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Abstract. Machine Learning with Deep Neural Networks (DNNs) has become a
successful tool in solving tasks across various fields of application. However, the
complexity of DNNs makes it difficult to understand how they solve their learned
task. To improve the explainability of DNNs, we adapt methods from neuroscience
that analyze complex and opaque systems. Here, we draw inspiration from how
neuroscience uses topographic maps to visualize brain activity. To also visualize
activations of neurons in DNNs as topographic maps, we research techniques to
layout the neurons in a two-dimensional space such that neurons of similar activity
are in the vicinity of each other. In this work, we introduce and compare methods
to obtain a topographic layout of neurons in a DNN layer. Moreover, we demon-
strate how to use topographic activation maps to identify errors or encoded biases
and to visualize training processes. Our novel visualization technique improves the
transparency of DNN-based decision-making systems and is interpretable without
expert knowledge in Machine Learning.

Keywords. neural networks, deep learning, model evaluation, explainable AI,
interpretable AI, topographic activation maps

1. Introduction

Machine Learning with Deep Neural Networks (DNNs) is a popular tool and highly
successful in solving tasks in many fields of application [1]. However, their complexity
complicates the understanding of how they solve their learned task [2]. To improve the
explainability of DNNs, we transfer methods from the field of neuroscience, which has
been studying the brain over decades. In this work, we focus on adapting how brain ac-
tivity recorded through Electroencephalography (EEG) measurements [3] is represented
as a top view of the head with a superimposed topographic map of neural activity [4].
We adapt this intuitive visualization of neural activity to use it for DNNs which do not
inherently have a topographic layout. To this end, we research techniques to layout the
neurons in a two-dimensional space in which neurons of similar activity are in the vicin-
ity of each other. Self-Organizing Maps (SOMs) [5] follow a similar motivation and con-
strain the neurons to form a topographic layout during training. However, most DNNs
that are used in practice are trained without such neuron layout. Our aim is to create a
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topographic layout visualization for any model, particularly those that are already trained
and potentially deployed in the real world.

In this work, we introduce and compare different methods to obtain a topographic
layout of neurons in a layer of a DNN. Moreover, we demonstrate use cases of the result-
ing visualization. This includes identifying potential reasons for erroneous predictions
and encoded biases of pre-trained models as well as visualizing training processes. Our
novel visualization technique improves the transparency of DNNs and is interpretable
without expert knowledge in Machine Learning. In this work, we particularly focus on
the visualization of representations. Improving models or mitigating biases is out of the
scope of this work, but our technique can facilitate applying existing model improvement
strategies in a more targeted manner.

2. Related Work

Getting insight into the internal structures and processes of trained DNNs is crucial be-
cause such models work as black-boxes [2]. Consequently, researchers proposed various
methods for visualizing and analyzing them.

Feature Visualization Feature visualization aims to explain the internal structures of a
trained Deep Learning (DL) model. To investigate which pattern is detected by a con-
volutional filter, an artificial input which maximally activates this filter can be created
[2, 6, 7]. Using a data example or random values as initial input, its values are updated
to maximize the activation values of the feature map of interest. If inputs are optimized
without constraints, they can appear unrealistic to a human. Therefore, the optimization
is typically performed with regularization techniques that penalize unnatural inputs [7],
which, however, can decrease the faithfulness of the obtained pattern.

Saliency Maps To explain the output of a DNN for an individual input example, attri-
bution techniques quantify the relevance of each input value for the output [8, 9, 10, 11].
The relevance values are visualized as a heat map on the input, commonly known as a
saliency map [12]. Various attribution techniques have been suggested that, for example,
compute gradients [6], combine gradient information with activations [13] or decompose
the output [14]. Saliency maps are most suitable for visually interpretable data, for ex-
ample, images or audio data as spectrograms [15, 16, 17]. However, saliency maps only
explain individual examples and some attribution techniques can be misleading because
their relevance computation is not strongly enough related to the output [18, 19, 20].

Data Representation Analysis To investigate how the DNN processes the input data
in general, the model-internal representations of the data can be analyzed. For example,
training linear models to classify the representations in a hidden layer indicates how well
particular properties are encoded in this layer [21, 22]. The similarity of representations
can be used to compare groups of related examples, for example, with Principal Compo-
nent Analysis (PCA) [23], Canonical Correlation Analysis (CCA) [24] or clustering tech-
niques [25, 26]. Further, there are graphical interfaces to investigate representations and
learned features [27, 28, 29, 30]. Moreover, the development of representations during
training can be studied [31]. Our introduced technique aims to analyze representations, as
well. In contrast to common existing approaches, it allows to compare high-dimensional
representations by visual inspection.
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3. Methods

In this section, we describe our proposed pipeline to compute the topographic activa-
tion maps. This includes obtaining hidden layer representations of groups of examples,
computing the layout of the topographic maps and visualizing activations according to
the layout. A visual abstract of the pipeline is shown in Figure 1. The implementation is
publicly available on https://github.com/valeriekrug/ANN-topomaps.
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Figure 1. Visual summary of computing topographic activation maps. A: characterize DNN activations for the
groups of interest. B: compute a layout in which similarly activated neurons are in the vicinity of each other. C:
scale the coordinates in both dimensions to a range from 0 to 1. D: apply interpolation for continuous coloring.

3.1. Hidden Layer Representations

We characterize the DNN activity with an averaging approach from our previous work
[26]. First, we select groups of interest to compare between, which can be the classes or
any other set of groups of examples. For each group, we compute the average activations
in the layer of interest and normalize the result by subtracting the average activation over
all groups (Figure 1A).

For the layout computation, we stack the obtained values (Figure 1B) as a G×N ma-
trix, where G and N denote the number of groups and neurons. We refer to the resulting
matrix as the Neuron Activation Profile (NAP) of the layer.

In Convolutional Neural Networks (CNNs), we characterize the feature map acti-
vations instead of each individual neuron. Therefore, we compute normalized group-
averages of the feature maps. We flatten each to a w∗h-dimensional vector and concate-
nate the vectors of all groups (w ∗ h ∗G). Finally, we obtain the NAP of the layer by
stacking these vectors for all feature maps, resulting in a (w∗h∗G)×N matrix.

3.2. Topographic Map Layout

To compute the layout of the topographic maps, we distribute the neurons of a hidden
layer in a two-dimensional space. In general, we aim to compute a layout in which neu-
rons of similar activity are in the vicinity of each other (Figure 1B). In this section, we
describe different approaches to obtain such layout.
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3.2.1. Self-Organizing Map (SOM)

We investigate SOMs because they are neural networks in which the neurons are arranged
in a two-dimensional layout and trained such that neighbors are similar to each other
[5]. Here, we train a SOM on the NAP values of the neurons of our investigated model
to map them to the topographic layout of the SOM. We use the MiniSom2 package to
compute a SOM layout of the neurons. For a layer of N neurons, we compute a square
SOM with shape d×d with d = �√N +1� such that there can potentially be one neuron
per SOM position. We train the SOM for 10 epochs and default parameters with the
NAPs as training data. Then, we assign each neuron the coordinate (integer values) of the
SOM position whose weights have the smallest Euclidean distance to its NAP values. To
distinguish neurons that are assigned the same coordinate, we distribute them uniformly
on a circle (radius of 0.2) centered at their shared coordinate.

3.2.2. Co-Activation Graph

Further, we use a layouting method that considers the most similar pairs of neurons but
not their exact similarity values. To this end, we first compute the pairwise Cosine simi-
larity of neurons according to their NAP values. We then create a graph with nodes rep-
resenting the neurons. For the 7.5% most similar pairs of neurons (threshold empirically
chosen), we draw an edge between the corresponding nodes. We further ensure that the
entire graph is connected. To this end, we identify all connected components and link
each smaller connected component to the largest via their most similar pair of neurons.
Finally, we layout the connected graph with the Fruchterman Reingold algorithm [32]
from the NetworkX package [33] and use the node coordinates as the topographic layout
of the neurons. For brevity, we refer to this technique as the “graph” method.

3.2.3. Dimensionality Reduction

We test the popular dimensionality reduction methods Principal Component Analy-
sis (PCA) [34, 35, 36], t-Distributed Stochastic Neighbor Embedding (tSNE) [37] and
Uniform Manifold Approximation and Projection (UMAP) [38] to project the NAP val-
ues into a two-dimensional space. We perform PCA using the decomposition module of
Scikit-learn (sklearn) [39], taking the first and second principal components as coordi-
nates. To compute tSNE, we use the sklearn manifold module, initializing the embedding
with PCA. For UMAP projection, we use the python module umap-learn3.

3.2.4. Particle Swarm Optimization (PSO)

PSO [40, 41, 42] is a biologically inspired algorithm to search for optimal solutions.
For our approach, we use N particles in a two-dimensional solution space, where each
particle corresponds to a neuron. Different than the aforementioned approaches, with
Particle Swarm Optimization (PSO) we aim to simultaneously optimize A: clustering of
similarly active neurons and B: consistent neuron density.

To achieve activation similarity of neighboring particles, we introduce a global force
which is computed based on the NAPs. The global force encourages particles of similar
neurons to attract each other while repelling dissimilar neurons.

2https://github.com/JustGlowing/minisom
3https://github.com/lmcinnes/umap
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fglob = attr−rep with attr = a ·
(

1− dist
max(dist)3

)
and rep= b ·e−(dist/c) (1)

In Equation 1, fglob = global force, attr = global attraction, rep = global repulsion,
dist = Cosine distance matrix of the NAPs, with a = 1.5,b = 0.5,c = 2.

To obtain a well-distributed layout, we use a local force that only depends on the par-
ticle coordinates. Like the global force, it consists of an attraction and a repulsion term.
In the local force, attraction closes gaps in the layout by penalizing large distances be-
tween pairs of particles and repulsion avoids that two particles occupy the same position.

floc = attr− rep with attr = a ·
(

1
(dist +1)3

)
and rep = b · e−(dist/c) (2)

In Equation 2, floc = local force, attr = local attraction, rep = local repulsion, dist = pair-
wise Euclidean distances between particles, with a = 1.5,b = 15,c = 2.

We optimize the PSO for T = 1000 steps by updating the coordinates according to
a weighted average of global and local force (Equation 3). In early steps t, we use a high
global force weight wg to encourage the activation similarity of neighboring particles and
then gradually increase the local force weight wl to better distribute the particles.

f =
1
2
· (wg · fglob +wl · floc

)

wl(t) =
1
2
·
(

es(t)− e−s(t)

es(t) + e−s(t)
+1

)
= 1−wg(t) with s(t) =

9 · t
1000

−3
(3)

3.2.5. PSO with Non-Random Initialization

The PSO method with random initialization needs careful balancing of the weight param-
eters of global and local attraction and repulsion. To require less fine-tuning of parame-
ters, we investigate a variant of the PSO. We compute an initial similarity-based layout
with another layouting method and only use the local force (setting wg = 0) to further op-
timize the resulting layout with PSO. This way, the PSO is only used to equally distribute
the neurons in the two-dimensional space. We call the hybrid methods UMAP PSO,
TSNE PSO, graph PSO, SOM PSO and PCA PSO.

3.3. Visualization

Finally, we use the NAP values (Section 3.1) and the layout coordinates (Section 3.2) to
create topographic map images. To be able to compare different layouts, we first scale
the layout coordinates to [0,1] in both dimensions (Figure 1C). Then, we create a map-
ping from NAP values to a symmetric continuous color scale, where blue represents
−max(|NAP|), white 0 and red +max(|NAP|). We use this mapping to assign colors to
the layout coordinates according to the NAP values of the respective group. Then, we
linearly interpolate the colors with a resolution of 100×100 px (Figure 1D). Equal col-
ors in topographic maps of different groups represent the same NAP value, but the colors
can correspond to different values in each experiment or layer. For CNNs, we color the
feature maps by their average NAP value.
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4. Experimental Setup

This section describes the experiments to evaluate the quality of the topographic maps
obtained with the proposed layouting methods. To select the technique with the best
quality, we use a simple data set and a shallow model. In Section 6, we demonstrate that
the selected method is also applicable to more complex models and data sets.

4.1. Data and Models

We first test our method with MNIST [43], a common benchmark data set for Machine
Learning. We train a simple Multi-Layer Perceptron (MLP) and CNN on the MNIST data
set. The MLP has one fully-connected hidden layer of 128 neurons and uses Rectified
Linear Unit (ReLU) [44] activation. The input images are flattened before providing
them to the model. The CNN has two 2D-convolutional layers with kernel size 3 × 3,
stride 2 and 128 filters, both using ReLU activation. The fully-connected classification
layer takes the flattened feature maps of the second convolutional layer as input. During
training, we use dropout for fully-connected and spatial dropout for convolutional layers,
with a dropout rate of 0.5. Both models are trained using TensorFlow [45]. We used a
batch size of 32 and trained for 20 epochs using the Adam optimizer [46] with default
parameters and categorical cross-entropy as the loss function.

4.2. Evaluation Measures

Qualitative Criteria Our technique aims to provide a comparative visual overview of
the representations of groups in a DNN. They shall be perceived as visually similar to
topographic maps in neuroscience that have a round shape, contain no empty regions
and show continuous sub-regions of similar activity in all groups. We evaluate these
expectations by manual inspection.

blur

resize

r=2 r=4 r=6 r=8 r=10 r=12 r=14 r=16 r=18 r=20

px=55 px=50 px=45 px=40 px=35 px=30 px=25 px=20 px=15 px=10

separate into
red and blue channel

apply binary threshold
at pixel value 230

identify connected
components

drop components
with less than 10 px

metric 1:
number of

components

metric 2:
average

component size

A

B

Figure 2. Evaluation metrics for topographic map quality. A: Blur and resize effects used to quantify robust-
ness against perturbations. B: Obtaining quality metrics based on connected components.

V. Krug et al. / Visualizing Deep Neural Networks with Topographic Activation Maps 143



Quantitative Evaluation Metrics In addition, we quantify the quality of the topographic
maps. To test local activation similarity, we compute the Mean Squared Error (MSE) be-
tween a perturbed version of the image and the original topographic map. As perturba-
tions, we use Gaussian blur and down- and upscaling with bicubic interpolation. We use
Gaussian blur with radii 2 px to 20 px in steps of 2 px and investigate downscaling sizes
to 55× 55 px to 10× 10 px in steps of 5 px (see Figure 2A). Finally, we aggregate the
results for the different parameters with an estimated AUC value (trapezoidal rule).

We further use two metrics that quantify topographic map quality based on con-
nected components in the images. The procedure can be followed in Figure 2B. First,
we separate the image of the topographic map into the red and blue channel. For both
channels, we apply a binary threshold at pixel value of 230 to separate blue or red regions
from the background. In the binarized images, we detect connected components using
OpenCV4. We omit components smaller than 10 px area because they are not perceived
as distinct regions. Finally, we compute the number of components and their average
size. Generally, few large components are considered as high quality. However, a single
large component is uninformative because there are no discriminable regions.

As the quality differs between groups, we report the average quality over the groups.
Further, we investigate the robustness of the quality of the topographic maps. To this end,
we repeat each topographic map computation 100 times given the same input.

4.3. Experimental Plan

For our simplest data set and model, MNIST and MLP, we compute NAPs in the first
fully-connected layer, using the 10 classes as grouping. We then use the resulting NAPs
to compute topographic maps with each of our 11 proposed layouting methods.

First, we pre-select techniques that satisfy the qualitative expectations of the visual-
ization described in Section 4.2. For an exemplary coloring of the layout for the class “0”,
we compare the methods with respect to the formation of regions of similar activations
and the visual similarity to a topographic map in neuroscience. Next, for the pre-selected
methods, we compare the quality of the topographic maps according to the quantitative
measures described in Section 4.2. For CNNs, we use NAPs of the feature maps to com-
pute the topographic map layouts but average the activation values per feature map to
obtain the colors.

5. Results and Discussion

5.1. Pre-selecting Layouting Methods

We first pre-select layouting methods that produce topographic maps which satisfy the
qualitative criteria of Section 4.2. Topographic maps generated for the MNIST MLP and
colored by the exemplary class “0” are shown in Figure 3. All methods distribute the
neurons to form regions of similar activations. Only the SOM technique splits up sets of
co-activated neurons into multiple regions in the layout due to not penalizing similarity of
distant coordinates. Another criterion is that the neurons are well-distributed in the two-
dimensional space. This is crucial because a layout with varying neuron density leads

4https://github.com/opencv/opencv-python
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Figure 3. Topographic maps for one exemplary class for all proposed layouting methods. The scatter plots
show the layouted neurons with NAP value-based coloring. Below are the resulting interpolated topographic
maps. Left-most are examples of an electrode layout (top) and a topographic map (bottom) in neuroscience.
All layouts and colorings use the same class-based NAPs for an MNIST MLP model as input.

to disproportionate regions in the interpolated topographic maps. For example, in the
interpolated TSNE topographic map, the gaps cause the red region to be enlarged, which
wrongly suggests that the highly active neurons are in the majority. As expected, the
best distribution is achieved with the PSO methods due to their local force component.
Further, we favor topographic maps of round shape. This property is best achieved with
the PSO methods due to the local force. This supports our idea of first layouting the
neurons by activation similarity and then distributing the neurons with a PSO using the
local force only. Therefore, we conclude that the PSO methods are the most promising
techniques and use them for the quantitative evaluation. As a baseline, we include a PSO
that only uses local force, initialized with random uniform coordinates.

5.2. Quantitative Evaluation
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Figure 4. Quantification of the topographic map quality (average of the groups) for different metrics across
100 trials, highlighting the mean value and the extrema with markers. The rows of each violin plot are sorted
by the respective mean values, decreasing in quality from the top to the bottom row.

For the pre-selected methods, we quantify the topographic map quality. Generally,
we consider low MSE values and few components of large size as high quality. However,
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a topographic map that only shows a single large component is uninformative because
there are no discriminable regions.

The results for the first fully-connected layer of the MLP and the first convolutional
layer of the CNN trained on MNIST are shown in Figure 4. In the MLP (Figure 4 top),
the lowest quality is shared by the baseline and the PSO layout. graph PSO, SOM PSO
and PCA PSO are in the medium quality range, while graph PSO shows the lowest qual-
ity among the three methods. UMAP PSO and TSNE PSO obtain the highest quality
results for the MLP according to all metrics. TSNE PSO shows smaller MSE values
than UMAP PSO, but not significantly. Regarding the component metrics, UMAP PSO
has a clearly higher quality than TSNE PSO. The high quality of the two methods also
comes with longer computation time. This is negligible for computing one layout but
accumulates when visualizing several layers in a deep network.

In the CNN (Figure 4 bottom), UMAP PSO shows the best rank according to all
quality metrics. Different to our findings for MLPs, TSNE PSO is not as high-quality as
UMAP PSO anymore and is lower-quality than SOM PSO or PCA PSO in many cases.
PSO with random initialization leads to low-quality topographic maps like in the MLP,
but graph PSO yields better results than the default PSO . We conclude that UMAP PSO
produces highest-quality topographic maps for both MLP and CNN and use it in the
following applications.

6. Exemplary Applications

6.1. Detecting Systematic Annotation Errors in Data Sets

Topographic map visualizations can be used to identify whether classification errors are
caused by wrong annotations that can can occur in training data or test data. We demon-
strate how to use our visualization technique for two toy examples, where we introduce
annotation errors in either the training or test data.

Toy Examples Design For the first toy example, we use the Fashion MNIST data set
[47]. In the test data, we introduce a systematic error by changing the target class of
90% of the examples of class “T-shirt/Top” to class “trouser”. Using this altered data, we
create topographic maps for a MLP model, trained on the original training data.

In the second toy example, we use the MNIST data set and change 90% of the class
“0” examples to class “1”, train a MLP model on this altered training data set and create
topographic maps for the original MNIST test data.

Both toy examples use the shallow MLP architecture as described in Section 4.1.
The 20 groups of interest are the test data labels separated into whether they are correctly
predicted. We create topographic maps for the first fully-connected layer of the respective
MLP model using NAP values computed for 200 random examples per group.

Annotation Errors in the Test Data Figure 5 (top) shows the topographic maps of all
Fashion MNIST classes. In the shown example, there is a high activation difference be-
tween correctly and wrongly classified examples for several classes, for example, “bag”
and “trouser”. In realistic models, such dissimilarity indicates a distribution difference
between training and test data for these classes. Here, for the wrongly classified “trouser”
group, we further observe a high similarity to the activation of correctly classified “T-
shirt/top” images (highlighted in green), indicating the annotation error we introduced.
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Figure 5. Topographic maps for correctly and wrongly classified examples using data sets with annotation
errors. Top: annotation errors in the test data. Bottom: training data with annotation errors. The activation
similarity is shown as a dendrogram and used to sort the classes. The shown example images are randomly
chosen from the respective group, while 200 examples per group are used to compute the NAP. The green and
purple annotations highlight the pairs of topographic maps that indicate the error in the respective example.

Notably, in the upper left of the topographic maps, we observe a white region in all
groups. Such region corresponds to a subset of neurons whose activity does not differ
between groups. This indicates that the model does not use its full capacity because it is
overcomplex or due to training problems like ReLUs that never activate [48].

Annotation Errors in the Training Data To investigate training data annotation errors,
we use a model trained on an erroneous MNIST data set. The resulting topographic maps
using the original MNIST data set are shown in Figure 5 (bottom). Annotation errors in
the training data lead to highly similar activations for wrongly and correctly classified
examples of the same group. We observe this pattern for class “0” (purple highlight),
which again matches our injected annotation error of changing 90% of the “0” labels.

This pattern also occurs if the model cannot discriminate between two or more
classes properly, for example, in the classes “sneaker” and “ankle boot” of Figure 5 (top).

6.2. Visualization of Bias in Representations

In this section, we demonstrate how to detect racial bias with our technique. Different to
common approaches that investigate bias in the model output [49, 50], we focus on bias
in the representations of a DNN. Here, we inspect VGG16 [51], which can be used as
feature extractor for downstream tasks like image recognition. As test data, we use Fair-
Face [50], a balanced data set of images of people from different age groups, races and
binary genders. We choose the “race” variable as grouping to compute the topographic
maps. As random baseline, we add groups of random examples. We obtained VGG16
from TensorFlow Keras applications5, using the second maxpooling layer as an example.

5https://github.com/keras-team/keras
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Figure 6. Topographic maps of VGG16 activations in the second maxpooling layer for different FairFace
“race” categories (middle) and random groups (bottom). In each row, groups are sorted by activation similarity.

By comparing the topographic maps between the values of the sensitive variables
from FairFace, we investigate whether it is possible to visually discriminate the group
representations of the VGG16 model. Figure 6 shows topographic maps for the seven
“race” categories of the FairFace data set and of seven random groups in the second
maxpooling layer of the VGG16 model. First, we observe that it is clearly easier to dis-
criminate the “race” categories than the random groups, indicating a racial bias. Only the
“Latino-Hispanic” topographic map can be confused with a random group. We further
observe that “Indian” and “Black” are perceived as particularly similar by the model.
“East Asian“ and “Southeast Asian“ are similar to each other and to the “White” cate-
gory. “Middle Eastern” and “Latino-Hispanic” are dissimilar to the other groups.

Observing visually discriminable representations indicates that downstream appli-
cations which use the pre-trained model can reproduce the bias. For example, a classifier
can easily learn different decisions for the “White” and “Black” categories. We empha-
size that this observation does not imply that a downstream application must include a
racial bias. Instead, we suggest to use the findings to formulate hypotheses about which
bias to look for. This allows to test for likely biases in a targeted way.

6.3. Visualizing Training Processes

In the third exemplary application, we show how the topographic maps can reveal infor-
mation about the training process of a DNN. For this, we train a simple MLP model on
MNIST for one epoch and saved the model after each batch resulting in a total of 1875
model states. For the last state, that is, the fully-trained model, we compute a topographic
map layout using UMAP PSO and use it for all other points in training. This way, the
layout stays the same and we observe the development of activations during the training.

Figure 7 shows a training process as topographic maps at exemplary time steps.
We observe, that the change of DNN activations is particularly large in the first 100
batches and gradually changes less as training continues. Correspondingly, we show a
smaller batch difference early in training than towards the end of training. We observe
that initial shapes begin to emerge after approximately 20 batches. These shapes become
more sophisticated after around 120 batches and continue to become clearer over time.
After around 500 batches, we only observe minimal changes. Further, we observe that
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Figure 7. Topographic maps at different stages of training. Classes are ordered by activation similarity.

the topographic maps of some classes stabilize earlier than others, which indicates that
they are easier to learn for the model. For example, classes “1” and “4” change little from
batch 500 to the end of the epoch, while some active regions disappear for classes “0” and
“6”. Li et al. [31] found different classes to be learned early and late by their used CNN
model, indicating that these learning dynamics are model-dependent. Topographic maps
provide a unique perspective on the training process and help to better understand the
dynamics of the neural network training. However, due to saving and processing many
model states, the analysis of training processes requires more computation and storage
resources than for a trained model only.

7. Conclusion

Topographic activation maps are a promising tool to get insight into the internal represen-
tations of DNNs. Our technique simplifies hidden layer activations as a two-dimensional
visualization to provide a comparative overview of representations of groups of inputs.
It is capable of showing activations of each neuron in MLPs but CNN feature maps need
to be aggregated such that large feature maps might not be represented optimally.

Our technique alone does not provide explanations of the model representations or
decisions. It still requires a human to interpret the results or to perform further down-
stream analyses to explain what the regions are responsible for. While topographic maps
are easy to interpret by visual inspection, relating the visualization to useful insight into
the model requires practice, especially for highly-complex models that are used in prac-
tical applications. We therefore recommend to first get familiar with the technique by
using toy examples before applying it to real-world models.

In future research, we will investigate how to generate explanations of the regions
in our topographic map visualization. For example, we will automatically detect group-
responsive regions and perform feature visualization for the corresponding filters of the
model to understand which patterns it uses to detect the group. Moreover, we will extend
our technique to create multi-layer topographic maps.
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