodes
xT
i (resp., xF

i ) for each xi that evaluates true (resp., false) in X in
the first n steps. Then, w can diffuse to the x nodes that are still g in
the subsequent n steps. From this point, we can consider whatever
truth assignment for variables y, thus we can assume that b will
diffuse to yT

1 , ..., y
T
n and w to yF

1 , ..., yFn . From this configuration
only b is enabled to diffuse to the n chains of length α connected
to the x nodes and to the n chains of length γ connected to the yTi
nodes. Moreover, since X is witnessing the validity of the formula, it
means that there is at least one disjunct, say dj , that evaluates true in
X. This means that the three nodes l1j , l

2
j , l

3
j associated to the literals

that appear in dj hold opinion b and enable node dj to adopt opinion
b too. To conclude, note that after dj adopts opinion b also node ϕ
becomes not stable and can adopt opinion b, thus enabling the last
chain of length β − nγ to change its opinion to b.

(only-if part) Let (Sk
b , S

k
w) be the final configuration of a dynamic

π witnessing that the answer to CAUTIOUS-OM is yes, and consider
the truth assignment X such that xi evaluates true (resp., false) in X if
xT
i (resp., xF

i ) becomes b in the first n steps of π. By definition of π,
we have that |Sk

b | ≥ n∗α+β. Note that, to meet such a requirement
it is mandatory that all α chains connected to the x nodes must be b
in Sk

b and thus, for each xi at least one among xT
i and xF

i must be
b. Moreover, according to the CAUTIOUS-OM setting, the strategy
selected from b must allow to obtain a valid solution for whatever
strategy adopted by w, and thus b must diffuse in the first n steps to
exactly one node between xT

i and xF
i for each xi. In fact, suppose

that b diffuse to both xT
i and xF

i for some xi, it means that there
exists an xj for which both xT

j and xF
j are still g after the first n steps

and to which w can diffuse by preventing b to subsequent diffuse in
the corresponding α chain. Then, we will show that whatever strategy
played by w is always a winning strategy for b.

If w in the subsequent n steps will leave free two nodes yTi and
yF
i for some yi, then b can diffuse to both of them thus enabling

the corresponding β chain to become b and meeting the coverage
requirement. If, on the contrary, w diffuses to either yTi or yF

i for
each yi (thus, for each valid truth assignment), then b can diffus e
to the y nodes that are still g in the subsequent n steps, enabling n
chains of length γ to adopt opinion b too2. Then, to meet coverage
requirement there are still (β − nγ) nodes missing that can obtained
only via the (β − nγ) chain connected to the ϕ node. To enable
such a chain to switch to b, node ϕ must switch to b too, meaning
that at least one dj is enabled to switch to b because its three liter-
als nodes l1j , l

2
j , l

3
j became b in the previous steps of the dynamics. �

2 Note that, if b decides to diffuse in some xT
i /xF

i still g then w can occupy
an yTp /yFp left g thus preventing b to obtain a γ chain and, thus, it is not a
valid strategy for b.
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Network |N | |E| rkk 〈k〉 k∗ λ

dblp 317080 1049866 0.27 6.6 343 1.5
fb 134873 1380293 0.07 20.5 1469 1.3
deezer 143884 846915 0.33 11.8 420 1.3
fb-Art 50521 819306 -0.02 32.4 1469 1.2
fb-Ath 13868 86858 -0.03 12.5 468 1.3
fb-Com 14120 52310 0.01 7.4 215 1.4
fb-Gov 7058 89455 0.03 25.3 697 1.2
fb-NS 27930 206259 0.02 14.8 678 1.3
fb-Pol 5908 41729 0.02 14.1 323 1.3
fb-PF 11573 67114 0.20 11.6 326 1.4
fb-TvS 3895 17262 0.56 8.9 126 1.3
dz-HR 54573 498202 0.20 18.3 420 1.2
dz-HU 47538 222887 0.21 9.4 112 1.2
dz-RO 41773 125826 0.11 6.0 112 1.4

Figure 4. Dataset characteristics for the experiments in Section 4.

4 Compact Strategies via Centrality Measures

In this section, we turn to study opinion diffusion from an empirical
viewpoint by focusing on an important class of compact strategies,
namely those that are naturally identified by the ranking induced by
a centrality measure [30]. In fact, each measure naturally induces a
strategy where the next individual to be picked is the one with the
highest rank over the individuals that can adopt the given opinion.

In particular, in our analysis, we shall consider the following
centrality measures, which—without ambiguity—will be hereinafter
transparently referred to as strategies:

• degree centrality (deg), which counts the number of connections
of an individual;

• betweenness centrality (bet), which measures the number of
shortest paths that pass through a particular individual;

• closeness centrality (cls), which looks at the average distance
from a particular individual to all others in the network;

• eigenvector centrality (eig), which considers both the number of
connections that an individual has, as well as the centrality of the
individuals that it is connected to;

• vote rank (vr), which is based on the concept of voting, where
each individual in the network has the ability to cast a vote for
other individuals; the more votes a node receives, the higher its
vote rank centrality measure.

The quality of these measures/startegies (from the perspective of
opinion diffusion) is next assessed by considering a thorough exper-
imentation conducted on several real-world social environments.

4.1 Experimental Setting

Dataset. To test the effectiveness of different compact strategies on
opinion diffusion we used several real networks. We considered a
benchmark consisting of 13 graph datasets, whose main features are
summarized in Figure 4. In particular, for each dataset, we report
the number of nodes |N |, the number of edges |E|, the assortativity
rkk, the average node degree 〈k〉, the maximum node degree k∗ and
the coefficient of an (approximate) underlying power law distribu-
tion λ. In more detauils, assortativity (or degree correlation) rkk is
the Pearson correlation between the degrees of connected nodes. In
assortative networks (rkk > 0) nodes are connected to nodes having
similar degree, while in disassortative networks (rkk < 0) they link

Figure 5. Final percentage of individuals holding opinion b according to
different speed of diffusion (ρb,ρw), when the strategy for both opinions is
deg, the threshold is 0.1 and initial seed ratios for both opinions is 0.2.

Figure 6. Final percentage of individuals holding opinion b according to
different ratios (ηb,ηw) of nodes in the initial configuration, when the

strategy for both opinions is deg, the threshold is 0.3, and the speed of
diffusion is (2, 1). Each subplot is obtained by fixing ηw, and varying ηb.

to nodes having dissimilar degree. Note that two networks having the
same degree distribution can differ for their assortativity. Moreover,
the coefficient of the power law distribution (i.e., λ) that better ap-
proximate the degree distribution of the network has been computed
according to the Bhattacharyya distance [6].

The datasets fb-Art, fb-Ath, fb-Com, fb-Gov, fb-NS, fb-Pol, fb-
PF, fb-TvS have been extracted from the Facebook (fb) [29] dataset
by considering artists, athletes, companies, governments, new sites,
politicians, public figures and TV shows pages only, respectively.
The datasets dz-HR, dz-HU and dz-RO have been extracted from the
Deezer dataset [29] by considering the friendships networks of users
in Croatia, Hungary and Romania, respectively. The largest dataset
is dblp [32] having more than 300K nodes and 1M edges.

Experimental Setup. Experiments have been conducted as follows.
For each pair of strategies τb, τw ∈ {deg,bet,cls,eig,vr},
we varied the number of individuals having opinions b and w in
the initial configuration. In particular, for each pair of real numbers
ηb, ηw ∈ {0.1, 0.15, 0.20, 0.25}, the initial configuration (S0

b , S
0
w)

was determined as follows: S0
b consists of the ηb ∗ |N | nodes having

the highest value according to τb, while S0
w consists of the ηw ∗ |N |

nodes having the highest value according to τw in N \S0
b (individuals

still holding opinion g after b initialization). Then, for each pair of
strategies and each initial configuration, we considered different val-
ues for the threshold t determining when a node is not stable, by con-
sidering t ∈ {0.1, 0.3, 0.35, 0.4, 0.45, 0.5}. Finally, we also varied
the relative speed of diffusion of b and w by considering (ρb, ρw) ∈
{(1, 16), (1, 8), (1, 4), (1, 2), (2, 1), (4, 1), (8, 1), (16, 1)}.

Overall, for each network in Figure 4, we considered 19.200 dif-
ferent experimental settings from which we simulated the diffusion
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Figure 7. Final percentage of individuals holding opinion b for each pair of strategies for b and w (on outer x-axis and y-axis respectively), according to
different speed (on the subplots x-axis), for t = 0.1, ηb = 0.25 and ηw = 0.15.

dynamics according to the strategies and the speed given at hand.

Execution environment. All experiments were executed in an Ana-
conda3 virtual environment, where an opinion diffusion framework
has been implemented in Python (v3.8.13) by taking advantage of the
NetworkX (v2.8.6) library. All experiments ran on high-performance
computing node with Intel(R) Xeon(R) Gold 5118 CPU (2.30GHz),
4x12 cores double thread (for a total of 96 threads) and 512GB of
RAM. In order to take full advantage of the available resources, the
experiments were fully parallelized such that 96 different settings
for a graph ran simultaneously on separate CPU threads.

4.2 Results

In order to shed lights on the behaviour of the various compact strate-
gies, we start by discussing the results of our experimental campaign
by looking at how the final coverage of opinion b is related to the
different parameters that determine the experimental settings. Fig-
ure 5 reports the final coverage of b (in terms of percentage of nodes
holding opinion b at the end of the diffusion process) for increasing
values of the relative speed of diffusion for b; in particular, we de-
pict the results for τb = τw = deg, ηb = ηw = 0.2, and t = 0.1.
Our findings—which are representative of the behaviour manifested
over all the other settings—evidence that higher speeds lead to an in-
crease of the coverage. Moreover, note that a steeper increase in the
coverage emerges as soon as ρb becomes greater than ρw. Figure 6

shows, instead, the coverage of b, when both opinions adopt the deg
strategy and diffuse with a relative speed of (2, 1), by considering
the threshold 0.3, w.r.t. different initial configurations. In particular,
each sub-chart considers ηb as a variable for a fixed ηw. As can it be
noted, an increase in the number of initial seeds does not necessarily
correspond to an increase of the final coverage. In fact, when ηw is
0.1 (upper-left chart) and 0.15 (upper-right chart) the final coverage
of b in the fb-NS network decreases when ηb increases from 0.1 to
0.15. Similarly, also for the graph fb-Art for all ηw except 0.1, the
final coverage of b decreases when ηb increases from 0.15 to 0.2.

A clear pictures of the effectiveness of the various strategies con-
sidered in the experimentation is then reported in Figure 7. In par-
ticular, we report the final coverage of b (again, as percentage of
the whole network) for different strategies for b (outer x-axis) and
w (outer y-axis), and speed of diffusion (x-axis of subplots)—results
are referred to a threshold t = 0.1 and to the ratios of b and w
in the initial configuration equals to 0.25 and 0.15, respectively. As
it can be noted, the impact of the strategy τb on the final coverage
heavily depends on the strategy τw. For example, on the Facebook
network (fb), when considering τb = deg and the speed of diffu-
sion (16, 1), the final coverage of b approaches the 80% of nodes if
τw ∈ {deg,cls,bet,vr} but is around the 30% of nodes when
τw = eig. A similar behaviour can be noted on the deezer network
when considering τb = eig. In fact, for the speed (16, 1) the final
coverage of b is around 0% of nodes if τw ∈ {eig,cls} but reaches
the 35% − 40% of nodes when τw ∈ {deg,bet,vr}. Finally, by
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Figure 8. Total number of settings in which vr and bet resulted to be brave- or cautious-optimal.

looking at Figure 7, we note that the efficacy of some strategies de-
pends on the characteristics of the network. For example, deg and
bet are much less effective on dz-RO than on dblp, while cls on
dz-RO is more effective than on dblp in several settings.

Finally, to sum up all the findings of our experimental campaign,
we depict a synthetic picture in Figure 8 which can be used to identify
the best strategies according to both brave and cautious reasoning.
Indeed, Figure 8 reports the overall number of settings (over all input
networks and by considering all initial configurations) in which each
strategy has been identified as brave-optimal and cautious-optimal
(for Pb) over the total of 1792 settings for each threshold. In Figure 8,
subplots shows the results for different thresholds. In each subplot,
the first five rows consider settings where the speed of diffusion of b
is lower than the speed of diffusion of w (i.e., (1, 2), (1, 4), (1, 8) and
(1, 16)) while rows 6− 10 consider settings in which the speed of b
is greater than the speed of w (i.e., (2, 1), (4, 1), (8, 1) and (16, 1)).
For example, by considering t = 0.1, bet was cautious-optimal in
938 settings, while for t = 0.45 it resulted to be cautious-optimal
in 503 settings only. From the analysis we performed, bet seems to
be the best cautious choice for low thresholds, while in all the other
cases the best cautious choice is vr. As for brave reasoning, each cell
reports the number of settings in which a strategy has been identified
as brave-optimal together with the corresponding strategy for w. For
example, by considering t = 0.4 and ρb > ρw, vr for b was brave-
optimal in 569 settings together with eig for w (that resulted in
this settings the worst strategy for w), while bet for b was brave
optimal in 28 settings together with cls for w. From the analysis of
the results on the one hand it emerged that, in general, according to a
brave-reasoning, the worst strategy for w id eig, followed by deg,
that are those allowing b to reach the maximum coverage for some
strategy τb. On the other hand, again vr is the brave-optimal strategy
for b in the majority of the settings, followed by bet.

5 Discussion and Conclusion

Opinion diffusion has been largely studied in earlier literature. Sev-
eral studies considered a setting in which there are two opinions that
compete [2, 8, 11], and some recent works also considered the sce-
nario in which more than two opinions are available [1, 5, 9, 12].
In this paper, we have analyzed a progressive model of opinion dif-
fusion, in which individuals can hold one of two competing opin-
ions or can have no opinion at all. Given this model, we have in-
vestigated the effectiveness of compact strategies that, if adopted by
marketers, suggests the sequence of individuals to target for maxi-
mizing the final diffusion of their opinion. We studied this problem
from a theoretical point of view and complemented our analysis with
an experimental evaluation that demonstrate how compact strategies
can be effectively adopted in opinion maximization. In particular, our
findings suggest that vote rank and betweenness centrality are very
effective measure to characterize the power of the nodes in terms of
their capacity to affect the final coverage of the diffusion process.

Our results open a number of avenues for further research. First, it
would be relevant to investigate the impact of further network char-
acteristics, such as network density, on the effectiveness of compact
strategies. Furthermore, while we conducted experiments on large
real social networks, it might be nonetheless interesting to consider
small synthetic networks on which it would be possible to check how
the various strategies are far from the optimal coverage. Finally, an-
other interesting avenue for future research is to develop more so-
phisticated models for compact strategies, such as hybrid models that
combine multiple strategies to achieve even better results.

Acknowledgements

The research reported in the paper was partially supported by the
PNRR projects “FAIR (PE00000013) - Spoke 9” and “Tech4You

C. Adornetto et al. / On the Effectiveness of Compact Strategies for Opinion Diffusion in Social Environments 17



(ECS00000009) - Spoke 6”, under the NRRP MUR program funded
by the NextGenerationEU.

References

[1] Vincenzo Auletta, Diodato Ferraioli, Valeria Fionda, and Gianluigi
Greco, ‘Maximizing the spread of an opinion when tertium datur est.’,
in Proc. of AAMAS, volume 19, pp. 1207–1215, (2019).

[2] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco, ‘Reasoning
about consensus when opinions diffuse through majority dynamics’, in
Proc. of IJCAI, pp. 49–55, (2018).

[3] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco, ‘On the
complexity of reasoning about opinion diffusion under majority dynam-
ics’, ARTIF INTELL, 284, 103288, (2020).

[4] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco, ‘On the ef-
fectiveness of social proof recommendations in markets with multiple
products’, in Proc. of ECAI, 19–26, (2020).

[5] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco, ‘Optimal
majority dynamics for the diffusion of an opinion when multiple al-
ternatives are available’, Theor. Comput. Sci., 869, 156–180, (2021).

[6] A. Bhattacharyya., ‘On a measure of divergence between two statisti-
cal populations defined by their probability distributions’, BULL CAL-
CUTTA MATH S, 35, 99–109, (1943).

[7] Sirin Botan, Umberto Grandi, and Laurent Perrussel, ‘Multi-issue opin-
ion diffusion under constraints’, in Proc. of AAMAS, (2019).

[8] Robert Bredereck and Edith Elkind, ‘Manipulating opinion diffusion in
social networks’, in Proc. of IJCAI, pp. 894–900, (2017).

[9] Robert Bredereck, Lilian Jacobs, and Leon Kellerhals, ‘Maximizing the
spread of an opinion in few steps: Opinion diffusion in non-binary net-
works’, in Proc. of IJCAI, pp. 1622–1628, (2020).

[10] Matteo Castiglioni, Diodato Ferraioli, and Nicola Gatti, ‘Election con-
trol in social networks via edge addition or removal’, in Proc. of AAAI,
volume 34, pp. 1878–1885, (2020).

[11] Ning Chen, ‘On the approximability of influence in social networks’,
SIAM J DISCRETE MATH, 23(3), 1400–1415, (2009).

[12] Flavio Chierichetti, Jon Kleinberg, and Sigal Oren, ‘On discrete prefer-
ences and coordination’, J COMPUT SYST SCI, 93, 11–29, (2018).

[13] Dmitry Chistikov, Grzegorz Lisowski, Mike Paterson, and Paolo Tur-
rini, ‘Convergence of opinion diffusion is pspace-complete’, in Proc. of
AAAI, volume 34, pp. 7103–7110, (2020).

[14] Gennaro Cordasco, Luisa Gargano, Marco Mecchia, Adele A Rescigno,
and Ugo Vaccaro, ‘Discovering small target sets in social networks: a
fast and effective algorithm’, Algorithmica, 80, 1804–1833, (2018).

[15] Morris H DeGroot, ‘Reaching a consensus’, J AM STAT ASSOC,
69(345), 118–121, (1974).

[16] Pedro Domingos and Matt Richardson, ‘Mining the network value of
customers’, in Proc. of KDD, pp. 57–66, (2001).

[17] Piotr Faliszewski, Rica Gonen, Martin Kouteckỳ, and Nimrod Tal-
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