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Abstract. Recent advances in semantic scene understanding have underscored its
growing significance in the field of computer vision. Enhanced representations can
be achieved by incorporating semantic information derived from textual data and
applying it to generative models for scene modeling. Nevertheless, the features
extracted from text prompts may not seamlessly model a scene.

Scene graphs offer a robust solution to address this challenge, serving as a pow-
erful representation for semantic image generation and manipulation. In this study,
we delve into the utilization of scene graphs for this purpose and propose novel
methodologies to augment both the representation and learning processes involved
in image generation and manipulation.

For image generation, we examine meta-learning for producing images in un-
precedented scenes and refine the generated images using an autoregressive scene
graph generation model. In terms of image manipulation, we put forth a novel self-
supervised method that eliminates the need for paired before-and-after data. Ad-
ditionally, we boost image manipulation performance by disentangling latent and
graph representations in a self-supervised manner.

By evaluating the efficacy of our proposed approaches on a diverse range of pub-
licly available benchmarks, we demonstrate their superiority, ultimately achieving
state-of-the-art performance in the domain of semantic image generation and ma-
nipulation.
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1. Introduction

The field of computer vision has witnessed remarkable progress in recent years, with a
growing emphasis on the interpretation [1] and understanding of complex scenes. This
has led to the increasing importance of integrating semantic information from textual
sources into generative models, which can facilitate richer and more detailed scene rep-
resentations. Despite the promise of these advancements, a crucial problem that remains
is the effective modeling of scenes based on features extracted from text prompts, as
these features may not always capture the intricacies and relationships inherent in a given
scene.

Previous work in semantic scene understanding has primarily focused on leveraging
textual information to inform generative models. However, these approaches have ex-
hibited shortcomings in terms of accurately modeling and capturing complex semantic
relationships between various scene components. To address this limitation and advance
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the state of the art in semantic image generation and manipulation, our study explores
the potential of scene graphs as a powerful and versatile solution.

Scene graphs provide a comprehensive representation that encapsulates both the se-
mantic relationships and the structural composition of scenes, offering a more effective
means of addressing the challenges associated with the integration of textual information
into generative models. Our research is centered around devising innovative methodolo-
gies that can enhance both the representation and learning processes involved in image
generation and manipulation tasks by harnessing the capabilities of scene graphs.

In summary, this research project includes the following key contributions:

• We propose using meta-learning [2,3,4,5] for generating images in novel scenes.
• We refine the image generation process through the implementation of an autore-

gressive scene graph generation model.
• We address the challenges associated with image manipulation by introducing a

pioneering self-supervised method, eliminating the need for paired before-and-
after data.

• We further enhance the performance of image manipulation tasks by proposing a
self-supervised disentangling latent and graph representations in a self-supervised
manner.

Through extensive experimentation and evaluation on a diverse range of pub-
licly available benchmarks, our research demonstrates the effectiveness of the proposed
methodologies in outperforming existing approaches. By achieving state-of-the-art per-
formance in the domain of semantic image generation and manipulation, this study not
only contributes valuable insights and advancements to the broader field of computer
vision but also lays the groundwork for future research and practical applications in se-
mantic scene understanding.

2. Related Works

Scene Graphs Scene graphs provide a directed graph representation that characterizes
an image [6], with objects represented as nodes and their relationships depicted as edges.
A wide range of research has delved into generating scene graphs from images [7,8,9,
10,11,12,13] and more recently, from point clouds [14,15]. The primary objective of this
task is to discern the objects present in a scene and their associated visual relationships.
To achieve this goal, various strategies have been investigated, such as iterative message-
passing [16], graph decomposition [17], and attention mechanisms [18,19]. Scene graphs
have proven to be a potent alternative for conditional scene generation [20,21,22] and
manipulation [23], which we will further examine in the subsequent sections.

Image Generation Recent advancements in image generation have predominantly
stemmed from Generative Adversarial Networks [24] and diffusion models [25,26]. The
research community has delved into conditional variants [27], which facilitate image
generation based on various input modalities. For instance, Pix2Pix [28] serves as a
model for translating between different image domains, while CycleGAN [29] addresses
this task without requiring paired images for training. On the other hand, studies focused
on unconditional generation [30,31] are typically domain-specific, such as facial images.
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A series of approaches [32,33,34] propose semantic image generation, whereby in-
put semantic maps produce corresponding images. Alternative methods involve image
generation from layout [35,36], using bounding boxes and class labels for each scene in-
stance. More closely related to our work are techniques that generate images conditioned
on scene graphs [20,37,38], with the layout serving as an intermediate step to translate
the graph structure into image space. Johnson et al. [20] pioneered this approach with
Sg2im, a supervised method utilizing a combined object-level and image-level GAN
loss. Subsequent research has enhanced performance in this challenging task by incorpo-
rating per-object neural image features to boost diversity [37] and leveraging contextual
information to refine the layout (CoLoR) [38].

Image Manipulation Image generation typically incorporates a user interface to spec-
ify the subject of change [39]. Early works in scene-level image editing employed hand-
crafted techniques, which involved replacing parts of an image with sample patches from
a database [40]. One such manipulation method is image inpainting [41], where a user
specifies a mask for removal and automatic filling of an image area [42]. This can be fur-
ther enhanced with semantics [43] or edges [44,45] to guide the missing region. Hong et
al. [46] used a learned model on a semantic layout representation, allowing users to mod-
ify images by adding, moving, or removing bounding boxes. SESAME [47] enables users
to draw a mask with semantic labels on an image to indicate the category of changed
pixels. Similarly, EditGAN [48] allows users to alter object appearance by modifying a
detailed object part segmentation map [49,50]. SIMSG [23] employs scene graphs as the
interface, where users can manipulate images by altering the nodes or edges of a graph.
Recently, Su et al. [51] introduced an enhancement to this model by utilizing masks in-
stead of bounding boxes for object placement. Contrasting with these approaches, our
objective is to model an object representation that disentangles appearance and pose.

3. Method

In this section, we describe our methodology for enhancing the representation and learn-
ing processes involved in image generation and manipulation tasks using scene graphs.
Our approach consists of several key components: (1) meta-learning for generating im-
ages in novel scenes (MIGS), (2) autoregressive scene graph generation (SGGen), (3)
self-supervised semantic image manipulation (SIMSG), and (4) disentangling latent and
graph representations (DisPositioNet).

3.1. Definitions

A scene graph G is a directed graph representation of an image I, where the nodes V rep-
resent objects and the edges E represent the semantic relationships between the objects.
Formally, a scene graph can be defined as G = (V,E), where V = v1,v2, . . . ,vn is a set
of object nodes and E = ei j is a set of directed edges representing relationships between
objects vi and v j. Each object node vi is associated with an object category label ci ∈ C ,
where C denotes the set of all object categories. Similarly, each edge ei j is associated
with a relationship label ri j ∈ R, where R denotes the set of all relationship types.
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3.2. Scene Graph to Image

The goal of the scene graph to image model (SG2Im) is to learn a model that generates
the image I conditioned on the scene graph G. We employ a graph neural network (GNN)
to extract features Ho of each object in the scene from the scene graph. The GNN param-
eters are represented by θGNN. Then a layout L is constructed after predicting the bound-
ing box and pseudo-segmentation map from the objects. Finally, the decoder network is
conditioned on the layout and the image is generated.

Object Feature Extraction The features for each object in the scene Ho are the result
of message passing inside the GNN after numerous iterations. The message passing en-
forces the object embeddings to be updated based on their neighbouring nodes as well as
their connected relationships.

Layout Generation Once we have the object embeddings Ho from the graph, we con-
struct a layout L that defines the spatial arrangement of objects in the image. First, we
predict the bounding box coordinates xo for each object from their corresponding em-
beddings using a multi-layer perceptron (MLP) called boxNet, denoted by θbox. Then,
a pseudo-segmentation map is predicted by another MLP that defines the object shape.
The layout L is constructed by arranging the object embeddings in the spatial locations
of their corresponding bounding box locations. Therefore, the layout becomes similar
to a high-dimensional segmentation map with the object embeddings forming its depth
information.

Image Synthesis With the constructed layout L, we synthesize the final image I′ using
a conditional GAN. The generator G of the conditional GAN takes the layout L as input
and produces an image I′:

I′ = D(G ;θG), (1)

where θG denotes the parameters of the generator. The discriminator D of the conditional
GAN aims to distinguish between real and generated image pairs, with parameters θD.
The generator and discriminator are trained in an adversarial manner to optimize the
following objective:

LGAN = min
θG

max
θD

EI∼pdata [logD(I;θD)]+EI′∼pG [log(1−D(G(G ;θG);θD))], (2)

where I is sampled from the true data distribution pdata, and G(G ;θG) represents the
generated image conditioned on the scene graph G . In addition to the GAN objective,
the model is trained with auxiliary classifier loss, and a bounding box prediction loss:

LSG2Im = LGAN +‖x′ − x‖+LBCE(c′,c) (3)

, where for each node in the graph, c and c′ are the ground truth and predicted
object classes and x, x′ are the ground truth and predicted bounding box coordinates,
respectively.
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By optimizing the above objectives, we learn to generate images from scene graphs
that are semantically consistent and visually realistic.

3.3. Meta-Learning for Image Generation

We propose a meta-learning framework (MIGS) to generate images in novel scenes.
Given the scene graph G , our goal is to generate the corresponding image I. The genera-
tor model G is trained on a set of training scene graphs G1,G2, . . . ,Gm and corresponding
images I1, I2, . . . , Im.

During meta-learning, we employ episodic training, where each episode consists of
a support set S and a query set Q. The support set contains a subset of scene graphs
and their corresponding images, while the query set contains a separate subset of scene
graphs for which we aim to generate images. In each episode, we train multiple networks
θG,1,θG,2, . . . ,θG,n on the given support sets. The we average all the model parameters to
obtain the model for the current episode:

θG =
ΣN

n=0θG,n

N
(4)

Afterwards, the model parameters are updated similar to SG2Im as in Equation 3.

3.4. Graph representation learning via unconditional scene graph generation

To improve the quality of generated images, we model the generation process using an
autoregressive scene graph generation model, SGGen [52]. Given a scene graph Gi =
(Vi,Ei), we aim to generate images by predicting one node at a time in a sequential
manner. The SGGen model is a deep auto-regressive generative model that learns the
probability distribution over labeled and directed graphs. It generates a scene graph in a
sequence of steps, with each step producing an object node followed by a sequence of
relationship edges connecting to the previous nodes.

3.5. Semantic image manipulation using scene graphs

To address the challenges associated with image manipulation, we propose a self-
supervised method that eliminates the need for paired before-and-after data. We utilize
image reconstruction as a proxy task, where the image and scene graph are partially ran-
domly masked with Gaussian noise. Let I represent the input image, and G and G ′ denote
the original and manipulated scene graphs, respectively. Our goal is to reconstruct the
image using the information in the scene graph. Using this proxy task, we learn a model
φ , that generates a manipulated image I′ at inference time based on the manipulation
mode and the target scene graph G ′.

We optimize the parameters φ by minimizing the reconstruction loss function Lrec,
in addition to the GAN and auxiliary losses similar to MIGS [53] and SG2Im as shown
in Equation 3:

Lrec = ‖I′ − I‖ (5)
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Additionally, the model is trained with perceptual loss (LLPIPS) [54] to improve the
realism of the reconstructed images. Then the total loss becomes:

LSIMSG = Lrec +LSG2Im +LLPIPS (6)

Disentangled Representation Learning To further improve the performance of image
manipulation tasks, we propose a method called DisPositoNet [55] to disentangle the
representations within the graph neural network and the latent space of the GAN. This
ensures that certain features such as pose and appearance be preserved in the image
manipulation process, while the other features change.

The disentanglement is performed on graph-level features by adapting the Disen-
GCN [56] architecture to scene graphs. The original framework was designed to disen-
tangle the node features in the graph. Here, we modify the model to consider the edge
level features as well. This results in object embeddings H ′

o, which are distangled through
a neighbourhood routing mechanism in a self-supervised manner based on the effect of
their neighbour nodes.

The latent space disentanglement is done through modeling the latent space with
two variational autoencoders (VAE). We encode the disentangled object embeddings H ′

o
using the pose and appearance encoders Ep, Ea, respectively. The pose representation Hp
captures the spatial arrangement of objects in the scene, while the appearance represen-
tation Ha encodes the visual features of the image. By disentangling these representa-
tions in the latent space of the GAN, we aim to better model the relationships between
different elements in the scene.

Since the data does not have any annotations regarding the pose or appearance, we
disentangle the features by learning a transformation function ω , using the pose VAE by
having the pose decoder Gp predict the affine transformation parameters. On the other
hand, the second decoder L′ = Ga is supposed to predict the scene layout without the
pose information. To reconstruct the final image, we generate the original scene layout
L by applying the affine transformation function using the predicted parameters to the
non-transformed scene layout L′:

L = ω(L′) (7)

In addition to the SIMSG [23] objective functions provided in Equation 6, we add
variational loss on the two VAEs in the latent space which try to minimize the KL diver-
gence between the data distribution in the latent space and the normal distribution.

4. Experiments and Results

In this section, we present the results of our experiments and discuss the performance of
our proposed methodology for semantic image generation and manipulation. The evalu-
ation was conducted on multiple public benchmarks, which allowed for a comprehensive
assessment of our approach in comparison to existing state-of-the-art methods.
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4.1. Semantic Image Generation

We show the performance of the SGGen [52] and MIGS [53] on the task of image gen-
eration from scene graphs. In addition, we show the graph generation error for SGGen.

Quantitative Results To compare the distribution of the generated scene graphs by
SGGen with the ground truth scene graphs, we measure the Maximum Mean Discrep-
ancy (MMD) distance between them. This is shown in Table 1. In addition, we condition
SG2Im [20] on the scene graphs generated by SGGen and compute the FID, Inception
Score and Precision / Recall between the ground truth and generated images.

We evaluate MIGS on BDD100k [57] and Visual Genome (VG) [58] datasets, and
show the quantitative results in Table 2 and Table 3, respectively. We evaluate the model
in few-shot (with 5 and 10 samples) setting, as well as full data (160-shot) setting.

Table 1. Quantitative evaluation of the graph samples (left) and image samples (right)

Model Ordering
Graph Image

MMD node (×103) ↓ MMD graph (×103) ↓ FID ↓ IS ↑ Precision ↑ Recall ↑

GraphRNN [59]
BFS 2.3 1.3 75.8 4.88 0.680 0.660

Random 0.39 1.2 74.5 4.85 0.679 0.664

BFS 2.05 1.82 73.3 5.04 0.679 0.690
SGGen [52] Hierarchical 1.85 0.63 72.2 5.26 0.717 0.714

Random 0.37 0.11 71.2 4.95 0.727 0.714

Ground Truth 0.018 0.023 73.0 5.22 0.693 0.707

Table 2. Quantitative results on BDD100k fine-tuned on 5,10 and 160 shots.

Method Decoder
FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓

160-shot 10-shot 5-shot

SG2Im [20] CRN 194 210 176 186.5 196.8 224.2
MIGS [53] CRN 158.5 156.4 157 158.4 183.5 187.6
SG2Im [20] SPADE 66.1 42.2 70.6 48.3 95.2 73.1
MIGS [53] SPADE 49.5 26.7 46.1 24 53.5 30.7

Table 3. Quantitative results on VG fine-tuned on 5, 10 and 160 shots.

Method Decoder
FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓ FID ↓ KID ·103 ↓

160-shot 10-shot 5-shot

SG2Im [20] (All epochs) SPADE 55.20 35.54 81.42 59.39 91.79 68.52
MIGS [53] (1/3 epochs) SPADE 54.83 34.21 76.56 52.02 84.87 59.38
MIGS [53] (All epochs) SPADE 54.24 29.00 75.96 50.69 83.54 55.28

Qualitative Results We show the qualitative results of MIGS [53] in Figure 1. The
qualitative analysis of the generated images revealed that our method was able to pro-
duce visually coherent and semantically meaningful scenes even when trained with a few
samples in the new environment.
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Figure 1. Qualitative results of MIGS [53] compared to SG2Im [20] on BDD100k dataset [60].

4.2. Semantic Image Manipulation

In this section, we provide the results for semantic image manipulation and compare the
results of our proposed methods, SIMSG [23] and DisPositioNet [53].

Quantitative Results The quantitative evaluation of image manipulation for real world
datasets is not possible, since there are no pairs of before and after manipulation. There-
fore, we evaluate the performance of our methodologies for semantic image manipula-
tion through the image reconstruction task and measuring the reconstruction error. In
addition, we measure the common image generation metrics, i.e. FID, Inception Score
(IS) and KID. The results of the quantitative evaluation and comparison between SIMSG
[23], DisPositioNet [53] and the related work are provided in Table 4 and Table 5 on
VG and COCO datasets, respectively.

Qualitative Results The qualitative results provided in Figure 2 for various image ma-
nipulation modes demonstrates that the disentangled representations within both the
GAN and the graph neural network contributed to the generation of images with consis-
tent object appearances, while maintaining accurate spatial relationships between differ-
ent scene elements.

4.3. Discussion

The results of our experiments demonstrate the effectiveness of our proposed method-
ology in addressing the challenges associated with semantic image generation and ma-
nipulation. The integration of scene graphs, meta-learning, and disentangled represen-
tation learning enabled our approach to accurately model complex scenes and generate
high-quality images that outperformed existing state-of-the-art methods.
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Table 4. Image reconstruction on Visual Genome. We compare the results of our method to previous works
using ground truth (GT) and predicted scene graphs. In the experiments denoted by (Generative), the whole
input image is masked. N/A: Not Applicable.

Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ IS ↑ MAE ↓ SSIM ↑
Generative, GT Graphs

ISG [37] Pix2pixHD 46.44 28.10 0.32 58.73 6.64±0.07 N/A N/A
SIMSG [23] SPADE 41.88 34.89 0.27 44.27 7.86±0.49 N/A N/A
DisPositioNet [55] SPADE 444111...666222 333555...333000 000...222666 444000...777555 777...999333±0.36 N/A N/A

GT Graphs

Cond-sg2im [20] CRN 14.25 84.42 0.081 13.40 11.14±0.80 29.05 52.51
SIMSG [23] SPADE 8.61 87.55 0.050 777...555444 111222...000777±0.97 222111...666222 555888...555111
DisPositioNet [55] SPADE 888...444111 888777...555666 000...000444888 7.66 11.65±0.58 21.76 58.18

Predicted Graphs

SIMSG [23] SPADE 13.82 83.98 0.077 16.69 10.61±0.37 28.82 49.34
DisPositioNet [55] SPADE 999...333999 888666...999111 000...000555222 111444...444222 111000...666999±0.33 222555...444000 555111...888555

Table 5. Image reconstruction on COCO

Method
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Generative

SIMSG [23] 54.03 24.12 0.490 N/A N/A
DisPositioNet [55] 555111...000777 222666...555333 000...444111888 N/A N/A

Non Generative

SIMSG [23] 9.36 87.00 0.086 27.68 49.93
DisPositioNet [55] 999...222444 888888...222666 000...000555777 222777...555222 50.35

The disentangling of latent and graph representations within both the GAN and the
graph neural network proved to be particularly beneficial, as it facilitated better mod-
eling of the relationships between different scene elements, leading to more coherent
and visually appealing images. Furthermore, our self-supervised method for image ma-
nipulation allowed for greater flexibility in the absence of paired before-and-after data,
demonstrating the potential of our approach for real-world applications.

In summary, our experiments confirm the superiority of our proposed methodology
in the domain of semantic image generation and manipulation, showcasing its potential
for various applications in computer vision and related fields.

5. Conclusion

In conclusion, this study has presented a novel approach to semantic image generation
and manipulation by leveraging the power of scene graphs, meta-learning, and disen-
tangled representation learning. Our methodology, which incorporates a self-supervised
method for image manipulation and disentangles latent and graph representations within
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Figure 2. Comparison of DisPositioNet [55] (denoted as Ours) to the previous work SIMSG [23] on (A) VG
[58] and (B) COCO [57] datasets.

both the GAN and the graph neural network, has demonstrated its effectiveness by out-
performing existing approaches and achieving state-of-the-art performance on a diverse
range of publicly available benchmarks.

The results of our research not only contribute valuable insights and advancements
to the broader field of computer vision but also open up new possibilities for future re-
search and practical applications in semantic scene understanding. Our approach can po-
tentially be extended to various domains, such as virtual reality, autonomous vehicles,
robotics, and video game development, where accurate and detailed scene representa-
tions are essential.

As for future work, several research directions can be explored to further enhance
the performance and applicability of our methodology:

• Diffusion Models: Integration of the proposed approaches into SOTA generator
models such as diffusion model.

• Dynamic scenes: Extending our methodology to handle dynamic scenes, such as
videos or interactive environments, would provide a more robust representation of
the temporal aspects of scenes and enable the development of advanced applica-
tions in video analysis and virtual reality.

• Unsupervised and semi-supervised learning: Exploring unsupervised and semi-
supervised learning techniques for scene graph feature extraction and image gen-
eration tasks could reduce the reliance on large amounts of labeled data and im-
prove the overall efficiency of our approach.

By addressing these potential research directions, we envision that our work will
continue to contribute to the ongoing advancements in the field of computer vision and
semantic scene understanding, ultimately benefiting various real-world applications and
opening up new avenues for exploration.
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