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Abstract. We present a novel counterfactual-based dashboard for explainable 
artificial intelligence (XAI) in process industries, aimed at enhancing the 

understanding and adoption of machine learning (ML) models by providing 

transparency, explainability, and performance evaluation. Our dashboard comprises 
two modules: a statistical analysis module for data visualization and model 

performance assessment, and an XAI module for exploring counterfactual 

explanations at varying levels of abstraction. Through a case study of an industrial 
batch process, we demonstrate the dashboard’s applicability and potential to 

increase trust in ML models among stakeholders, paving the way for confident 

deployment in process industries. 
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Extended Abstract 

With the advent of advanced control systems, the complexity of modern industrial 

processes, such as chemical and petrochemical plants, has increased significantly, 

making it challenging for human analysts to comprehend the underlying dynamics and 

dependencies efficiently. As a result, machine learning (ML) and artificial intelligence 

(AI) have become crucial tools in process industries to optimize plant operations and 

increase efficiency [1,2]. However, the lack of transparency, explainability, and 

interpretability of black-box ML models often poses a challenge to their adoption by 

human operators who need to understand the underlying data and reasoning behind the 

model’s predictions [3]. To address this challenge, we present a novel dashboard2 that 
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provides a human-machine interface for analyzing and explaining ML models in process 

industries. Our dashboard facilitates the model’s performance evaluation, offering the 

user, i.e., ML engineers and data scientists, the ability to understand the model’s behavior 

and output via interactive visualization and explanation. The innovation in our approach 

stems from incorporating counterfactual explanations, addressing a gap in existing 

solutions and offering a tailored experience for process industries. 

We demonstrate the applicability of our approach using a case study of an industrial 

batch process involving a single chemical reactor, where three distinct solid educts, 

cooling water, and steam are utilized across a 14-phase procedure, including educt 

addition, centrifugation, reaction, cooling, and material transfer [4]. To classify the 

different batch phases, we utilized a state-of-the-art convolutional kernel-based time 

series classification method, as described in [5]. The 14 phases are distinguished based 

on their characteristic dynamics, which are derived from the time series trends of five 

different process variables across a 20-minute sliding window. These variables are 

continuous sensor readings, including the reactor level and its steam inlet flow [4]. 

Our dashboard is composed of two modules: a statistical analysis module and an 

explainable AI (XAI) module. The statistical analysis module provides users an interface 

to explore and visualize historical data, allowing them to better understand the process 

and its dynamics. Through examining time trends in historical batches and phases and 

utilizing various tools, such as data selection, filtering, and trend visualization, one can 

obtain valuable insights into the data used to train and test the ML model. 

Within the statistical analysis module, users can further analyze the performance of 

the ML model using various tools. These include a confusion matrix [6], which shows 

how well the model discriminates between different classes, as well as different 

performance metrics such as the balanced accuracy or the Matthew correlation 

coefficient [7]. From this analysis, one can drill down to specific examples, allowing for 

a more in-depth understanding of certain classes. These capabilities permit evaluation of 

the performance of the ML model and identify areas where it may require improvement, 

for example by adjusting its parameters or retraining it with additional data. 

In recent years, explaining ML models and their outputs has been an active research 

topic [8]. XAI methods have been developed that aim at providing human-interpretable 

explanations of the predictions made by black-box ML models [3,8]. Among various 

XAI methods, counterfactual explanations have been selected for our approach due to 

their ability to present hypothetical inputs that would result in different prediction 

outcomes [9]. This approach supports understanding of the model’s behavior by allowing 

users to explore and comprehend the relationships between input features and the 

resulting predictions, thus providing insights into the model’s decision-making process. 

Our dashboard’s XAI module allows to explore these counterfactuals at different levels 

of abstraction, including high-, medium-, and low-level abstraction explanations. This 

capability enables users to understand how changes in inputs could lead to different 

prediction outcomes, thereby enhancing the transparency of the ML model. 

The high-level abstraction explanations in our XAI module provide an overview of 

the most crucial features influencing the predictions of the ML model over all classes. 

Medium-level abstraction explanations, on the other hand, focus on the features that the 

model uses to distinguish between any two phases. Finally, low-level abstraction 

explanations offer a detailed look at how the model can be confused and the prediction 

outcome altered by allowing the user to interactively generate counterfactuals. These 

different levels of explanations might help to gain a better understanding of how the ML 

model works and the features it relies on for making predictions. 
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In this work, we propose a dashboard that provides a valuable off-line tool for ML 

engineers and data scientists in the process industries to better understand ML models, 

facilitating system improvements and post-analysis of ML behavior to comprehend the 

underlying decision-making process, which in turn can enhance real-time applications 

for operators when the models are deployed in the field. By providing insight into the 

underlying data, model performance, and explanations for individual predictions as well 

as overall model behavior, our dashboard can increase trust and facilitate the adoption of 

these models by allowing ML engineers and data scientists to better comprehend the 

decision-making process and justify their models to stakeholders, ultimately leading to a 

more confident deployment of ML solutions in process industries. Future work will 

involve conducting user tests to evaluate the effectiveness of our dashboard and 

incorporating other explainer components, as well as extending it to additional ML 

applications in the process industries. 
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