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Abstract. Training reinforcement learning (RL) agents using scalar
reward signals is often infeasible when an environment has sparse
and non-Markovian rewards. Moreover, handcrafting these reward
functions before training is prone to misspecification. We learn non-
Markovian finite task specifications as finite-state ‘task automata’
from episodes of agent experience within environments with un-
known dynamics. First, we learn a product MDP, a model composed
of the specification’s automaton and the environment’s MDP (both
initially unknown), by treating it as a partially observable MDP and
employing a hidden Markov model learning algorithm. Second, we
efficiently distil the task automaton (assumed to be a deterministic
finite automaton) from the learnt product MDP. Our automaton en-
ables a task to be decomposed into sub-tasks, so an RL agent can
later synthesise an optimal policy more efficiently. It is also an inter-
pretable encoding of high-level task features, so a human can verify
that the agent’s learnt tasks have no misspecifications. Finally, we
also take steps towards ensuring that the automaton is environment-
agnostic, making it well-suited for use in transfer learning.

1 Introduction

Reinforcement Learning (RL) can be prohibitively slow (sample in-
efficient) at learning an optimal policy when the reward signal is
sparse and non-Markovian because of the credit assignment prob-
lem. However, this setting is common: any task where no reward is
given until a sequence of sequential sub-tasks is completed. Consider
a medical procedure where the ordering of sub-task completion mat-
ters or where one can only enter a room if one already has the key.

Three existing approaches for improving learning in this setting
are hierarchical RL [23], which allows agents to plan at various levels
of abstraction; transfer learning, which utilises knowledge learnt
from similar tasks [29]; and temporal logic planning approaches,
which guide the agent’s exploration by focusing it on the MDP frag-
ment that satisfies a linear temporal logic (LTL) property [15, 30].
The latter is similar to Icarte et al [19]’s reward machines (finite-state
machines that represent non-Markovian reward functions) because
an LTL property is often represented as an automaton.

Task specifications are often separable, so an automaton (or reward
machine) allows an optimal policy to be found more efficiently by
breaking the task into Markovian sub-tasks. Recent work (see Sec-
tion 5) recognises that this automaton is often a priori unknown, so
they learn it concurrently with finding an optimal policy. We focus
on how to best learn the task automaton (TA) representing a task

specification in sparse, non-Markovian reward environments. To our
knowledge, ours is the first model-based approach; we learn a model
of the underlying MDP along with the TA. The aforementioned work
on temporal logic planning, sample-efficient model-based RL [35],
or other methods [6] can then synthesise an optimal policy.

Contributions: Our algorithmic pipeline learns both a task spe-
cification as a TA (encoded as a deterministic finite automaton
(DFA)) and a model of the MDP, from episodes of agent experience
within an environment with unknown dynamics and sparse, non-
Markovian reward. This improves sample efficiency in three ways: a
TA exposes a task specification’s separability, so it allows for solving
sub-tasks independently; our model-based approach helps the agent
learn an optimal policy more efficiently; and we remove environ-
mental bias from the learned TA for better transfer learning [29].

We learn the TA via an intermediate product MDP structure, com-
posed of the environment’s ‘spatial’ MDP and the task specifica-
tion’s TA. The product MDP is partially observable – the agent only
observes its state in the spatial MDP and its reward, not the TA-state
(its progress through the unknown task). The product MDP is learnt
using the Baum-Welch algorithm [7] by first learning an estimate of
the spatial MDP using a uniform prior. Then, this learnt spatial MDP
is used as an inductive bias for learning the full product MDP. In
Section 4, we show that our approach is more efficient than existing
SAT-based approaches to learning TAs [1, 9, 16, 34, 36] by compar-
ing with Biermann and Feldman’s [8] SAT-based algorithm.

Once the product MDP is learnt, distilling the TA via our ‘Cone
Lumping’ method is computationally cheap. This makes the product
MDP useful for transfer learning. If the environment changes, the
agent only needs to update the affected part of the product MDP be-
fore efficiently re-distilling the TA.

This paper also addresses reward misspecification [3] by using a
task specification not a scalar reward function to encode a complex,
non-Markovian task. Scalar reward functions are brittle with respect
to small environmental changes [33], do not signal a task’s separab-
ility, and can be difficult for a human to interpret. In contrast, our
learnt TA reveals the full task specification. Since our pipeline works
in unknown environments where many high-level tasks may exist,
agents using our pipeline can learn multiple tasks in one TA. Al-
though we focus on deterministic TAs in this paper (i.e., DFAs), our
approach can be straightforwardly extended to learning probabilistic
automata [11, 24]. This paper is self-contained, but see [2] for pro-
position proofs and experimental details.
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2 Setup

An agent’s interaction with its environment can be viewed at many
levels of abstraction, amongst which a low and fine-grained descrip-
tion is often modelled by a Markov Decision Process (MDP). How-
ever, agents can also recognise higher-level features of the environ-
ment (e.g., chairs or tables). These are included in a labelled MDP (in
Section 2.1) using a set of (atomic) propositional variables from an
alphabet of labels AP , which are assigned truth values at every MDP
state via a labelling function L. Task specifications refer to sequential
compositions of these high-level features and can be encoded as TAs
(in Section 2.2), which graphically represent the structure of tasks
that an agent can get reward from completing. A TA and the MDP
can be combined into a single structure, a product MDP (in Section
2.3) to provide a holistic representation of the agent’s exploration.

2.1 MDP Environment

Definition 1. A Markov Decision Process (MDP) is a tuple M =
(S,A, s0, P,R, γ), where S and A are finite sets of states and ac-
tions, s0 is the initial state (or distribution over states), P : S ×
A × S → [0, 1] is the transition probability distribution, R :
(S × A)+ × S → R is a (non-Markovian) reward function1,
and γ ∈ [0, 1) is the discount factor. A labelled MDP is a tuple
M = (S,A, s0, P,R, γ,AP, L); an MDP enriched with AP , a fi-
nite alphabet of atomic propositions (labels), and L : S → 2AP , a
labelling function.

A sequence of states and actions s0, a0, s1 . . . , an−1, sn is called
a trajectory. A state or action trajectory is the restriction to just the
sequence of states (st)nt=0 ∈ S+ or actions (at)

n
t=0 ∈ A+. A state

trajectory is attainable if
∏n

t=0 P (st+1 | st, at) > 0 for some ac-
tion trajectory (at)

n
t=0, and impossible otherwise. A trajectory is ac-

companied by a reward sequence (rt)
n
t=0 and a sequence of labels,

called a trace, (�t)nt=0 ∈ (2AP)∗, where L(st) = �t for all t ≤ n.
A (history-based) policy π : (S ×A)+ ×A → [0, 1] is a function
mapping trajectories to probability distributions over actions, where
π(at | s0, a0, . . . , st) gives the probability of the agent choosing
action at at state st given the (historical) trajectory s0, a0, . . . , st.
Memoryless policies are a special case where the distribution over
actions only depends on the last state (standard in RL because stor-
ing entire histories is intractable). The agent starts at s0 in each ex-
ploration episode and, at each time step t, in state st, it selects ac-
tion at with probability π(at | st), before transitioning to a new
state st+1 with probability P (st+1 | st, at) whilst receiving a re-
ward rt = R(s0, a0, . . . , st, at, st+1). The agent’s task is to find
a policy π that maximises the expected sum of discounted reward
Eπ

[
Σn

t=0γ
trt

]
. A policy π is fully mixed if every action at every

state is chosen with non-zero probability (i.e., π(a | s) > 0 for all
s ∈ S and a ∈ A). We assume the agent observes state trajectories,
traces, and reward sequences, as it explores the labelled MDP.

Given the initial state s0, fixing the agent’s policy π in an MDP
M induces a Markov chain (MC) Mπ if for all state transitions,
the reward function’s output is independent of the last action (i.e.,
R(ζ, ai, st+1) = R(ζ, aj , st+1) for all ai, aj ∈ A, where ζ ∈
(S×A)+). Definition 1’s reward function is non-Markovian because
it depends upon the full trajectory up until that point. A Markovian
reward function R : S ×A×S → R only depends on the last trans-
ition. State-based rewards could also be handled straightforwardly.

1 This must encompass the initial transition, as evidenced by the use of the
non-empty repetition operator +.
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Figure 1: (a) The labelled MDP environment and (b) 5 state TA rep-
resenting a task specification for Example 1.

Example 1. An RL agent is in Figure 1a’s environment. The task is
to collect coffee� for the guest on a couch� before turning on
the TV� and then ascending the stairs (Figure 1b). The carpet
� and book � do not affect whether the agent can achieve its goal.
The arrow next to the silhouette indicates the initial state.

Example 1’s MDP environment is shown in Figure 1a. The agent’s
possible actions A are to move in the adjacent up, down, left,
and right directions; the MDP’s state space cardinality |S| is 25;
and the transition dynamics are initially unknown (as discussed
later, stochasticity in the dynamics derives from randomised ac-
tion execution). The set of (atomic) propositional variables AP ≡
{�,�,�,�,�, } represent the high-level features of the envir-
onment. Empty cells are implicitly labelled L(s) = ∅ (i.e., the MDP
state s ∈ S has no high-level environmental feature of interest).

If the agent only gets a positive reward upon completing the full
task specification, this cannot be expressed with a Markovian reward
function with respect to the MDP’s state space S because the agent
cannot go between states labelled � and � in one timestep, let
alone complete all four subtasks. So, the agent must learn an optimal
policy in an environment with a non-Markovian reward function that
provides sparse feedback. This challenge of planning using full tra-
jectories can be surmounted by recognising that the agent also ob-
serves traces of high-level features in AP . By maintaining a memory
of complete subtasks (e.g., coffee collected) at this higher-level of ab-
straction (with smaller dimension), the agent can overcome the ‘curse
of dimensionality’ and synthesise an optimal policy more efficiently
by exploiting the compositionality of many tasks.

2.2 Task Specification

Linear temporal logic (LTL) or Linear Dynamic Logic (LDL), eval-
uated with respect to finite trajectories (LTLf /LDLf ), is often used
to express a task specification as temporally extended goals, or con-
straints on plans because this mitigates the sample inefficiency of RL
in non-Markovian environments [15]. In fact, Littman et al [22] argue
that task specifications are superior to reward functions for specify-
ing behaviour, as they are environment independent. We exploit the
fact that the expressive power of both LDLf and LTLf is subsumed
by the class of regular expressions, so they can be represented by
deterministic or nondeterministic finite automata (DFAs/NFAs) [6].

Definition 2. A Non-Deterministic Finite Automaton (NFA) is a
tuple N = (Q, q0,Σ, δ,F), where Q is a finite set of states, q0 ∈ Q
is the initial state, Σ is a finite alphabet, δ : Q × Σ → 2Q is a
non-deterministic transition function, and F ⊆ Q is the set of ac-
cepting states. If |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ, then N is
deterministic and is called a Deterministic Finite Automaton (DFA).

Let Σ∗ be the set of all finite words over Σ. A finite word w =
α1α2 . . . αn ∈ Σ∗ is accepted by an NFA N if there exists a fi-
nite run u0, ..., un ∈ Q∗ where u0 = q0, ui+1 ∈ δ(ui, αi+1) for
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0 ≤ i < n, and un ∈ F . In a DFA, only one path follows w, as
each transition is deterministic, so the final state must be accepting,
otherwise the word is rejected. The set of all accepted words is the
language recognised by N , denoted by L(N ). A DFA is trivially
an NFA and any NFA can be converted into an equivalent DFA us-
ing Rabin and Scott [25]’s subset construction method, so NFAs and
DFAs both recognise the class of regular languages.

Definition 3. A Task Automaton (TA) A is a DFA (Q, q0,Σ, δ,F)
with Σ = 2AP , where AP is a set of propositional variables inher-
ited from the labelled MDP M.

We define a TA as a DFA to make our presentation as clear as
possible. However, other types of automaton may also be used, such
as Icarte et al [19]’s reward machines which, rather than having a set
of accepting states (as in DFAs), outputs a reward function at each
state δr : Q → [S × A × S → R]. Our statistical approach to
learning TAs also allows for probabilistic TAs [24], where rewards
exhibit both non-Markovian and stochastic dynamics.

The TA A keeps a ‘memory’ of traces (�t)
n
t=0 ∈ (2AP)+ that

the exploring agent observes by transitioning according to the cur-
rent truth assignment of the propositional variables. A trace is MDP-
attainable if there exists a state trajectory (st)

n
t=0 such that L(st) =

�t for all t. The TA’s accepting states F mark the satisfaction of some
task specification. In other words, the agent completes a task via trace
(�t)

n
t=0 if, correspondingly, the TA starts in state u0 = q0, transitions

according to ut+1 = δ(ut, L(st+1)) for t ≥ 0, and un ∈ F .
The TA in Figure 1b represents the task specification for Ex-

ample 1 in terms of the high-level environmental features. Each move
in the MDP is matched by a transition in the TA (recall that empty
squares in Figure 1a are labelled by ∅). For example, the (blue)
marked trajectory in Figure 1a represents an MDP-attainable accept-
ing path in the TA and each ‘sub-path’ denotes a TA ‘sub-task’. The
sub-path (∅, ∅, ∅, ∅,�) denotes the path in the MDP that coresponds
to traversing the q0 → q1 edge in the TA. Note that the labels on
self-loops in Figure 1b (e.g., ¬�) are syntactic sugar to denote all
labels not associated with outgoing edges from that TA state. The
TA is environment-agnostic because it applies to any labelled MDP
that includes the set of all high-level features {�,�,�, } neces-
sary for completing the corresponding task specification. Therefore,
learning the TA can not only expedite policy synthesis within this en-
vironment, but it also helps transfer learning, where an agent wants
to use what it knows about attaining reward in one environment to
obtain reward in different environments – e.g., if an agent learns it is
necessary to pick up a key before opening a door in one house, then
this is likely applicable to other houses.

2.3 Product MDP

Definition 4. Given an MDP without reward M\R = (S,A, s0, P )
and a TA A = (Q, q0,Σ, δ,F), the product MDP is the struc-
ture M ⊗ A = (S⊗,A, s⊗0 , P

⊗, R⊗, γ), where S⊗ = S × Q,
s⊗0 = 〈s0, q0〉 is the initial state pair; P⊗ : S⊗ × A × S⊗ →
[0, 1] is the transition probability function, where P⊗(〈sj , qj〉 |
〈si, qi〉, ai) = P (sj | si, ai) if qj = δ(qi, L(sj)) and 0 otherwise;
and R⊗ : S⊗ × A × S⊗ → {0, 1} is a reward function such that
R⊗(〈st, qt〉, at, 〈st+1, qt+1〉) = χF (qt+1), where χF is the indic-
ator function for the TA’s set of accepting states. Non-zero reward is
obtained iff the agent transitions to an accepting state of the product
MDP (those related to an accepting TA state). Fixing any policy π in
the product MDP M⊗ A , induces a product MC Mπ ⊗ A .

A product MDP M⊗ A more holistically represents the agent’s
exploration progress towards achieving a task because both the MDP
M and the TA A transition: in M, these are the low-level dynamics
over states in S; in A , these represent the agent’s progress towards
completing a task specification. M ⊗ A ’s reward function R⊗ is
always Markovian because although a task may be non-Markovian
with respect to M, M⊗A keeps track of what is happening at both
M’s and A ’s level of abstraction. In other words, if M has a non-
Markovian reward function R representing a task encodable by A ,
then the non-Markovianity in R is resolved by synchronising M ⊗
A . The transitions in M⊗ A are executed ‘under the hood’ as the
agent explores (i.e., no a priori knowledge about M⊗A is needed).
Moreover, M⊗A does not increase the agent’s possible policy space
because A has deterministic transitions, so the trajectories (and so
also policies) in M and M⊗ A are in a bijection.

3 Task Automaton Learning

We now give our three-step algorithmic pipeline for learning an MDP
and a TA (i.e., the task specification) in unknown environments.

Algorithm 1 Learning a TA in an unknown labelled MDP

Input: put agent into an (unknown) labelled MDP M
Output: TA A ∗ that represents a task specification

1: OBSSEQ ← collect episodes of corresponding trajectories,
traces, and reward sequences.

2: function LEARNPRODUCTMDP(OBSSEQ) 	 Step 1

3: Use an HMM/POMDP learning algorithm to learn estimates of
(i) the spatial MDP M̂’s transition probability distribution P̂
(ii) the product MDP M̂ ⊗ Â ’s transition probability distribu-

tion P̂⊗.
4: function DISTILTA(M̂ ⊗ Â , OBSSEQ) 	 Step 2

5: Determinise M̂⊗ Â using Cone Lumping to return the MDP-
restricted TA ÂM̂

6: function POSTPROCESS(ÂM̂, OBSSEQ) 	 Step 3

7: Remove environmental bias and minimise ÂM̂

3.1 Step 1: Learn the Product MDP

Although the agent’s interactions with its environment are fully mod-
elled by the product MDP, the product MDP is only partially observ-
able. The agent observes MDP states as well as the associated labels
and rewards but does not observe the TA states it visits. So, Step 1
involves learning the product MDP’s transition function P⊗ by view-
ing the agent’s interaction with the (product MDP) environment as a
partially-observable Markov Decision Process (POMDP).

Definition 5. A Partially-Observable Markov Decision Process
(POMDP) is a tuple P = (S,A, s0, P,R, γ,O, Z) where
(S,A, s0, P,R, γ) is an MDP, O is an observation set, and Z :
O × S → [0, 1] is an observation probability function, where
Z(o | s) is the probability that observation o ∈ O is seen when
the agent is at the hidden state s ∈ S.

Remark 1. P⊗ := (S⊗,A, s⊗0 , P
⊗, R⊗, γ,O, Z) is a POMDP

that models an agent interacting with a product MDP M ⊗ A =
(S⊗,A, s⊗0 , P

⊗, R⊗, γ), where the agent makes observations from
the set O = S × {0, 1} according to the deterministic observation
function Z : O × S⊗ → {0, 1}.

A. Abate et al. / Learning Task Automata for Reinforcement Learning Using Hidden Markov Models 5



Remark 1 follows from Definitions 4 and 5. The agent’s obser-
vations in the POMDP P⊗ are from S × {0, 1}, where the latter
component is a binary value corresponding to the co-domain of the
reward function R⊗. At each time step t, the agent transitions from
a hidden state s⊗t = 〈st, qt〉 to s⊗t+1 = 〈st+1, qt+1〉 in the product
MDP, but observes just

〈
st+1, χF (qt+1)

〉
with probability 1. The

product MDP state s⊗t+1 is partially obscured from the agent. Recall
χF is the indicator function on the set of accepting states F in the TA
A . If a policy π is chosen by the agent interacting with the POMDP
P⊗, then the POMDP becomes a partially observable Markov chain
P⊗π , known as a Hidden Markov Model (HMM) [26].

To learn the product MDP M⊗A , we can employ any algorithm
for learning HMMs or POMDPs and apply it to P⊗ or P⊗π . We use
the Baum-Welch algorithm (BW) [7], due to its popularity and the
ability to steer optimisation towards a desired local optimum (see
Section 4 and, for further details, [2, Appendices C and D]). We learn
P⊗π in two stages. (i) Learn an estimate P̂ of the true spatial MDP
M’s transition probability distribution P using a fully mixed explor-
ation policy π. This can be any fully mixed policy, but we chose a
uniform random policy to assume no initial knowledge about the un-
derlying model. Since we know π, we can always recover P from Pπ .
(ii) Use this estimate P̂ as an inductive bias for learning the transition
probability distribution P̂⊗ of the full product MDP M⊗ A .

BW requires an initial guess on the number of hidden states
(|S⊗| = |S| × |Q|). Since the agent can observe the MDP states,
we only need guess the number of TA states k̂. Furthermore, this
guess only needs to be at least as high as the true k (i.e., k̂ ≥ Q). If
k̂ is too high, it generates duplication in the learnt matrix, which is
easily identified. For a sufficient upper bound for k̂ one can: use the
label set cardinality, use a TA simplicity assumption, or identify the
minimum number of distinct labels needed for task completion us-
ing successful exploration episodes. We did the latter. Further details
about the convergence criterion and other hyper-parameters (such as
the episode length and the number of episodes) are in Section 4.

To encode the learnt spatial MDP’s transition probability distribu-
tion P̂ as an inductive bias for learning P̂⊗, we take the Kronecker
product between a k̂ × k̂ identity matrix and P̂π (the matrix induced
from P̂ and π) to form the basis of the initial estimate of the product
MDP’s transition matrix. For example, with a three-state TA:

I3×3 ⊗K P̂π =

⎛
⎝
P̂π 0 0

0 P̂π 0

0 0 P̂π

⎞
⎠ .

Then, a small positive probability ε > 0 is added to each zero entry
in the above construction to ensure that all expressions in the HMM
learning procedure are well-defined. The probability ε can take any
positive value, but we chose a value inversely proportional to |S⊗|
for consistency across experiments. Finally, each row is normalised
so that the resulting initial estimate of the product MDP’s transition
matrix P̂⊗π is a valid transition probability matrix.

Concentrating on learning P̂⊗ (the process is the same for learn-
ing P̂ ), BW begins with initial estimates for the hidden transition
distribution P⊗π (an |S⊗| × |S⊗| matrix constructed from the in-
ductive bias, as explained), the observation probability function Z
(an |S⊗| × |O| matrix), and the initial state distribution (a vector
ρ ∈ [0, 1]|S

⊗| defined as ρj ≡ Pr[s⊗0 = s⊗j ]). It then finds the P⊗π
and Z that maximises the likelihood of obtaining the set of observa-
tion sequences O = (o1, ..., oT ) ∈ (O+)T :

〈P̂⊗π , Ẑ〉 = argmax
〈P⊗,Z〉

Pr
(
O | 〈P⊗π , Z〉) .

Definition 6. Two product MDPs M1 ⊗ A1 and M2 ⊗ A2

with the same action spaces A1 = A2 are observationally equi-
valent, denoted M1 ⊗ A1

∼= M2 ⊗ A2, if for any observa-
tion sequence, any action trajectory, and all τ ∈ N, it holds
that PrP

⊗
1 [(ot)

τ
t=0)|(at)

τ
t=1)] = PrP

⊗
2 [(ot)

τ
t=0)|(at)

τ
t=1)] , where

P⊗i = (Mi ⊗ Ai,O, Z). The observation spaces need not be
identical for this to hold.

Definition 6 says that the learnt product MDP is, in general, not
unique because several can have the same observational properties,
i.e., no gathered experiment (episode) can distinguish between them.

Proposition 1. The observational equivalence relation ∼= is an equi-
valence relation. It is straightforward to show that it is reflexive, sym-
metric, and transitive.

Proposition 2. Let M be a labelled MDP. For any two TAs A ,A ′,
if L(A ) = L(A ′), then M⊗ A ∼= M⊗ A ′.

Proposition 1 says we can find the quotient set of all product MDPs
with the same action spaces under the equivalence relation ∼=. The
equivalence class for the product MDP M⊗A is denoted by [M⊗
A ]. Proposition 2 enables us to formalise Step 1 of Algorithm 1.

Step 1: Given state trajectories and reward sequences from in-
teracting with the initially unknown product MDP M⊗A , learn
an estimate M̂ ⊗ Â ∈ [M⊗ A ].

Definition 7. The digraph G = (E, V ) underlying an MDP M
with state-space S and transition probability function P has V = S
and E = {si → sj : ∃ak ∈ A s.t. P (sj | si, ak) > 0}. M is
structurally correct with respect to another MDP M′ if the digraph
underlying M is isomorphic to M′.

Any algorithm which learns a maximum likelihood estimate
(MLE) for the HMM parameters is asymptotically structurally cor-
rect, provided it converges to the true MLE and belongs in [M⊗A ].
So, every hidden state of the learned model must correspond to a state
s⊗ ∈ S⊗ in the true product MDP M⊗ A [38].

3.2 Step 2: Distil TA from Product MDP

The TA component q of each product MDP state s⊗ = 〈s, q〉 is
hidden, but even when visible, the agent can only recover the TA
fragment accessible using paths in the MDP.

Definition 8. Given an MDP M and a TA A , the MDP-restricted
TA AM is the sub-graph of A covered by all MDP-attainable traces.
We refer to paths within/outside of the MDP-restricted TA sub-graph
as the MDP-attainable/MDP-non-attainable paths of the TA.

Proposition 3. Suppose an agent is given a structurally correct
product MDP M̂⊗ Â belonging to [M⊗A ], where M is the true
MDP underlying the product MDP, and the agent can observe s and
q for all 〈s, q〉 ∈ Ŝ⊗. Then, the agent can learn the MDP-restricted
TA ÂM̂, but may not be able to learn the full TA Â .

From Step 1, the agent knows the digraph of M ⊗ A and an es-
timate P̂ for the transition probability function of the true MDP M.
Therefore, we first compute a product MC M̂π ⊗ Â by assigning
to the agent a fully mixed policy π. We now recognise that when the
edges of the digraph underlying M̂π ⊗ Â are labelled according to
each edge’s target state (recall that the agent observes traces), it res-
ults in an NFA whose accepting states are those in which reward 1 is
obtained (see [2, Appendix B] for a worked example).

A. Abate et al. / Learning Task Automata for Reinforcement Learning Using Hidden Markov Models6



Proposition 4. Given a labelled product MC Mπ ⊗ A with bin-
ary reward, labelling every edge 〈si, q〉 → 〈sj , qj〉 according to
the label of its target state’s MDP component (i.e., in this case,
L(sj) = �j) results in an NFA.

This NFA can be converted into a DFA with language equal to the
MDP-restricted TA AM using the subset construction method [25].

Proposition 5. Let N be the NFA underlying the learnt product MC
Mπ⊗A . Then L(N ) = L(AM), where AM is the MDP-restricted
true TA.

However, the subset-construction algorithm has worst-case expo-
nential time complexity in the size of the NFA (i.e., O(2|S

⊗|)). We
therefore introduce our more efficient Cone Lumping method for
determinising NFAs that underlie product MDPs, which explicitly
leverages their product structure. ‘Lumping’ aligns with related lit-
erature (e.g., [10]). Our key insight is that out-going edges from a
product state 〈s, q〉 ∈ S⊗ of a product MC Mπ ⊗ A that have the
same label must transition to the same next TA state. Every time this
occurs, the product states are merged. When representing state trans-
itions sequentially from left to right, this merging criterion looks for
a cone structure to merge all states on the right-hand side (Figure 2).

Lemma 1 (Cone Lumping). Given a labelled product MC Mπ ⊗
A , let E〈s,q〉l = {〈s, q〉 L(si)−−−→ 〈si, qj〉 : L(si) = �} be the set of all
out-going edges from state 〈s, q〉 in the digraph underlying Mπ⊗A

with label �. Since any TA transition q
l−→ qj is deterministic, then

qj = qk for any pair qj , qk ∈ {q′ : 〈s, q〉 l−→ 〈si, q′〉}. Thus, for a

product state 〈s, q〉, |{q′ : 〈s, q〉 L(si)−−−→ 〈si, q′〉 ∧ L(si) = l}| = 1.

〈s, q〉

〈s1, q′〉

...
...

〈sn, q′〉

�

�

Figure 2: Schematics of “Cone Lumping”.

Performing Cone Lumping for all 〈s, q〉 ∈ S⊗ until a fixed point
is reached (i.e., no more states can be merged), obtains a TA accept-
ing (at minimum) L(AM), and at most L(A ) (by construction of
the product MDP). This is because all non-determinism in the NFA
underlying M ⊗ A comes from the possible existence of multiple
out-going edges with the same label from a product state.

Proposition 6. Cone Lumping determinises any product MDP in
O(|S⊗|3) time, exponentially faster than the O(2|S

⊗|) algorithm of
Rabin and Scott [25]’s subset-construction.

Cone Lumping therefore efficiently converts an NFA underlying
a labelled MC into a DFA (our TA in this work, Section 4) and it
assists in transfer learning because the hardness is confined to learn-
ing the product MDP. If the MDP or TA changes slightly, the agent
only has to relearn the affected part of the product MDP, before
using Cone Lumping to efficiently distil the new TA. In practice,
this uses the transition probability distribution P̂⊗π of the old MDP
and TA’s product MDP as an initial estimate for the new product
MDP. The parts of the MDP and TA that remain the same will not
need updating, so Baum-Welch only needs to update the parts that
have changed. This speeds up convergence significantly [38]. Fi-
nally, this process can also be useful outside of our work, e.g., for
(bi)simulation or model reduction studies [20].

q0start q1

¬�

�

(a)

q0start q1 q2

¬�

�

¬�

�

(b)

Figure 3: Two TAs for Example 1’s environment in Figure 1a to show
that the learned TA can be environmentally biased.

Step 2: Applying Cone Lumping to a labelled product MC
Mπ ⊗ A for all 〈s, q〉 ∈ S⊗ until a fixed point is reached
returns a TA A ′

M, where L(A ′
M) = L(AM).

3.3 Step 3: Remove environmental bias and minimise
the learnt TA

The TA distilled from the product MDP in Step 2 is in general not
unique (cf. Section 3.1). If the TA is a DFA, as has been this paper’s
focus, it can be minimised using, for instance, Hopcroft [17]’s al-
gorithm in O(n log n). However, the TA might also not be minimal
due to environmental bias. If a certain label must be traversed by the
agent to reach a necessary label for achieving the underlying task
specification, automaton-learning algorithms cannot differentiate the
importance of the two labels and will therefore assume that both are
necessary TA transitions, even when the former is unnecessary.

Theorem 1. Given an arbitrary product MDP M⊗ A , the TA dis-
tilled from M⊗A may not be unique because there can exist A ′ �=
A , with or without L(A ) �= L(A ), such that M⊗A ∼= M⊗A ′.

Proof sketch by (counter)example. Let M be the labelled MDP
defined by the environment in Figure 1a and A and A ′ be the TAs
in Figures 3a and 3b respectively, where A is the true TA. Then,
A ′ satisfies M ⊗ A ′ ∼= M ⊗ A . In Figure 1, a �-label must
be traversed immediately prior to reaching the �-label, no matter
which MDP path to � is taken. Because reward is only obtained
upon reaching �, there is no way to identify from the reward sig-
nal if the sequence (� , �) is necessary for reward, or just reaching
�suffices. The agent does not know which of the two task specifica-
tions, expressed by the TAs A and A ′, is sufficient.

Corollary 1. In general, it is impossible to verify that a TA A ′ is the
TA that underpins the product MDP M ⊗ A (i.e., that A ′ = A ),
even given knowledge of M and M⊗ A .

Thus, to minimise environmental bias, we must use counterfactual
reasoning in our post-processing step to select among the set of TAs
{A ′ : M ⊗ A ′ ∼= M ⊗ A } the TA that requires the smallest
alphabet to explain its behaviour.

Step 3: For every label in L(S), guess that it has no effect in
the supposed true TA A (i.e., the agent self-loops on every TA
state). To check this guess, first merge any states of the learned-
automaton A ′ that have a non-loop edge between them with this
label, then check if the resulting TA outputs the correct accept-
ance/rejection on every word in the set of observed sequences.

This post-processing only removes labels that are never meaning-
ful to A ; it does not remove labels that are necessary somewhere, but
may still exist ‘wrongfully’ in A ′ due to environmental bias. Further
post-processing can address this by looking for neighbourhoods of
(possibly same-labelled) states that entirely surround another label,
then checking, as above, whether these are necessary in A .
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4 Experimental Results

Although the main contributions of this paper are theoretical, our
experiments (available at https://github.com/dkhyland/TALearner)
evaluate the efficacy of Algorithm 1. To our knowledge, we are the
first to focus on learning both the TA and spatial MDP starting from
no a-priori knowledge. Our experiments assess our pipeline’s ability
to scale up to 5x5 MDP grid-worlds and 5-state TAs and benchmark,
where possible, to related work. These sizes are comparable to or
beyond those handled in all related work (see Section 5).

Figure 4 illustrates the three grid worlds and the three-, four-,
and five-state TAs used for our experiments. The grid worlds all
share a common set of high-level environmental features AP ≡
{�,�,�,�, }, which have been distributed randomly across the
grid. The agent can visit every action and state within the grid world.

�

�

��

�

(a) 3x3 gridworld

�

�

��

�

(b) 4x4 gridworld

�

� �

� �

�

�

�

�

(c) 5x5 gridworld

q0start q1 q2

¬�

�

¬

q0start q1 q2 q3

¬�

�

¬�

�

¬

q0start q1

q2

q3q4

¬�

�

¬�

�

¬�
�

¬

(d) 3, 4, and 5 state TAs

Figure 4: (a), (b), and (c) show the grid worlds used in all experi-
ments. The agent starts in the bottom left-hand corner of the grid and
follows a random exploration policy over all episodes. (d) gives the
TAs used for their respective task specifications: get coffee, then go
upstairs; get coffee, serve to guest on a couch, then go upstairs; and
get coffee, serve to guest on a couch, turn the TV on, then go upstairs.

For all experiments, the convergence criterion was taken to be the
point when the difference between the transition matrix estimates
over one pass through the training data achieves a maximum absolute
row sum less than 10−6. In practice, this is sufficient to ensure that a
structurally correct product MDP is learned.

The episode length and number of episodes used in the training
data are both hyperparameters that can affect the convergence time
and the structural correctness of the learnt transition matrix. In prac-
tice, choosing the episode length so that the agent achieves (on av-
erage) the task in 20 − 50% of the episodes ensures sufficient ex-
ploration of all states in the product MDP. Additionally, a trend was
observed that for larger product MDPs, more training episodes were
required to obtain a structurally correct estimate of the transition mat-
rix. The number of episodes sufficient for convergence in our ex-
periments was less in our model-based approach than in model-free
approaches in related work (Section 5). Exact hyperparameters used
and full results are presented in [2, Table 1, Appendix E].

Step 1 of our algorithm (learning the product MDP) is implemen-
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Figure 5: Step 1’s convergence times (a) comparing our pipeline (red)
with two baseline approaches, a uniform prior (blue) and an idealised
prior in which the spatial MDP is known (green) (b) for varying MDP
and TA sizes.

ted in C++ (see [2, Appendices D and E] for more details), and the
remaining steps are implemented in Python. All experiments are the
average of 3 runs (with negligible standard errors) and were con-
ducted on an Intel Xeon Gold 6248 (2.50GHz) CPU. Cone Lumping
(Step 2) determinises the NFA underlying the product MDP for the
5x5 grid and 5-state TA in Figure 1 in 0.43s, and removing environ-
mental bias (Step 3) takes 0.8ms. This also confirms the usefulness
of these steps for other purposes (argued in Sections 3.2 and 3.3).

We, therefore, turn to Step 1, Algorithm 1’s bottleneck. Although,
note that the question of whether there is an automaton with n states
that agrees with a finite set of data is NP-complete [14]. Recall from
Section 3.1 that we learn our product MDP estimate M̂ ⊗ Â using
the Baum-Welch algorithm in two stages. First, we learn an estimate
of the spatial MDP M’s transition probability distribution P̂ . Then,
this is used as an inductive bias for learning the transition probabil-
ity distribution P̂⊗ of the full product MDP. Figure 5a demonstrates
the merits of this two-stage approach using two baselines: i) a na-
ive uniform approach, which learns a product MDP estimate using a
uniform initialisation (each row in the transition matrix estimate was
initialised to a uniform distribution), ii) an idealised approach which
assumes that the agent has full a priori knowledge of the true spatial
MDP M; this is encoded in the initial estimate of the product MDP’s
transition function. Run time was chosen to measure performance
instead of the number of iterations because the latter depends on the
number of training steps per episode and the number of episodes gen-
erated, which varies across experiments.

Figure 5a demonstrates our approach’s superiority over the uni-
form baseline. We plot the convergence times of Step 1 for our ap-
proach (in red) against the two baselines for the 3 state TA and 3
different grid sizes. As the size of the grid increases, the time taken
to learn an accurate estimate of the product MDP trends towards the
idealised baseline. This is because the time taken to learn P̂ in the
first stage becomes negligible compared with learning the TA. Thus,
learning the TA via a larger (and therefore ostensibly more com-
plex) structure first, the product MDP, does not noticeably increase
the time complexity of the process. This also demonstrates why our
process is useful for transfer learning (Section 3.2).

Figure 5b shows the dependence of the convergence time on the
sizes of the MDP environment and TA. Increasing the TA size in-
creases the number of sub-tasks the agent must complete before
receiving reward. This Figure also shows how our algorithm’s ef-
ficiency compares with related work. We presented the codebases
of five related works (see [2, Appendix F] for details) the same se-
quences used in our smallest experiment (3x3 grid with a 3-state
TA), but none of these could successfully learn the TA (or threw a
recursion error). We were, however, able to perform some bench-
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marks against an implementation of Biermann and Feldman [8]’s
SAT-based algorithm in the libalf library to infer a hypothesis re-
ward machine consistent with the data for the 3- and 4-state TAs. We
used the same set of sequences that were used in our algorithm for
comparison, which were labelled as positive or negative sequences
depending on whether the agent received a reward. With a 4-state
TA, ours had a lower convergence time in a 4x4 gridworld than BF
managed in even a 3x3 gridworld, and BF timed out at 150, 000s
when trying to learn the 5-state TA in the 3x3 gridworld.

5 Related Research

SAT-based approaches [1, 9, 16, 34, 36] generate a hypothesis
automaton (equivalent to a temporal specification) and then verify
whether this agrees with the agent’s observations during exploration.
We showed that these are less efficient than our approach by bench-
marking against the only available codebase that learnt an automaton
from our traces. Meanwhile, Icarte et al [32] use Tabu search, which
relies on already knowing a partial model, and Furelos-Blanco et al
[12] use an Answer Set Programming algorithm, which assumes a
known upper bound for the maximum finite distance between TA
states. Our assumptions are weaker than these as we are only required
to guess an upper bound on the number of TA states (in Section 4, we
explained why this is easy to do) and we do not require any a priori
knowledge about the spatial MDP. Also, all of these approaches are
local, whereas ours is complete in the sense that our TA captures all
sequential behaviour seen in the traces (high-level features).

[21, 28, 33] all consider probabilistic approaches to learning spe-
cifications. Their maximum entropy approaches (inspired by Ziebart
et al [39]’s variant of inverse reinforcement learning) start from an
initial pool of candidate specifications. In contrast, our maximum-
likelihood approach does not a priori require any structure of the spe-
cification or the spatial MDP environment. Meanwhile, [11, 13, 27,
31, 37] use Angluin [5]’s L∗ algorithm to learn a TA, relying on an
oracle for equivalence and membership queries. We assume that the
agent cannot access an oracle and must learn the TA fully autonom-
ously, which aligns with the standard setup of model-free RL (note
that L∗ was not originally developed for RL applications). Because
this means our training data cannot be provided as input to L∗, we
cannot benchmark fairly against these approaches.

Learning an automaton from data is NP-hard [14], so under stand-
ard complexity assumptions, the time taken to solve this problem will
necessarily grow exponentially as a function of the size of the TA.
The most appropriate method will depend on the use-case as differ-
ent approaches choose to relax different assumptions. For example,
Corazza et al [9] and Dohmen et al [11] extend the SAT-based ap-
proach to noisy rewards and the L∗ approach to learning probabilistic
automata, respectively.

Our method is most appropriate in the following situations. First,
when one does not assume the presence of an oracle (required for
L∗). Second, if the reward environment is sparse, i.e, where the
agent must follow a sequence of non-rewarding steps before get-
ting a reward if and only it completes the full task. Third, when
sample-efficiency is critical (as in many real-world scenarios) since
our model-based approach requires fewer episodes to learn the TA.
Fourth, for transfer learning: our approach can readily handle the un-
derlying MDP or TA changing slightly. For example, suppose the
initial task specification is to get coffee for the guest on the couch.
Then, the furniture is rearranged and the task changes from collecting
coffee to collecting tea. Only the affected part of the product MDP
needs to be re-learnt before performing the subsequent computation-

ally cheap steps (2 and 3) in our algorithmic pipeline. Other methods
would need to start learning the new TA from scratch each time. Fi-
nally, the stochastic nature of our approach has advantages over the
discrete approaches of related work; e.g, we can easily incorporate
active-learning to more intelligently guide the agent’s exploration
[4]. Furthermore, our stochastic approach allows for entropy-based
uncertainty quantification and it will always generate an estimate of
the solution even with few exploration episodes.

6 Conclusions and Future work

We have introduced an unsupervised pipeline for an RL agent to learn
task specifications, encoded as deterministic, finite automata known
as ‘task automata’, in unknown environments with sparse and non-
Markovian rewards. The agent first learns a product MDP – a com-
position of the task automaton with the environment’s MDP before
distilling out a task automaton using our efficient ‘Cone Lumping’
method. Finally, our post-processing routine, which is useful for any
method that learns automata in RL, minimises environmental bias
and simplifies the learnt task automaton.

As future work, we are extending to environments with multiple
tasks (i.e., cases where an agent can achieve reward by satisfying
multiple different task specifications); introducing active learning to
further improve the efficiency of the rate-limiting Step 1; and try-
ing different techniques for learning HMMs/POMDPs (e.g., spectral
learning [18]). We are also interested in multi-agent settings, where
agents get rewarded according to different tasks or have to optim-
ally share information to learn a common task. Finally, we intend
to extend to cases where the task automata encode ω-regular LTL
properties, which require evaluation over infinite trajectories.
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