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Abstract. Human knowledge is growing exponentially, providing huge and some-
times contrasting evidence to support decision making in the realm of com-
plex problems. To fight knowledge fragmentation, collective intelligence leverages
groups of experts (possibly from diverse domains) that jointly provide solutions.
However, to promote beneficial outcomes and avoid herding, it is necessary to
(i) elicit diverse responses and (ii) suitably aggregate them in a collective solu-
tion. To this end, AI can help with dealing with large knowledge bases, as well as
with reasoning on expert-provided knowledge to support decision-making. A hy-
brid human-artificial collective intelligence can leverage the complementarity of
expert knowledge and machine processing to deal with complex problems. We dis-
cuss how such a hybrid human-artificial collective intelligence can be deployed to
support decision processes, and we present case studies in two different domains:
general medical diagnostics and climate change adaptation management.
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1. Introduction

Humanity is facing complex problems that require engagement of multiple stakehold-
ers to identify the path towards feasible solutions. Think of the UN Sustainable Devel-
opment Goals (SDGs, https://sdgs.un.org), which have identified the direction to follow
“for peace and prosperity for people and the planet, now and into the future”. To address
any of the targets identified by the 17 goals, careful weighing of past and novel evidence
is required for arriving at effective and efficient decisions that can change the way in
which we live. In such a context, expert knowledge is key as decisions need to be taken
by integrating multiple information sources, incorporating accumulated experience and
weighing uncertainty. At the same time, the amount of available evidence is growing
exponentially. For instance, during the first year of the COVID-19 pandemic, more than
400.000 papers and preprints have been published on that topic.2 More generally, the
total number of scientific publications is estimated to double every 14 years [1]. Such a
rate of knowledge production makes it impossible for anybody to keep up to date, mak-
ing it difficult to provide evidence-based interventions. Moreover, such situations run the
risk of incurring into confirmation bias or cherry-picking. In a rapidly globalising world,
solutions to complex problems are beyond the reach of isolated individuals. We need
systems that can tap into the collective intelligence of multiple experts, that can make
sense of massive amount of data and that aggregate different solution sources effectively,
efficiently, and transparently.

A promising way to improve decision making in complex problems is exploiting
collective intelligence (CI), which integrates the advice of multiple experts providing de-
cision support [2,3,4,5]. While the power of CI has been successfully demonstrated in
multiple domains, it was often applied to numerical predictions or binary-choice prob-
lems [6,7,8,9]. Complex problems are instead “open-ended”, meaning that the solutions
are not constrained to a (predefined, limited) set of alternatives. Instead, open-ended
problems present a large, possibly infinite set of solutions, which could be conceptually
different and not amenable to simple aggregation methods like, for instance, averaging
a numerical estimate. Hence, extending CI to open-ended problems requires the ability
to properly manipulate and combine the knowledge provided by multiple experts, a step
that requires advanced domain-specific AI and data-based solutions.

Within the EU funded project HACID (http://www.hacid-project.eu), we propose a
hybrid CI of human experts and AI systems [10]. Our goal is to build a decision support
system (DSS) capable of (i) providing support for evidence-based decision making, and
(ii) aggregating and expanding the solutions provided by experts, ultimately providing
higher efficacy (e.g., increased accuracy of the solutions) and efficiency (e.g., reduced
costs in terms of time or energies required), as well as higher user satisfaction, explain-
ability and trust. The proposed system leverages complementarities between domain ex-
pertise from humans and the AI ability of reasoning and analysing vast amounts of data.
In this way, we want to develop a general methodology to address complex, high stakes
application domains. We illustrate our approach by applying it to two SDG-related do-
mains: general medical diagnostics and climate change adaptation and risk management.

Medical diagnostics entails decision-making processes that can tell the difference
between life and death. It is also a domain that sees large inequalities between developed

2Estimation from Google Scholar by counting 2020 results that have the keyword “COVID-19” in the title.
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and developing countries. In medical diagnostics, the identification of a disease from
a set of symptoms may be particularly complex, due to subject-specific conditions and
comorbidities. As a matter of fact, the decision-making process is often open-ended as
it deals with a large variety of possible diseases. Such open-endedness can exacerbate
diagnostic errors both in the definition and interpretation of diagnoses, and such errors
can have a rife of consequences, such as death, delayed treatments, but also an erosion of
trust in the health system (e.g., when diagnoses from different physicians are not aligned
or contradictory) [11,12]. Our tenet is that hybrid CI can improve the effectiveness and
efficiency of diagnostic processes. Additionally, the human-centred approach and the
explainable diagnostic solutions can contribute to generating more trust into AI-based
technologies for healthcare.

The second open-ended domain we will highlight concerns climate change adapta-
tion and risk management. Compared to medical diagnostics, it is a relatively new area
of decision-making but also already supported by large formal and informal bodies of
knowledge. Owing to the uncertainty in long-term climate projections, as well as the
challenges of mapping climate model simulations to local-scale impacts [13], determin-
ing robust adaptation strategies for local contexts is difficult. To ensure that the cities we
live in are resilient to future climate changes, evidence-based policy making is essential
and is currently driving the nascent area of climate services [14]. Assessing and selecting
interventions that are robust to future changes requires integrating multiple knowledge
domains (climate, environment, human behaviour and social sciences as well as engi-
neering, risk management and decision theory) in local contexts. The scientific evidence
is vast and procedural standards for using the evidence to support decisions are only start-
ing to be defined (EN ISO 14090:2019). Indeed, combining the evidence and uncertainty
in projecting environmental and societal futures is particularly challenging. The existing
information is often not salient, credible and legitimate [15] making adaptation planning
intractable. Hybrid CI can help in aggregating the multiple disciplinary perspectives into
a coherent picture, identifying relevant evidence, integrating climate data and treating
uncertainty.

In this paper, we first present the concept behind the development of a hybrid CI
for decision support, and provide the relevant background beyond which progress can be
made (see Section 2). Section 3 introduces the medical diagnostics use case along with
preliminary results, which illustrate the potential of the proposed approach. Section 4
presents a possible implementation in the climate services context. Finally, Section 5
concludes the paper with an outlook on hybrid CI research.

2. Concept and Background

The process of creating a hybrid CI that can exploit experts’ and machine-generated
knowledge can be synthesised into the following steps, as depicted in Figure 1: (A)
knowledge engineering, to create and update a domain-specific knowledge base that sup-
ports hybrid CI; (B) knowledge refinement, to highlight those parts of the knowledge
base that are relevant for a specific case; (C) hybrid collective problem solving, to elicit
solutions from experts and aggregate them in a collective solution; and (D) evaluation, to
determine effectiveness, efficiency and trustworthiness of the solution. In the following,
we discuss each step and the challenges it entails.
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Figure 1. The four steps informing hybrid CI for decision support. (A) A domain knowledge graph (DKG) is
created by integrating knowledge engineering methods to grasp expert knowledge and AI-generated knowledge
obtained from the analysis of large bodies of evidence (e.g., scientific literature). (B) For every specific case
(e.g., a patient with given symptoms), a case knowledge graph (CKG) is generated by collective tagging of
relevant concepts as well as by knowledge enriching by both human experts and AI systems. (C) Solutions to
the given case are provided by domain experts, and aggregated by reasoning on the concepts of the CKG or
expanded, hence proposing novel solutions. (D) Evaluation of the solution is performed with respect to efficacy,
efficiency and trustworthiness exploiting a participatory evaluation approach.

2.1. Knowledge engineering

Knowledge within a given domain is typically scattered. To make such knowledge avail-
able and usable, it needs to be retrieved and organised into a wide, structured knowledge
base (a domain knowledge graph, DKG) that can be explored in search of evidence.
Knowledge Graphs (KGs) are becoming increasingly popular with both big industrial
players and scientific communities in different research fields such as Semantic Web,
Databases, Machine Learning and Data Mining. Though there is no consensus on the
exact definition of KGs [16], here we refer to linked open data including both schema ax-
ioms (i.e., Web Ontology Language, OWL) and factual data (i.e., Resource Description
Framework, RDF triples). An increasing number of methodologies is becoming available
for the construction of KGs with most of them focusing on maximising the discovery
and reuse of symbolic knowledge, as dictated by the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles. More recently, agile methodologies, such as the eXtreme
Design [17,18], proved to be very effective for the construction of large KGs [19,20,21].
However, knowledge can be extracted from a plethora of different data sources, which
are inherently heterogeneous with respect to syntax and semantics, i.e., the knowledge
soup problem [22]. Additionally, in many cases the data sources contain billions of dat-
apoints that need to be processed. It is difficult to synthesise all the available scientific
and technical knowledge required to inform decision making—especially for complex
issues like medicine and climate change—leading to the so-called information horizon
problem [22]. Facing both the knowledge soup and information horizon problems is
challenging for creating KGs at scale. Recent advances in open knowledge extraction
[23,24] exploit machine reading [25] as a sub-symbolic paradigm for gathering struc-
tured knowledge from text by relying on natural language processing (NLP) and deep
learning. A DKG can be therefore generated by harmonising symbolic and sub-symbolic
knowledge, in close collaboration with domain experts, stakeholders and end-users. This

V. Trianni et al. / Hybrid Collective Intelligence for Decision Support 127



step is performed for each specific domain to gather all the relevant knowledge for an-
swering specific questions (i.e., specific cases). The DKG is not static information, but
evolves by aggregating new evidence as soon as this is produced and validated by the
relevant stakeholders. It is both flexible and customised.

2.2. Case knowledge refinement

There are clear limits to how well humans can process large amounts of information
[26,27]. Vast domain knowledge—even if well structured in a KG—can lead to cognitive
overload if information is not properly presented for a specific case to be solved, pos-
sibly leading to sub-optimal knowledge extraction through, for example, confirmation
bias or cherry picking. Or the complexity of the domain knowledge might challenge the
perceptual and cognitive limits of experts. Even AI approaches may struggle with large
knowledge bases if the solution landscape does not clearly provide preferential search
directions [28]. In both cases, pruning the knowledge space before exploring it can lead
to knowledge refinement and better chances of identifying the correct solution or identi-
fying it more efficiently (see below). To this purpose, advanced knowledge exploration
and visualisation tools offer a great range of possibilities to condense, simplify, and make
sense of large data sets. These tools can support cognitive processes humans use to search
for information outside or inside their mind [29,30,31]. However there are also limita-
tions associated with existing visualisation and exploration tools. Many dashboards use a
fixed number of features to communicate a complex situation, with the associated risk of
providing an incomplete description of most real-world tasks. Simplified representations
can influence decision making by eliminating nuances, sometimes leading to worse out-
comes [32]. In addition, dashboards oriented to visualisation are often restricted to dis-
play available information, and do not allow opportunities for commenting, discussion,
or other features that can support the production of further information by expert users.
To address complex open-ended domains, new approaches are needed that can manage
large knowledge bases where the size and scope of the relevant evidence is not known a
priori [33].

Next to supporting exploration using suitable interfaces, there is also the potential to
improve how domain knowledge is navigated using tools from network science, which
offers many approaches for measuring the relevance or importance of nodes in a graph
[34]. However, there is a lack of methodologies to apply these network approaches to
knowledge engineering and knowledge discovery, in particular, for determining what
parts of the knowledge base are worth considering and what needs to be pruned.

Advanced knowledge exploration and visualisation tools and computational method-
ologies informed by cognitive network science [35,36,37] can help users identify rele-
vant sources of evidence for a specific case within a domain, thus facilitating hybrid hu-
man and machine problem-solving and decision making downstream. Given a particular
case, experts are asked to provide relevant information that can support decision mak-
ing. On the basis of the responses provided, the DKG is refined with that case-specific
knowledge forming a case knowledge graph (CKG). The CKG is not just a subset of
the DKG, it is rather the combination of the DKG and a collective annotation layer that
enriches the DKG with case-specific information. The relevance/importance of the nodes
in the CKG can be quantified using a network node centrality measure suitable for the
domain at hand [34]. Importantly, in this graph, even nodes that no individual expert
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nominated can be central if they are strongly connected to many nominated nodes. This
is the first outcome of a hybrid CI, because the input of multiple experts can be integrated
for the creation of knowledge useful to provide structured background information. The
AI part is not limited to the processing and aggregation of human-generated evidence.
It can also directly participate in the information extraction by analysing the available
case information, hence selecting relevant knowledge from the DKG autonomously and
independently from expert input.

2.3. Hybrid collective problem solving

CI is the ability of groups of individuals to solve problems exceeding the capacities of
single individuals [3,4,5,2]. Previous work has shown the tremendous potential of CI
to boost decision accuracy for problems with a well-defined and finite set of answer
options (e.g., simple categorisation tasks, quantitative estimates, subjective probability
distributions), in diverse domains, such as geopolitical forecasting, lie detection, cancer
diagnostics and fingerprint recognition [38,8,39,40,41]. However, applying CI to open-
ended domains has seen only limited applicability, and approaches that can harness the
power of the collective in such domains are largely lacking. This is an important gap, as
our increasingly complex world requires us to make decisions in situations where there
is high uncertainty both about the relevant information sources and the outcome space.

A tool based on hybrid CI would harness the expertise from a diverse set of experts
to propose solutions that surpass the performance of the best expert within the group,
and possibly expand the solution space beyond what was initially provided by individual
experts. To this end, human experts are asked to provide a set of possible solutions to a
given case. These solutions can be in the form of open-ended text, and interaction with
the CKG can guide the user in producing them. Additional metadata can be collected
as well, for instance related to confidence or competence of the user with respect to the
specific case [42,7]. Also, interaction among users can be enabled, to profit from social
feedback in the elicitation of responses [43,44]. The user input is then processed by the
underlying AI system that aggregates and enriches the available solutions to create a
collective solution. This means recognising the (dis)similarity in the provided solutions
(e.g., identifying synonyms), aggregating them into classes and providing a unified view.
Possibly, the set of solutions can be expanded with solutions that were not initially pro-
vided by any expert. The AI will also “explain” the collective solution, linking to the
relevant evidence from the CKG and demonstrating the steps that lead to aggregation and
expansion of the experts’ input.

2.4. Evaluation

While there are multiple methodologies for evaluating the accuracy of human or
machine decisions about problems with a well-defined or finite set of answer op-
tions (e.g., simple categorisation tasks, quantitative estimates, subjective probabilities
[45,46,47,48,49,50,51,52]), methods to rigorously evaluate solutions to open-ended
problems are largely lacking. Furthermore, in many important use cases where a DSS
is sought to improve decision making, there is no ground truth against which accuracy
can be assessed during development of the tool and/or monitoring it after deployment.
This may be because the ground truth will only be available in the (long-term) future
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(i.e., forecasting) and/or because the relevant ground truth is not available in principle
(e.g., in case of a self-defeating prophecy where, for example, a prediction turns out to be
false because a player intervenes to avoid the negative outcome). In similar cases, expert
evaluation is necessary to determine the relevance of proposed solutions, and to evaluate
other aspects like diversity of options, representativeness of minorities and gender bal-
ance. We maintain that a participatory approach to the development and design of the
DSS (broadly referred to under the umbrella term “Participatory AI”) can help determine
what features could facilitate higher levels of understanding, trust and confidence for in-
tended end-users and other stakeholders. Measuring the performance of the DSS against
these criteria represent an invaluable method for comprehensive evaluation.

3. Crowd-sourcing medical diagnostics

The hybrid CI approach discussed above can be deployed for open-ended problems in
different domains. We discuss here the use case of general medical diagnostics, providing
also preliminary results of hybrid CI in context.

This use case leverages the online platform developed by the Human Diagnosis
Project (Human Dx, https://www.humandx.org), which is open to medical practitioners
who can post cases and crowdsource input from a large pool of professionals worldwide.
Each medical case is associated with a short description of the patient and several in-
sights (symptoms, results of medical tests). The system then prompts the users to provide
their independent diagnoses, ranked according to what they believe corresponds best to
the case.

A hybrid CI approach to medical diagnostics can expand the current platform by
(i) defining a DKG that enables a rich description of the domain, including medical terms,
prevalence information, treatments and so forth; (ii) allowing experts to provide evidence
in support of each case to create a CKG; (iii) enhancing the user interface allowing to
introduce subjective confidence and competence estimates, as well as enabling social
interactions among users; and (iv) deploying methods for reasoning about the user inputs
over the CKG. Eventually, the system summarises all the answers provided by the expert
users into a collective diagnosis, giving more weight to concepts that are supported by
large parts of the user crowd, and possibly expanding the list with other related concepts
from the CKG.

3.1. A Preliminary Approach to Medical Diagnostics

In a previous study, we took the first steps in the definition of a hybrid CI for medical
diagnostics, deploying a preliminary version of the DSS and evaluating it on a sample
dataset provided by Human Dx [53]. Here, we present previous results and we improve
by optimising the aggregation method. The dataset consists of cases with known diag-
noses, allowing us to make a ground-truth comparison. In order to identify and reason
on the user-provided diagnoses, we use a DKG based on SNOMED-CT, an open, struc-
tured collection of clinical terms [54,55]. The differential diagnoses introduced by users
about a case—hereafter referred to as solutions—are aligned with SNOMED-CT terms,
enabling operation on unique concepts. Challenges here are related to the many differ-
ent ways in which users refer to the same concept, using acronyms or entire sentences.
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Hence, a matching problem must be solved, that is, every diagnosis provided by a user
must be associated with a specific formal concept that represents the disease that the
users wanted to propose. Second, it is necessary to compare different diseases with each
other, to understand whether they are equivalent and also whether or not a proposed diag-
nosis is correct with respect to the available ground truth. The equivalence between two
diagnoses is not straightforward, because of possible referral to sub- or super-classes of a
disease (e.g., Aortic aneurysm is a more generic term than Abdominal aortic aneurysm),
and the substantial freedom of users to provide solutions that may refer not just to the
disease, but to the causes (e.g., specifying a virus instead of the disease it causes).

The matching problem has been addressed by computing the Jaccard similarity be-
tween solutions (after a necessary normalisation step using routine NLP methods) and
the available descriptions of the SNOMED-CT concepts. Out of the initial 1572 cases
available, we obtained 1333 cases in which the available ground truth could be exactly
matched (Jaccard similarity of 1) [53]. Then, we processed the solutions provided by
the users to compute a collective differential diagnosis, also attempting to match them
against SNOMED-CT concepts with maximum Jaccard similarity. For each case, we
performed the following steps:

• Randomly draw a group of N users among those that solved the given case.
• Retain the best Nu solutions for each user, and weigh each solution by a factor

R(n), where n is the original rank of the solution in the user-provided list.
• Aggregate solutions from all users into a ranked list by summing up the scores of

matching SNOMED-CT concepts.
• Check whether the correct diagnosis is in the top Nc positions, exploiting a function

M(p,s) that determines if a solution s actually matches the ground truth p.

3.2. Results

The obtained results are clearly dependent on the functions R(n) and M(p,s) used for
computation of the results. While previous studies propose an inversely proportional
relation between score and rank (i.e., Ri(n) = n−1) [56,53], in this paper we search for
optimal values by means of a brute-force approach, which we evaluated only for the case
N = 10 and Nu = Nc = 5, allowing weights to vary in the interval [0,1]. Also, differently
from [53], here we include all equally ranked solutions as long as the rank does not
exceed the threshold Nc (e.g., if there are three solutions with rank equal to Nc = 1, these

Figure 2. Diagnostic accuracy for a perfect matching between solutions and ground truth
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Figure 3. Diagnostic accuracy exploiting the hierarchical organisation of medical concepts in SNOMED-CT

are all considered). We have found that the best scoring in terms of average diagnostic
accuracy equally considers the first two ranked diagnoses, and completely disregards the
other ones: Ro(n) = 1 if n∈ {1,2}, otherwise Ro(n) = 0. Figure 2 shows the results when
a perfect matching between solution and ground truth is considered (i.e., M(p,s) = 1 if
p = s). In such conditions, the maximum diagnostic accuracy reaches 86% (as opposed
to 48% for individual raters), and remains highest for every group size, provided that Nc
is rather high. Lower values of Nc would likely require a different ranking R(n), as the
current one has been optimised for Nc = 5.

Even better results can be obtained if we exploit the structure of SNOMED-CT—
which is organised as a poly-hierarchy—to determine whether a proposed diagnosis is
acceptable with respect to the available ground truth. Specifically, we consider that a
diagnosis is correct when it is (i) equal to the ground truth; (ii) a subclass of the ground
truth (i.e., the diagnosis is more specific than the ground truth); (iii) the direct superclass
of the ground truth (i.e., the distance between the two concepts is minimal); or (iv) a
sibling of the ground truth, that is, it shares the same superclass (i.e., the two concepts
have a single common ancestor). In this case, many more solutions match the ground
truth, and the accuracy generally increases for all the tested methods. Figure 3 shows that
the maximum accuracy increases up to 92.3% (against 57.5% of individual accuracy).

These preliminary results confirm the suitability of a collective intelligence approach
to open-ended diagnostic problems, considering that the group accuracy significantly in-
creases over individual performance. Further developments and evaluation of the pro-
posed methods are therefore very promising.

4. A Conceptual Framework for Applying Hybrid CI to Climate Services

This use case focuses on improving existing climate services that support decision-
makers in adapting and managing their cities/country to improve resilience to un-
certain future climate changes. The DSS can be applied to many contexts and for
multiple climate hazards. For instance, climate service providers are currently serv-
ing UK stakeholders including members of the London Climate Change Partnership
(http://climatelondon.org/) who are preparing their city for extreme weather today and
climate change in the future. Here, we discuss a conceptual framework for hybrid CI in
climate services based on ongoing user research.
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First and foremost, we identify the object of the climate-related decision process.
Generally speaking, climate change adaptation management usually requires the assess-
ment of climate risks, which includes information on the hazard, exposure and vulner-
ability for a given location and time-frame (e.g., for the Thames Estuary 2100 plan,
adaptation was considered for the Greater London area for a 100-year timespan [57]).
Hence, the DKG is populated with information about past climate and climate model
projections (e.g., including those that fed into the latest 6th Assessment Report from the
Intergovernmental Panel on Climate Change—i.e., the Climate Model Intercomparison
Project Phase 6 [58]—as well as information supported by National Governments—e.g.,
UK [59], Switzerland [60], The Netherlands [61]). We also include approaches for the
sub-selection (e.g., merging, selecting and/or filtering) of climate models and associated
information. Relationships between models are captured (e.g., models from the same
model family with similar components or assumptions [62]) as well as their suitabil-
ity for different adaptation management decision strategies [63]. Finally, we consider
domain-specific information (i.e., exposure and vulnerability) related to the implemen-
tation into an adaptation management strategy and the decisions that need to be made.
This latter aspect is crucial to customise the DSS for specific decision domains, as the
level of information required is likely different. For instance, risk assessment for urban
adaptation strategies requires information about urban plans, land-use, infrastructure and
socio-economics.

Given a specific case (e.g., increased surface water flood risk in London potentially
caused by increases in extreme rainfall intensity), experts are first asked to identify,
within the DKG, the information that they deem relevant. For instance, selected informa-
tion can be related to relevant metrics at a suitable temporal and spatial scale that need
to be projected to support the impact models and feed into adaptation options evaluation.
Besides, experts can identify in the DKG or provide further information relevant for the
case, including scientific and grey literature applying alternative methods and informa-
tion sources, or previous case studies. The results from the experts’ input is the CKG on
which reasoning will be made.

The collective problem solving step requires experts to provide their own answers
to the selection of appropriate climate information, from diverse perspectives. We ini-
tially consider answers in terms of identifying and ranking the climate information to be
used, and possibly combining this with aggregation methods. Indeed, there is no strong
agreement among experts about which set of climate information would best fit a given
use case, and there are also many methods to combine (or not) climate projections to ex-
plore uncertainty and build a coherent picture of the range of possible futures. Hence, the
combination of the solutions from multiple experts can provide suggestions for suitable
identification and aggregation approaches of the most relevant models for the use case. In
a second step, we consider more freedom in the proposed solution, gathering additional
information from a heterogeneous set of experts representing those closer to the decision
and policy-making end of the solution space. This means that even the relevant variables
and their expected effects are targeted by the collective decision process, generating a
rich description of the possible solutions to the case that will contribute to the generation
of a case report in support of policy making.

Within the HACID project, we aim at evaluating the collective solution in compari-
son with an individually-based solution according to internationally-accepted guidelines.
For instance, reference cases can be derived from the studies considered in the EUCP
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project (https://www.eucp-project.eu) [64] that use state-of-the-art high-resolution cli-
mate models to calculate flood risk across multiple European cities. Also, OpenCLIM
(http://climatereadyclyde.org.uk/openclim/) provided several case studies focused on
Glasgow, UK, which feature a community modelling approach. These case studies can
provide both a reference and relevant baseline for comparison. Additionally, a user-
centred approach will be also considered to understand acceptability and trustworthiness
of the DSS. This is framed in a participatory AI approach that informs the technology
development from day one, involving stakeholders in the definition of every component
of the DSS largely before the final evaluation step. We hope in this way to capture the real
needs and expectations of the community revolving around climate change adaptation
and risk management, delivering a tool that really responds to their needs.

5. Discussion and Conclusions

We presented a framework for the exploitation of hybrid CI in context, and preliminary
results supporting the proposed approach within the medical diagnostics use case. These
results still need to be accurately validated, especially when the hierarchy of concepts
in SNOMED-CT is exploited for evaluation. However, they indicate that a hybrid CI
approach can significantly improve over individual diagnosticians.

A key aspect of the proposed approach is that it can be rooted in specific domains,
such as the medical diagnostics and climate services we presented here, which testifies to
the large potential impact achievable by hybrid CI. With respect to medical diagnostics,
it is fair to admit that AI is conquering everyday new grounds, for instance in supporting
radiologist in spotting the most urgent cases. Very often, AI-based diagnostic systems
are tailored to very specific diseases and are based on some image classification soft-
ware. However, actual deployment is very limited due to lack of trust and medical ethics
issues [65]. The hybrid CI approach can have a concrete impact because it addresses
a wider domain than current AI technologies, and because it is designed to exploit the
complementary abilities of human experts and AI systems, hence improving trust in the
system.

Climate services for supporting climate change adaptation and risk management cur-
rently lack technologies that can support navigating an already very large evidence base.
The potential impact of hybrid CI is therefore very large, considering that a competing
service does not exist to date. National and international agencies would benefit from a
more structured, unbiased and evidence-based decision process. We believe that different
cities—e.g., within the C40 Cities Climate Leadership Group (https://www.c40.org)—
would be interested in testing the DSS for adaptation management, comparing it with
current practices.

Other application domains may have a large, still unexplored potential for the ap-
plication of hybrid CI. The essential features that qualify a domain to be amenable to
the proposed hybrid CI technology are: (i) a large, diverse and possibly unstructured ev-
idence base, which leads to the need of formalising the domain knowledge in a DKG;
(ii) recurrent cases with diverse features that cannot be equated to the same decision
problem (i.e., are not amenable to a standard supervised ML approach), which leads to
the need of determining an always changing CKG; (iii) a pool of users/experts possibly
with different backgrounds and expertise, which lead to the need of integrating diverse
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opinions into a collective outcome; (iv) open-endedness of the possible solutions to a
given case, which leads to the need of finding similarities and relatedness among the
possible answers. We firmly believe that, when these characteristics are found, hybrid CI
can truly shine.
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