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Abstract. Automatically assigning tasks to people is challenging because human
performance can vary across tasks for many reasons. This challenge is further
compounded in real-life settings in which no oracle exists to assess the quality of
human decisions and task assignments made. Instead, we find ourselves in a “closed”
decision-making loop in which the same fallible human decisions we rely on in
practice must also be used to guide task allocation. How can imperfect and potentially
biased human decisions train an accurate allocation model? Our key insight is to
exploit weak prior information on human-task similarity to bootstrap model training.
‘We show that the use of such a weak prior can improve task allocation accuracy, even
when human decision-makers are fallible and biased. We present both theoretical
analysis and empirical evaluation over synthetic data and a social media toxicity
detection task. Results demonstrate the efficacy of our approach.
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1. Introduction

Human decision-making is ubiquitous: in the daily life of organizations or “pure” human
computation settings without automation, in making labeling decisions to train and test
Al systems, and in human-in-the-loop architectures that dovetail automated Al with
human abilities. People are also naturally fallible: some people perform better than others
across different tasks due to a wide range of factors (e.g., background or experience), as
observed in recruitment [4] and healthcare [39]. Human error can be due to noise (e.g.,
fatigue/oversight) and systematic patterns of error (e.g., varying skill). Group decisions
can also be fallible and systematically biased depending on the composition and decision
process. Whereas “wisdom of crowds” [47] can boost collective intelligence via group
diversity, lack of such diversity can amplify biases rather than mitigate them [18].

Task allocation (cf. [22]) seeks to optimize the overall quality of outcomes by ef-
fectively matching people to tasks. Accurate task allocation has applications in crowd-
sourcing [13], human-in-the-loop frameworks [28], and collaborative web platforms [1].
A key assumption underlying most prior work on task allocation is that an oracle exists
to provide feedback on the quality of human decisions and task assignments made. In
real life, however, the same fallible human decisions we rely on must often also provide
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Figure 1. A closed-loop task allocation model in which predictions are fed back to train the model. To bootstrap
training, we use prior information on human-task similarity, evaluated here by matching task & annotator colors.

the basis for evaluating allocation decisions. When a hiring or admissions committee
makes a decision whether to hire/admit a given candidate, all we have is the committee’s
decision; no outside oracle exists to provide a definitive evaluation of the committee’s
decision. Similarly, social media content moderation relies on decisions from human
moderators. Moreover, decision criteria are often organization-specific model [38]. These
applications motivate our investigation of the closed training loop setting in which the
aggregated annotations from an input-specific selection of human decision-makers are fed
back into the system to train the task allocation model (Figure 1). However, considering
that human decision-makers can make imperfect decisions, the question arises whether
their aggregated decisions can be used to train an accurate task allocation framework.

A central challenge with such a framework is how to address human inaccuracy
and bias, especially in the initial training iterations. Unsupervised aggregation of human
decisions [11] can provide noisy feedback on task allocation efficacy [15, 13, 32, 54,
49]; however such noise, especially in initial training iterations, can result in a slow
or non-converging training process. Furthermore, any bias in human decisions may be
fed back into task allocation training, further amplifying system error [35] (see §2.1).
Particularly problematic are human biases stemming from a lack of background, training,
or prejudice, which can consistently impair performance. Another factor that can influence
human decisions is underlying demographic identity. Goyal et al. [19] observe that the
demographic identity of crowd annotators impacts their toxicity ratings. Consequently,
they call for “ML engineers and researchers to ... consider all the different kinds of
specialized rater pools we should be imagining, considering, designing, and testing with.”
Multiple other studies [29, 5, 17, 46, 41] have reported significant differences in ratings
across annotator demographics (see §6 for additional related work). Motivated by these
studies, we tackle the problem of developing allocation methods that are input-specific,
contextually-aware, and cognizant of the background of the human annotators.
Contributions. In this work, we formulate the challenge of closed-loop learning from
noisy human labels and propose two online learning algorithms for it. To mitigate inaccu-
racy from fallible human decision-makers, we propose exploiting a specific form of weak
prior on human-task similarity to initialize the task allocation model (§2.2). This enables
us to obtain relatively accurate class labels for initial inputs and thereby effectively boot-
strap the training process. The first algorithm we present, Strict-Matching, directly uses
the prior information to initialize the allocation model. The second, Smooth-Matching,
provides a smoother transition from the prior distribution to learning from noisy feedback
during training. We demonstrate the efficacy of our methods via both theoretical analysis
(§2.3) and empirical improvement on synthetic and real-world datasets (§3 and §4). The
latter extends beyond the classic assumption of universal, objective truth to consider recent
advocacy for recognizing subjective, community-based gold standards [44, 29, 17, 19].
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2. Model and Algorithm

We consider the binary classification task of predicting label y from input x € R". We
assume each input x belongs to one or more categories z € 2, which could correspond
to any demographic or task-specific interpretable feature. Given any input x (i.e., a task),
the goal of task allocation is to choose appropriate human annotators (interchangeably
referred to as individuals or decision-makers) from a given pool, whose aggregated
prediction is the final predicted label for x. Assume there is a pool of m available annotators
ely...,em : R" — {0,1}, with ¢;(x) denoting the i-th annotator’s prediction for x. For
input x, the task allocation model D, infers a probability distribution over annotators:
D, : R" — A™, where u denotes model parameters and A™ denotes the m-dimensional
simplex?. When possible, we omit subscript u and refer to D, by D. D(x); denotes
the model probability assigned to individual i, reflecting the model’s estimate of that
individual’s ability to correctly label input x, relative to the other annotators. While
not evaluated in our study, our framework also supports each person having additional
input-specific costs associated with their predictions (see discussion of this point in §5).

Committee Voting. Given the task allocation model D(x)’s inferred probability distri-
bution over the pool of m annotators, the top-k can be selected to form a committee.
When k > 1, the committee’s decision is determined by majority vote (assuming k is
odd, no tie-breaking is required). A technical detail is that we sample annotators with
replacement according to D(x) so that the the majority vote of the committee implicitly
equals (on average) the weighted majority vote of all m annotators, with D(x) probabilities
as weights. Alternatively, one could sample the k annotators without replacement and
explicitly weight member votes by D(x);.

Online learning. Assuming a streaming setting, after each input x is labeled by a selected
committee, the (potentially noisy) label is fed back into the closed-loop learning process to
update the model D(x). This online learning setting supports potential use in various real-
world applications [14, 3]. However, such a noisy feedback loop also risks problematic
predictions when trained without care; our algorithms are thus designed to address this.

2.1. Training the allocation framework

An ideal training process for an allocation framework learns a partition of the feature space
and assigns annotators to those partitions where they are expected to be most accurate.
Prior training approaches optimize over labeled datasets to learn an allocation model that
simulates such a partition [28, 49, 15]. In this section, we first summarize training proce-
dures from prior work (that assume access to oracle training labels or rewards/penalties).
We then discuss extensions of these procedures for closed-loop training.

Prior work training allocation models with gold. Assume input x having group attribute
z and true binary label y, D(x) is the task allocation model probability distribution over
the pool m experts, and ¢;(x) binary prediction of expert i. A general training algorithm,
with access to ground truth labels, will update the allocation model to reward the correct
experts (for whom e;(x) = y) and penalize those who are incorrect:

0 ey
D(x),' — {D(x>’ +6rqward(x’y>7 if el(x) y

2 | ()
D(x>i - 6pgnalty(x7y)7 if ei('x) 7é y

2distribution over m annotators: Vd€A™, 0<d;<1 for all i€ {1,...,m} and d"1=1.
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where Sr(elzv ara ()5 SIEQMIW(J 1 Z x {0,1} = R are input and annotator-specific updates
and chosen so that the updated weights sum to 13. This appropriately rewards/penalizes
the annotators, yielding allocation model updates that simulate these rewards/penalties.
The reward/penalty functions are constructed by framing the problem as an op-
timization program. In the case of Keswani et al. [28], rewards/penalties are con-
structed as follows: given (x,y), allocation parameters u, and committee size k, first
select a committee C of k annotators using D,(x) and compute the (probabilis-
tic) prediction §,(x) by taking the mean of the selected annotators, i.e., $,(x) :=
Yiccei(x)/|C|. Then minimize the following regularized log-loss function: %p(u) :=
Eyy[—ylog(c($u(x))) — (1 —y)log(1 — o (Ju(x))))], where o is the standard sigmoid
function. Expected loss can be computed by the mean over a batch of training samples,
with optimization performed via gradient descent. The gradient updates for this loss
function can be seen to reward the correct annotators and penalize the incorrect anno-
tators [28]. Hence, functionally, each step of this algorithm has a similar structure as
Equation 1. Other prior training algorithms can also be shown to have similar underlying
reward/penalty structure; see Appendix B in Supplementary Material (§7) for examples.

Training using noisy aggregated human labels. In this work, we focus on the more
challenging case of having access to fallible human decisions only, with no oracle feedback
regarding their accuracy (i.e., no access to y). Lacking gold labels, one way to directly use
the above training process is to learn from noisy, aggregate human labels. Given input x
and committee C selected using D(x), the predicted label $(x) := 1[Y;ccei(x)/|C| > 0.5].
Then, the training updates can substitute y with y in Equation 1:

D) {D<x>i # 0 I), e =500

D(x)i = 8 nainy (%, 3(x)),  if €i(x) 7 $(x)

By substituting true class labels with noisy aggregated labels, existing training allocation

algorithms [28, 36] can be used without major changes (e.g., substitute y with y in above

loss -%p(u)). While simple, this approach also has a potential downside: when the majority

of the annotators are consistently biased against any group z € %, this unsupervised
training process is unable to detect such bias.

2)

Bias propagation when training using noisy labels. Assuming a binary group attribute,
we show below that: if (i) the starting allocation model chooses annotators randomly, and
(ii) the majority of the annotators are biased against or highly inaccurate with respect to a
group attribute type (e.g., a disadvantaged group), then the above training process leads to
disparate performance with respect to the disadvantaged group. For o > 0.5, assume that
o fraction of annotators are biased against group z = 0 and (1—a) fraction are biased
against group z = 1. If a person is biased against z = j, they will always predict correctly
for inputs with z=1—j but predict correctly for inputs with z=j with probability 0.5.

Lacking an informative prior, training will start with D(x) assigning uniform proba-
bility 1/m to all m annotators. When k = 1, a single person decides the label for input x.
In this case, the starting accuracy for group z = 1 elements will be & +0.5(1 — ), and
for group z = 0 elements, (1 — a¢) 4+ 0.5a. Therefore, the difference in expected accuracy
for group z =1 vs. z = 0 elements will be (a —0.5). The larger the value of ¢, the greater
the disparity will be. Hence, with biased starting allocation model and predicted labels
used for retraining, the bias will propagate to the learned model.

S Ty 8 g (vy) e =) — X1y 81 () 1(e; #) = 0.
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Claim 2.1. In the above setting, the disparity between accuracy for group z=0 and
accuracy for group z=1 does not decrease even after training using multiple Eqn. 2 steps.

The proof is provided in the supplementary material. In §3, we simulate a setting wherein
most annotators are biased against certain input categories. Results show that prior training
algorithms perform poorly, yielding low allocation accuracy.

2.2. Injecting Prior Information

In real life, no oracle exists to provide us feedback on our fallible or biased human
decisions. There is no oracle gold training data to guide initial allocation decisions, nor is
there gold feedback on human decisions made during closed-loop training. How then can
imperfect human decisions train an accurate task allocation model? Our key insight is to
exploit weak prior information on human-task similarity to bootstrap model training.

Motivating Examples. Example 1. When a company recruits a new employee, the human
decision-makers are typically current employees, and more specifically, a “hiring loop” of
employees possessing appropriate expertise to assess the candidate’s credentials. Assum-
ing a company knows the varying expertise of its own workforce, prior information exists
to match decision-makers to new candidates. In addition, organizations today appreciate
the importance of forming hiring committees that combine diversity and expertise [42].
Example 2. In content moderation, moderator decisions vary due to many compatibil-
ity factors. For example, a lack of familiarity with the dialect of the content’s author can
lead to biased decisions [40, 10]. Whether the moderator has themself has been a target
of hate speech [29], or whether their own demographic identity aligns with that being
targeted in the content they are reviewing [19] can also impact their decisions. Thus, once
differences in judging behavior among moderators are acknowledged and accepted, it
creates a space for matching different groups of moderators to different content types,
based on moderator background (which can be collected via an onboarding questionnaire).

Encoding Prior Information. Any allocation model induces a probability distribution
over the decision-makers for each input, such that the probability assigned to each
decision-maker represents the confidence in their correctness. An initial approximation
of this distribution over the human decision-makers can be derived using the contextual
information of the application where the allocation model is being employed. For the
motivating examples above, such weak prior information already exists to 1) appoint
employees to a hiring loop who are capable of evaluating a candidate (by matching areas
of expertise); and 2) select moderators to review content appropriate to their background
(by matching target and annotator demographics/dialect).

In absence of labeled training data, we can use this prior information to bootstrap
the closed-loop training process. The prior information is encoded in our framework
using a similarity function dSim : {ey,...,e,} X & — [0, 1], i.e., specifying a continuous
similarity score matching each individual person to each content category. As shown
above, starting with a random allocation model is challenging when we also lack oracle
feedback on the accuracy of human decisions in the closed-loop training process. Espe-
cially problematic are settings when the majority of annotators are biased against certain
groups, as observed from the stylized example in Claim 2.1. By starting with some prior
information about which people (or groups of people) might be best suited to each type
of task (or category of content) using dSim, we seek to address this flaw of the closed
training framework and bootstrap an accurate training process. Indeed Claim 2.2, shows
that using an appropriate dSim can address the issues observed in the setting of Claim 2.1.
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Claim 2.2. Revisiting Claim 2.1, suppose dSim(e;,z)=1 if annotator e; is unbiased for

category 7 and 'y otherwise, where y is any constant € [0,1]. Consider the allocation

induced by this dSim function (i.e., for input (x,z), allocation output D(x); o< dSim(e;,z)).
Y

Then the difference between the accuracy for group z=0 and z=1 lies in [%, & . i]'

The proof is provided in the supplementary

material. Claim 2.2 shows that smaller y

values imply dSim is better able to differ-

entiate between biased and unbiased anno- . ; . .
Lo . 1: Set initial allocation Dy s.t. for any input x in

tators. Hence, the better dSim is at differen- ;

o ) ’ category z, we have D, (x); < dSim(e;,z)

tiating biased and unbiased annotators, the 2 fors e {1,2 T} do

smaller the disparity in performance across 3. p, | (x,) « Allocation distribution for x;

groups of the starting allocation model. We 4. €+~ Choose committee of size k using dis-

thus utilize dSim to mitigate biases in train- tribution D, _1 (x;)

Algorithm 1 Training with prior information.
Input: (x1,z1),...(xr,z7), humans eq,...,ep, k
Output: Trained task allocation model

ing using noisy labels (i.e., Eq. (2)). Our 5: $;+Aggregated decision of annotators in C
proposed algorithms operate on this gen- 6: D;<Update allocation by training on (x;, )
eral formulation of dSim(e,z). 7: return Dy

2.3. Training a closed-loop framework using dSim

Algorithm 1 presents our general training process. The first step ensures that initial
allocation follows the prior information provided by dSim. Subsequent training steps learn
from noisy, aggregated decisions to further improve the task allocation model accuracy.
Concrete methods to implement this algorithm are discussed next.

Training Method 1: Strict-Matching. One way to implement Algorithm 1 in
practice is to encode the dSim function within the initial task allocation model.
In particular, we set initial allocation model

parameters such that, for the starting allo- Input: input stream (x1,21),... (xr,2r), experts
cation model D uo and input (x ’Z) al?d anno- el,...,enm, function dSim, batch size B, committee
tator e;, we have that Duq (x); o< dSlm(e,-,z) size k, parameter Ty, rate 7, loss function ..

(Step 1). This can be feasibly accomplished  Qutput: Trained allocation model parameters u.

Algorithm Strict-Matching

in most applications using unlabeled data. ;" Set initial model parameters uq s.t. for any
The rest of the training process is the same input (x,z), we have Dy, (x); o< dSim(e;, 7)
as §2.1 and Equation (2): for every input, 2: S« 0
reward the annotators whose prediction 3: fors e {1,2,...,T} do
matches with aggregated prediction and pe- 4: Dy, , (%) < Allocation output for x;
nalize those who do not (using gradient 5 D(xt) <= Dy, (x)/sum(Dy,_, (x:))
of loss £p). Aggregation of selected an- & €< Sample k annotators from D (o)
notator predictions can be implemented in /- Jr ¢~ Aggregate label of committee C
Various wavs: . . . 8: S(—SU{(th[)}
ys; see Committee Voting in §2. .

9: if |S| = B then
To add further robustness, we use a batch 9.2 (1)
update process; i.e., for a given integer B, 10: u—u=m-=5, s

11:  S<0

train the model after observing B samples.
This approach exploits the dSim prior to
set the initial D(x) distribution, followed by closed-loop training with noisy aggregate
feedback to further improve the task allocation model.

12: return ur

Training Method 2: Smooth-Matching. To obtain a better transition from the dSim prior
to the allocation model learnt during closed-loop training, we can gradually wean ourselves
off of the prior by decreasing its relative weight as more observed evidence accumulates.
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In other words, the allocation employed at Algorithm Smooth-Matching

any iteration can be chosen as a convex Input: input stream (x1,21), ... (x7,27), experts
combination of the allocation encoded by ¢, ..., ¢,,, function dSim, batch size B, committee

the dSim prior and the allocation trained size k, parameter 7, rate 1, loss function .Zp.
using the observed samples (and aggre- Output: Trained allocation model parameters u.
gated class labels). This method of com- 1+ S+ 0
bining prior and observed data is concep- 2 for? € {1,2,....,T} do
. . . 3 u<T,/(t+1y)
tually similar to Bayesian or Laplacian X .
. . ... 4 Dysim(x;) < |dSim(e1,z), .., dSim(em, )]
smoothing techniques [43, 51]. Additive .
6
7
8
9

R ’ ) R Dsim (%1) <= Dasim (xr) /sum(D g (xr) )
combination yields a task allocation distri- D,, , (x;) < Allocation output for x;
bution incorporating both the prior distri- D(x;) <= Dy, ,(x;)/sum(Dy, , (x;))
bution and the empirical distribution. The Deomb < M+ Dagim (%) + (1= 1) - D(xt)
smoothing parameter U is set to be an in- > ? « Sample k experts from Dcomlf
creasing function of the number of observa- % 1 <~ Aggregate label from committee C
" e that prior inf tion dSim " S SU{(x,y)}
tions, ensuring that prior information dSim 1, ¢\ ¢/ p then
is used primarily in the initial training it- 13 weu—n 9L (u)
erations. Full details are provided in Algo- Ju

. . .14 S0
rithm Smooth-Matching. Parameter T; in
. . 15: return ur
Smooth-Matching controls the influence of
dSim on the training process. The first 7 iterations focus on obtaining accurate labels for
initial samples to bootstrap the training process. After 7, iterations, the weight given to
the prior is smaller than the weight given to the distribution learned during training.

N

Theoretical Analysis. Analyzing the two algorithms that use dSim shows that the trained
allocation model simulates the accuracy functions of the annotators. Our first theorem
states that if annotator e; has high accuracy for category z, then how fast our algorithms
converge to a model that assigns high weight to e; depends on the dSim(e;,z).

Theorem 2.3. For any group z, assume annotator e; is more accurate than all others. For
B > 0, suppose we set dSim function st. dSim(e;,z) —maxjic(y . my\ (3 dSim(ej,z) > B.
Assume all annotators receive the same rewards/penalties for correct/incorrect predictions.
Then the training algorithm that initializes D(x) parameters u with this dSim function
increases the weight assigned to annotator e by at least 238 in expectation, where
0 € [0,1] depends on the choice of Sewara and Spenairy values for the given input.

Hence, larger the dSim weight for e}, larger is their weight in the final allocation model.
Secondly, we show that when using appropriate dSim, if there are accurate annotators who
are not assigned a high weight by dSim, they will be “discovered” during the training.

Theorem 2.4. For any group z, assume annotator e has perfect accuracy. Let k be the size
of the committee sampled from D(x) to label input x. Let the dSim function be set such that
dSim(e;j,z) = €, for some € € [0, 1], but the total weight (normalized) assigned by dSim to
accurate annotators for group z is greater than 0.5. Assume all annotators receive the same
rewards for correct prediction and same penalties for incorrect prediction. Then, there is

an expected positive increase in the weight of this annotator if € > 1 — (1 — k/(2m))1/k.

Hence, our algorithms can discover accurate annotators so long as other accurate annota-
tors are available to infer the true labels for this input category and k, € are sufficiently
large. The proofs for both theorems are provided in the Supplementary Material.
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snt

6 t:;:“w;\t Method Label Acc.  Assignment Acc.
. et T * Smooth-Matching .90 (.08) 87 (0.27)
*Wﬁ- Strict-Matching .79 (.01) .74 (0.36)

2 o TR

YR Goel and Faltings [15] .50 (.01) .33 (.00)
° e et Tran-Thanh et al. [49] .50 (.01) 33(01)
, ® Group2.label0  + Group2, Labell Keswani et al. [28] 41 (.09) 17 (.26)

-2 0 2 4 6 8

Table 1. Label and allocation accuracy for §3 with noise s=0.3. We

Figure 2. Synthetic clusters in §3. report mean accuracy over 50 trials, with standard error in brackets.

3. Evaluating task allocation on a synthetic dataset

Consider a binary classification task with three annotators having distinct areas of exper-
tise, denoted by the colors , blue, and green. Assume each annotator is a perfect
oracle when asked to label an example in their respective area but only 20% accurate in the
other two areas, exhibiting consistent bias outside their respective areas of expertise. In the
best case, the task allocator will correctly assign each input to the correct expert, yielding
perfect labeling accuracy. In the worst case, assigning every input to the wrong annotator
will yield around 20% accuracy. Because experts are assumed to be perfect oracles, each
correct task allocation ensures a correct label. Consequently, task allocation accuracy
largely determines label accuracy, which is lower-bounded by allocation accuracy.

As data, we generate 10,000 2D points, each represented by a (x,y) coordinate and
drawn from one of three clusters, corresponding to the three areas (colors) of expertise. We
begin by sampling p ~Unif[0, 1] and constructing a 2D diagonal matrix X, with diagonal
entries sampled from Unif[0, 1]. Points are then sampled roughly equally from the three
clusters as follows: A" (u,X) ( ), A (U+2.5,%) (blue), and A (U +5,%) (green).
Every point is randomly assigned either label O (‘e’) or 1 (‘+’). Figure 2 shows the dataset.
Because class labels are assigned randomly, a classifier knowing only a point’s (x,y)
coordinates can only achieve 50% accuracy. Similarly, a task allocator knowing only the
(x,y) coordinates has a 1/3 chance of assigning the input to the correct expert.

Specifying dSim. Let e, denote the expert corresponding to color c. For input x, the opti-
mal dSim(e.,x) would be 1 when x has color ¢ and 0 otherwise, perfectly assigning each
example to the appropriate expert. To investigate the effect of varying informativeness
of prior information, we introduce noise parameter s € [0,2/3] and define dSim(e.,x) as
follows: dSim(e,x) = 1 —s if x has color ¢ and s/2 otherwise. With no noise (s = 0),
we revert to the optimal dSim(e.,x) specified above. Maximal noise (s = 2/3) yields
VydSim(ec,x) = 1/3: a uniform distribution over all annotators. Additional methodologi-
cal details are provided in Appendix C in Supplementary Material (see §7).

Baselines. (1) Goel and Faltings [15] learn a task allocation policy using accuracy esti-
mates for all annotators from a history of gold standard tasks. Because we assume that
gold standard tasks are unavailable, we instead run their algorithm with accuracy estimates
derived using noisy, aggregated annotator predictions. (2) Tran-Thanh et al. [49] learn an
allocation using a multi-arm bandit approach, with initial exploration steps to estimate
annotator accuracies followed by exploitation steps that assign inputs to annotators using
estimated accuracies. Once again, in absence of gold standard, the accuracy estimates in
the exploration step of their algorithm are obtained using aggregated predictions from
the annotators. (3) Keswani et al. [28]’s method is equivalent to training an input-specific
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task allocation model using Algorithm Smooth-Matching without any prior information,
i.e., without dSim. In this case, the training algorithm will start with a random alloca-
tion. Lacking prior information, we expect all three of these baselines to struggle in the
closed-training setting we consider. See Appendix C for further implementation details.

Results. We first assume moderate noise s = 0.3, roughly the middle of s € [0,2/3].
Table 1 compares Strict-Matching and Smooth-Matching vs. baseline algorithms [15, 49,
28]. We observe large differences in mean label accuracy: 0.90, 0.79, 0.50, 0.50, and 0.41,
respectively. Standard error over 50 trials shows that differences are statistically significant.
As noted earlier, our assumption of oracle experts means that task allocation accuracy
largely determines label accuracy, as the task allocation results here confirm: 0.87, 0.74,
0.33, 0.33, and 0.17, respectively. The vast difference in task allocation accuracy in
training with dSim (Smooth-Matching, Strict-Matching) and without dSim (Keswani
et al. [28] baseline) shows the critical importance of prior information in training. The
weaker accuracy of Strict-Matching vs. Smooth-Matching can be explained by their
differing use of dSim. Whereas Smooth-Matching exploits dSim for initialization only,
Smooth-Matching continues to benefit from dSim by utilizing it throughout training.
Figure 1 in Appendix C shows performance for varying s values. As expected,
increasing values for noise s leads to a corresponding decrease in accuracy, and for large
values of s, dSim degrades toward the uniform distribution as an uninformative prior.

4. Evaluating task allocation on a real-world dataset: toxicity detection

Dataset. Civil Comments [7] provides toxicity labels for 1.8M news comments. Of these,
450K comments are also labeled for the demographic group targeted (e.g., LGBTQ+, race,
etc.). We consider the binary classification task of predicting whether a comment contains
an “identity attack”: a comment that is toxic and targets a specific demographic affiliation.

Goyal et al. [19] augment Civil Comments with additional demographic identity
labels of the annotators. This enables study of how annotator identity may influence
their toxicity ratings. They sample 25.5k comments to augment with additional labels,
uniformly sampling comments from three targeted groups: LGBTQ, African-American,
and Control (identity agnostic). Of these, 12% of comments are labelled as containing
an identity attack. Roughly 1K crowd annotators contributed labels to their study, with
around 1/3 of annotators affiliated with each demographic group. Each comment is labeled
by 5 annotators from each group (i.e., 15 in total). See Appendix D for additional details.

Control annotators often label toxicity differently than annotators whose own de-
mographic group is targeted in a comment. Table 1 in the Appendix shows illustrative
examples. Such differences in toxicity ratings by annotator demographic indicate a form
of consistent bias, motivating our consideration of demographics in task allocation.

Specifying dSim. We investigate potential allocation accuracy improvement by matching
annotator demographics to the target groups. For comment x that targets demographic
group g and annotator e, we define dSim(z,e)=1, if e identifies with g and 0 otherwise.

Baselines. We evaluate against baseline training algorithms from Goel and Faltings
[15], Tran-Thanh et al. [49] and Keswani et al. [28]. The descriptions of these baselines
are provided in §3. See Appendix D in Supplementary Material (see §7) for model and
implementation details of our algorithms and the baselines.

Measurement. We follow Goyal et al. [19] in reporting AUC score: the area under
the receiver operating characteristic (ROC) curve. The dataset is skewed (only 12% of
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comments contain identity attacks), and AUC is appropriately sensitive to such class
imbalance. We randomly split the dataset into train-test partitions (70-30 split), evaluate
methods across 25 trials of different splits, and report AUC mean and standard error.

Alternative Gold Standards. We measure label accuracy using two views of ground
truth: 1) the classic assumption of a single, objective gold standard vs. 2) that the gold
standard is subjective and varies by community [29, 17, 19]. For the objective gold setting,
we induce gold by majority vote over all annotators from Civil Comments [7]. Note that
these annotators used to define the objective gold are completely disjoint from the set
of annotators available for our task allocation experiments. In the subjective setting, we
induce gold using the majority vote over the 5 annotators in [19] whose demographic
identity matches the comment’s target demographic. Here, the annotators available for
task allocation include the experts whose majority vote determines gold. Again, gold
labels are never used for training allocation models, but for evaluation purposes only.

Results. Table 2 present results for

objective and subjective gold condi- Table 2.: Objective and subjective gold results. We re-

tions. In both settings, training with- port AUC over 25 trials (standard error in brackets).

out prior information yields lower ac-

curacy. We observe improvement in Objective gold - Subjective gold
. .. Method AUC Score AUC Score

performance when using prior infor-

mation despite the fact that differ- Smeoth-Maiching 62 (O1) 710D
. . Strict-Matching .59 (0) .67 (.01)

ences in annotator accuracies across
. ‘gl _ Goel and Faltings [15] .60 (.01) .64 (.02)
d.em.ographlcs are not statistically Tran-Thanh et al, [49] 60 (0) 66 (01)
significant. This is because, after  geowani et al. [28] 60 (01) 66 (01)

training, allocation weights for each
input contain information from both prior and observed samples, and correspondingly
every test input is assigned to the top-ranked annotator for that input. The accuracy of
the top-ranked annotator is often better than the average annotator accuracy, leading to
improved prediction scores.

Results: objective gold. We observe negligible standard error (~ 0.01) in AUC scores
across trials, indicating consistency of the mean AUC scores for comparing methods.
Smooth-Matching achieves the best AUC score (0.62), 2% better than prior work baselines
that lack prior information (i.e., training without dSim). Strict-Matching performs 1%
worse than these baselines, likely due to insufficiency of using dSim only for initialization.
In contrast, Smooth-Matching mitigates this issue by using dSim throughout the training.
Results: subjective gold. Smooth-Matching again achieves the top mean AUC score
(0.71), with 5-7% improvement over baselines. In contrast with the objective gold setting,
Strict-Matching also outperforms all baselines (1-3%). In general, we observe both larger
margins and higher overall scores than in the objective gold setting. In part, this may
reflect a simple dataset artifact (e.g., all methods perform better in the subjective vs.
objective gold setting). We also noted a minor artifact earlier in experimental design that
could inflate scores here: whereas the objective gold setting uses disjoint annotator pools
to define gold vs. task allocation, here the annotator pool for task allocation also includes
the 5 annotators who define the community gold standard. Despite these confounds, strong
intuition remains to expect greater benefit from task allocation in the community-gold
setting: when community members are empowered to define gold for their community,
we stand to benefit more from engaging them as annotators for their community.
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5. Discussion and limitations

Availability of gold standard. As mentioned in §2.1, prior studies on task allocation often
assume that annotator correctness can be accurately determined. However, in real life, we
only have access to fallible human decisions and task allocation seeks to find the suitable
annotators whose aggregated decision is considered the gold [25]. Given that humans
define the gold, the assumption that we can accurately determine annotator correctness is
not always true. That is not to say correctness can never be determined; for tasks with
objectively correct answers, e.g. question-answer tasks [13], annotator qualities can be
measured. But when the ground truth is subjective (e.g., in toxicity analysis) or for settings
that are yet unexplored through crowdsourcing (e.g., regional language moderation),
assuming presence of gold labels can be unrealistic. The subjectivity of ground truth is an
important factor. The predominant view in crowdsourcing, that the gold standard is the
majority decision of a random group of annotators, has been challenged by many studies
and community-defined gold standards have thus been forwarded as a way to incorporate
minority voices [19, 29, 41, 17, 44]. Our framework, hence, takes a contextual approach
to task allocation. Providing annotator background as prior information ensures that the
social context of the tasks is taken into account. Training our closed-loop framework does
not require any ground truth, ensuring separation from predefined ideas of “correctness”.
Prior information and dSim. Through empirical evaluations, we show that prior in-
formation can improve closed-loop model training. However, certain settings may not
require such prior information for accurate training, e.g. tasks where the ground truth is
considered objective (e.g., factual question-answer datasets) or when annotator qualities
are not input-specific. Secondly, providing incorrect or non-contextual prior information
to the framework can have a negative impact on the training process. An incorrect estimate
of dSim can lead to incorrect allocation in the initial iterations, thus derailing the entire
training process (as observed for noisy dSim in § 3). Finally, a key assumption we make is
that annotator demographics and target demographics are known. While it is reasonable to
expect annotator demographics to be provided (e.g., using in-take surveys during onboard-
ing), demographics associated with the tasks (e.g., groups targeted in social media posts)
may not always be available. In practice, target demographic would have to be manually
labeled or automatically detected (with noise). Tackling noise in target demographics
merits future exploration and can improve our framework’s applicability.

Annotator consultation costs. Different annotators can have different consultation costs.
E.g., platforms like Upwork [20] allow clients to employ human experts (or freelancers)
for their posted jobs. Experts often have more experience/training (and higher prices)
than generalist workers. Our framework supports each person having such additional
input-specific costs. Let c,; : 2° — R for ¢; denote the input-specific cost function for
annotator ¢;. To incorporate input-specific costs, we can alternately minimize a regularized
loss function: £ := %+ A -E, [D(x) "c(x)], where A > 0 is the cost hyperparameter.
Minimizing this cost-regularized loss will ensure that the annotator costs are accounted.
Updating annotators. To add a new annotator, we can assign them weight proportional
to their dSim value for any given input category and subsequent training will update
this weight based on their predictions. Removing an annotator, however, can affect
performance if this annotator had expertise in subspaces where all other annotators are
inaccurate. If the removed annotator did not have any unique expertise, then choosing a
large committee size can partially ameliorate this issue. However, alternate methods to
deal with annotator removal would be beneficial in practice and merit further exploration.
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6. Related Work

Multiple studies in crowdsourcing have evaluated the importance of repeated labeling
and proposed methods to handle annotator heterogeneity [45, 25, 31, 58, 53, 27, 6, 15].
Traditionally, most studies consider heterogeneity amongst annotators but not amongst
the input tasks. In contrast, our framework constructs input-specific allocation models.
Certain recent papers propose methods to handle correlated heterogeneity of annotators
and tasks in offline settings, where all annotators provide a decision for most tasks and the
goal is to infer ground truth from given annotations [57, 48, 9]. However, offline settings
can be expensive as it requires a large number of annotations. We tackle online settings
where the relevant experts are chosen judiciously to obtain relatively larger cost-benefit.

Studies on online allocation forward a variety of methods to construct appropriate
allocation models. Yin et al. [56] design budget-limited allocation policies that match
the annotator preferences to task requirements. However, annotator preferences can be
unavailable and would be susceptible to implicit biases. Liu et al. [32], Li et al. [30]
propose frameworks that learn annotator accuracies by comparing to ground truth for
completed tasks. §2.1 shows that such frameworks perform poorly in closed-loop settings;
they can potentially be employed if our proposed approach of using prior information is
incorporated into their designs. Fan et al. [13] develop allocation models that assign tasks
to annotators who have past experience with similar tasks. However, estimating inter-task
similarity can be expensive when size and variability across tasks are large. Certain studies
estimate annotator cognitive abilities or use their social network profiles to allocate tasks
appropriately [22, 16, 12]. In absence of subsequent training, these methods will have low
accuracy when the annotator profiles have insufficient information about their qualities.
Ho et al. [23] and Ho and Vaughan [24] study a related but different allocation setup where
human annotators’ skill levels are known in advance. Bandit approaches [2, 33, 52, 49]
can also be used for allocation but primarily assume access to true rewards/penalties. In
closed-loop settings, they can suffer from exacerbated inaccuracies, as observed in §3.

Recent human-in-the-loop research studies deferral frameworks that train an auto-
mated classifier which can either make a prediction or defer the decision to a human
[28, 36, 34]. Deciding whether a prediction should be made by the classifier or (one or
more) humans is a task allocation problem. However, here again prior algorithms for
deferral training assume access to true class labels for training [28, 36, 34, 21], which are
unavailable in our closed-loop setting. In case of limited ground truth information, semi-
supervised classification [8, 50, 37, 55, 26] selectively use either the model’s prediction
or labels from noisy crowd annotators to appropriately re-train the model. While the goal
of these approaches is to train a classifier, our primary goal is to train an input-specific
task allocation model that learns every human decision-maker’s error region.

7. Conclusion

We initiate a study of a closed-loop online task allocation framework where decisions
from the human annotators are used to continuously train the allocation model as well.
We provide algorithms that utilize the available prior information about the annotators to
bootstrap an accurate training process. By encoding prior information about the human
annotators, e.g. demographics and background, we ensure that the learned allocation
models are contextually-relevant. Appendix is provided as supplementary material
available at https://tinyurl.com/22e9zpuu and the code is available at https:
//github.com/vijaykeswani/Closed-Loop-Task-Allocation.


https://tinyurl.com/22e9zpuu
https://github.com/vijaykeswani/Closed-Loop-Task-Allocation
https://github.com/vijaykeswani/Closed-Loop-Task-Allocation

V. Keswani et al. / Designing Closed-Loop Models for Task Allocation 29
References

[1] Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi S. Online team
formation in social networks. In: Proceedings of the 21st international conference
on World Wide Web; 2012. p. 839-848.

[2] Arora S, Hazan E, Kale S. The multiplicative weights update method: A meta-
algorithm and applications. Theory of Computing 2012;8(1):121-164.

[3] Awerbuch B, Kleinberg R. Online linear optimization and adaptive routing. Journal
of Computer and System Sciences 2008;74(1):97-114.

[4] Bertrand M, Mullainathan S. Are Emily and Greg more employable than Lakisha
and Jamal? A field experiment on labor market discrimination. American economic
review 2004;94(4):991-1013.

[5] Bhuiyan MM, Zhang AX, Sehat CM, Mitra T. Investigating differences in crowd-
sourced news credibility assessment: Raters, tasks, and expert criteria. Proceedings
of the ACM on Human-Computer Interaction 2020;4(CSCW2):1-26.

[6] Bonald T, Combes R. A minimax optimal algorithm for crowdsourcing. Advances
in Neural Information Processing Systems 2017;30.

[7] Borkan D, Dixon L, Sorensen J, Thain N, Vasserman L. Nuanced
metrics for measuring unintended bias with real data for text classifica-
tion. In: Companion proceedings of the 2019 world wide web confer-
ence; 2019. p. 491-500. Dataset:https://www.kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge/data.

[8] Chapelle O, Scholkopf B, Zien A. Semi-supervised Learning. MIT Press; 2010.

[9] Davani AM, Diaz M, Prabhakaran V. Dealing with disagreements: Looking beyond
the majority vote in subjective annotations. Transactions of the Association for
Computational Linguistics 2022;10:92-110.

[10] Davidson T, Bhattacharya D, Weber 1. Racial Bias in Hate Speech and Abusive
Language Detection Datasets. In: Proceedings of the Workshop on Abusive Language
Online; 2019. .

[11] Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates
using the EM algorithm. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 1979;28(1):20-28.

[12] Difallah DE, Demartini G, Cudré-Mauroux P. Pick-a-crowd: tell me what you like,
and 1’1l tell you what to do. In: Proceedings of the 22nd international conference on
World Wide Web; 2013. p. 367-374.

[13] FanJ, Li G, Ooi BC, Tan KI, Feng J. icrowd: An adaptive crowdsourcing framework.
In: Proceedings of the 2015 ACM SIGMOD international conference on management
of data; 2015. p. 1015-1030.

[14] Fontenla-Romero (), Guijarro-Berdifias B, Martinez-Rego D, Pérez-Sanchez B,
Peteiro-Barral D. Online machine learning. In: Efficiency and Scalability Methods
for Computational Intellect IGI Global; 2013.p. 27-54.

[15] Goel N, Faltings B. Crowdsourcing with fairness, diversity and budget constraints.
In: Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society;
2019. .

[16] Goncalves J, Feldman M, Hu S, Kostakos V, Bernstein A. Task routing and assign-
ment in crowdsourcing based on cognitive abilities. In: Proceedings of the 26th
International Conference on World Wide Web Companion; 2017. p. 1023-1031.


https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data

30 V. Keswani et al. / Designing Closed-Loop Models for Task Allocation

[17] Gordon ML, Lam MS, Park JS, Patel K, Hancock J, Hashimoto T, et al. Jury learning:
Integrating dissenting voices into machine learning models. In: CHI Conference on
Human Factors in Computing Systems; 2022. p. 1-19.

[18] Gorwa R, Binns R, Katzenbach C. Algorithmic content moderation: Technical and
political challenges in the automation of platform governance. Big Data & Society
2020;7(1):2053951719897945.

[19] Goyal N, Kivlichan I, Rosen R, Vasserman L. Is Your Toxicity My Toxic-
ity? Exploring the Impact of Rater Identity on Toxicity Annotation. The 26th
ACM Conference On Computer-Supported Cooperative Work And Social Com-
puting (CSCW) 2022;Dataset:https://www.kaggle.com/datasets/google/
jigsaw-specialized-rater-pools-dataset.

[20] Green DD, et al. Fueling the gig economy: a case study evaluation of Upwork. com.
Manag Econ Res J 2018;4(2018):3399.

[21] Hemmer P, Schellhammer S, Vossing M, Jakubik J, Satzger G. Forming Effec-
tive Human-AI Teams: Building Machine Learning Models that Complement the
Capabilities of Multiple Experts. arXiv preprint arXiv:220607948 2022;.

[22] Hettiachchi D, Van Berkel N, Kostakos V, Goncalves J. CrowdCog: A Cognitive skill
based system for heterogeneous task assignment and recommendation in crowdsourc-
ing. Proceedings of the ACM on Human-Computer Interaction 2020;4(CSCW2):1—
22.

[23] Ho CJ, Jabbari S, Vaughan JW. Adaptive Task Assignment for Crowdsourced
Classification. In: International Conference on Machine Learning; 2013. p. 534-542.

[24] Ho CJ, Vaughan J. Online task assignment in crowdsourcing markets. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 26; 2012. p. 45-51.

[25] Ipeirotis PG, Provost F, Wang J. Quality management on amazon mechanical turk.
In: Proceedings of the ACM SIGKDD workshop on human computation; 2010. p.
64-67.

[26] Kajino H, Tsuboi Y, Kashima H. A convex formulation for learning from crowds.
In: Twenty-Sixth AAAI Conference on Atrtificial Intelligence; 2012. .

[27] Karger DR, Oh S, Shah D. Budget-optimal task allocation for reliable crowdsourcing
systems. Operations Research 2014;62(1):1-24.

[28] Keswani V, Lease M, Kenthapadi K. Towards Unbiased and Accurate Deferral to
Multiple Experts. In: Proceedings of the AAAI/ACM Conference on Al, Ethics, and
Society; 2021. .

[29] Kumar D, Kelley PG, Consolvo S, Mason J, Bursztein E, Durumeric Z, et al. De-
signing toxic content classification for a diversity of perspectives. In: Seventeenth
Symposium on Usable Privacy and Security (SOUPS 2021); 2021. p. 299-318.

[30] Li H, Zhao B, Fuxman A. The wisdom of minority: Discovering and targeting the
right group of workers for crowdsourcing. In: Proceedings of the 23rd international
conference on World wide web; 2014. p. 165-176.

[31] Liu Q, Peng J, Ihler AT. Variational inference for crowdsourcing. Advances in neural
information processing systems 2012;25.

[32] Liu X, Lu M, Ooi BC, Shen Y, Wu S, Zhang M. CDAS: A Crowdsourcing Data
Analytics System. Proceedings of the VLDB Endowment 2012;5(10).

[33] Lu T, Pal D, Padl M. Contextual multi-armed bandits. In: Proceedings of the
Thirteenth international conference on Artificial Intelligence and Statistics JMLR
Workshop and Conference Proceedings; 2010. p. 485-492.


https://www.kaggle.com/datasets/google/jigsaw-specialized-rater-pools-dataset
https://www.kaggle.com/datasets/google/jigsaw-specialized-rater-pools-dataset

V. Keswani et al. / Designing Closed-Loop Models for Task Allocation 31

[34] Madras D, Creager E, Pitassi T, Zemel R. Learning adversarially fair and transferable
representations. arXiv preprint arXiv:180206309 2018;.

[35] Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and
fairness in machine learning. arXiv preprint arXiv:190809635 2019;.

[36] Mozannar H, Sontag D. Consistent estimators for learning to defer to an expert. In:
International Conference on Machine Learning PMLR; 2020. p. 7076-7087.

[37] Nguyen AT, Wallace BC, Lease M. Combining crowd and expert labels using
decision theoretic active learning. In: Third AAAI conference on human computation
and crowdsourcing; 2015. .

[38] Pan Y, Froese F, Liu N, Hu Y, Ye M. The adoption of artificial intelligence in
employee recruitment: The influence of contextual factors. The International Journal
of Human Resource Management 2021;p. 1-23.

[39] Raghu M, Blumer K, Sayres R, Obermeyer Z, Kleinberg B, Mullainathan S, et al. Di-
rect uncertainty prediction for medical second opinions. In: International Conference
on Machine Learning; 2019. p. 5281-5290.

[40] Sap M, Card D, Gabriel S, Choi Y, Smith NA. The risk of racial bias in hate speech
detection. In: Proceedings of ACL; 2019. p. 1668—1678.

[41] Sap M, Swayamdipta S, Vianna L, Zhou X, Choi Y, Smith NA. Annotators with
attitudes: How annotator beliefs and identities bias toxic language detection. NAACL
2022;.

[42] Schumann C, Foster J, Mattei N, Dickerson J. We need fairness and explainability
in algorithmic hiring. In: International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS); 2020. .

[43] Schiitze H, Manning CD, Raghavan P. Introduction to information retrieval, vol. 39.
Cambridge University Press Cambridge; 2008.

[44] Sen S, Giesel ME, Gold R, Hillmann B, Lesicko M, Naden S, et al. Turkers,
scholars,” arafat” and” peace” cultural communities and algorithmic gold standards.
In: Proceedings of the 18th acm conference on computer supported cooperative work
& social computing; 2015. p. 826-838.

[45] Sheng VS, Provost F, Ipeirotis PG. Get another label? improving data quality
and data mining using multiple, noisy labelers. In: Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining; 2008.
p. 614-622.

[46] Spinde T, Rudnitckaia L, Sinha K, Hamborg F, Gipp B, Donnay K. MBIC-A Media
Bias Annotation Dataset Including Annotator Characteristics. iConference 2021;.

[47] Surowiecki J. The wisdom of crowds. Anchor; 2005.

[48] TaoF, Jiang L, Li C. Label similarity-based weighted soft majority voting and pairing
for crowdsourcing. Knowledge and Information Systems 2020;62(7):2521-2538.

[49] Tran-Thanh L, Stein S, Rogers A, Jennings NR. Efficient crowdsourcing of unknown
experts using bounded multi-armed bandits. Artificial Intelligence 2014;214:89-111.

[50] Triguero I, Garcia S, Herrera F. Self-labeled techniques for semi-supervised learning:
taxonomy, software and empirical study. Knowledge and Information systems
2015;42(2):245-284.

[51] Valcarce D, Parapar J, Barreiro A. Additive smoothing for relevance-based language
modelling of recommender systems. In: Proceedings of the 4th Spanish Conference
on Information Retrieval; 2016. p. 1-8.



32 V. Keswani et al. / Designing Closed-Loop Models for Task Allocation

[52] Valera I, Singla A, Gomez Rodriguez M. Enhancing the Accuracy and Fairness
of Human Decision Making. Advances in Neural Information Processing Systems
2018;31:1769-1778.

[53] Welinder P, Branson S, Perona P, Belongie S. The multidimensional wisdom of
crowds. Advances in neural information processing systems 2010;23.

[54] Wu G, Chen Z, Liu J, Han D, Qiao B. Task assignment for social-oriented crowd-
sourcing. Frontiers of Computer Science 2021;15(2):1-11.

[55] Yan Y, Rosales R, Fung G, Dy JG. Active learning from crowds. In: International
Conference of Machine Learning; 2011. .

[56] Yin X, Chen Y, Xu C, Yu S, Li B. Matchmaker: Stable Task Assignment With
Bounded Constraints for Crowdsourcing Platforms. IEEE Internet of Things Journal
2020;8(3).

[57] Zhang H, Jiang L, Xu W. Multiple Noisy Label Distribution Propagation for Crowd-
sourcing. In: IJCAI; 2019. p. 1473-1479.

[58] Zhou D, Basu S, Mao Y, Platt J. Learning from the wisdom of crowds by minimax
entropy. Advances in neural information processing systems 2012;25.



