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Abstract. This paper presents the modeling of the inverse kinematic problem related 
to the motions of a delta planar robot using the algebra of unitary Quaternions. The 
mathematical model resulting from the inverse kinematic analysis has an associated 
system of 8 nonlinear algebraic equations with 8 polynomial unknowns. The 
Newton-Raphson method was used to solve the mathematical model of the robot. 
Subsequently, using the inverse model of the robot, a database was constructed that 
relates the Cartesian coordinates of the end effector to the angles and axes of the 
rotations of the links. This database was used to train a multilayer neural network in 
order to have an equivalent model of the inverse problem. A series of experiments 
were performed to obtain an improved network configuration by varying four 
training parameters. The results obtained show that the improved trained network 
can be used to solve the inverse problem of the studied robot. 
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1. Introduction 

Robot modeling is performed using various mathematical methods and tools, such as 
homogeneous matrices [1] and Quaternions [2]. In general, kinematic modeling of robots 
generates systems of nonlinear equations, so one of the most common numerical solution 
techniques applied to solve such models is the Newton-Raphson method [3]. Machine 
learning is an Artificial Intelligence (AI) technique that is currently being used to solve 
robot kinematic models as an alternative to Newton-Raphson, such as neural networks 
[4]. Other AI algorithms have been used for applications in robot kinematics, for example, 
in [5] a model of a Neuro-Fuzzy inference system was built to predict the position of the 
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end-effector of a parallel RRR-type robot within the workspace and tuned with a particle 
swarm optimization and a genetic algorithm. In [6], the direct kinematic problem of a 
Stewart platform was solved using soft computing and, subsequently, a particle swarm 
optimization method was used and a multilayer neural network was trained to solve the 
forward kinematics problem. 

In this paper, the inverse kinematic modeling of a 2 GDL delta planar robot using 
unitary Quaternions [7] is presented. The mathematical model obtained is solved using 
the Newton-Raphson method and, subsequently, a neural network is trained and the 
results are compared. 81 experiments were performed by varying some training 
parameters of the neural network to obtain an improved network architecture.  

2. Quaternion Algebra 

Let the set �4, on which the binary operations are defined �:�4��4��4 and �: �4� 
�4��4 be expressed [7]:  
 
i) (a,b,c,d) � (�,�,	,
) = (a+�, b+� , c+	 , d+
)                                                               (1) 
ii) (a,b,c,d) � (�,�,	,
) = (a� � b� � c	 � d
, a� + b� + c
 � d	, a	 � b
 + c� + d�, a
 + 
b	-c� + d� ),  � (a,b,c,d), (�,�,	,
)  �4  
 

The pairs (�4,�) and (�4,�) form a commutative additive group and a non-
commutative multiplicative group, respectively. The triple (�4,�,�) forms a non-
commutative field. the operation �:���4��4 

is defined by ��(a,b,c,d) = (�a,�b,�c,�d), 
�(a,b,c,d)�4, ��. It is a scalar product on �4, so the term (�4,�,�) is a real vector 
space. The transformation <�,�>:�4� �4��, it is an inner product in �4. It is an inner 
product in �4 and, therefore, the structure  Q=(�4,�,�,�,<�,�>) is a real vector space 
with inner product, and the norm associated with this inner product is the following: �|p�| 
= <p,p>1/2  = (p0

2+p1
2+p2

2
 +p3

2) ½.  For which the structure Q=(�4,�,�,�, ���) is a normed 
space which will be called the vector space of quaternions, and its elements will be called 
quaternions [7]. In a similar way to the algebra of complex numbers, a conjugate 
quaternion can be defined as follows: p p p p p  . 

2.1. Parametric representation of rotations of a rigid body 

Let �(p,•):Q�Q, pQ be a linear transformation defined by:    

� � � � �p                                                       (2) 

This function is a rotation that preserves the inner product, the norm, and the angle 
[7]. The transformation �(p,�):Q�Q, is linear and orthogonal. The geometrical relations 
between the Quaternion components p�4 with ||p||=1 are as follows: 
 
p0 = cos(�/2),   pv = � sin(�/2)w                                                                (3) 
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3. Kinematic model of the delta planar robot 

The multibody to be modeled is a parallel delta planar robot (Figure 1). The objective of 
the modeling is to relate the origin of coordinates "O" where a fixed inertial base is 
located, with the point "pot" by means of the robot configuration. The explicit modeling 
of this robot is performed in two configurations, an initial and a final one [8]. In this 
paper, the final modeling will be presented.  

 
a)                                                                                     b) 

Figure 1. Vectorization of the final robot configuration: a) Position vectors and local bases and b) Sequence 
of rotations of the inertial base over the local bases [8]. 

According to Figure 1, the position of the "pot" point measured from the origin of 
coordinates can be determined by means of the following closed-loop equations: 

 
� �  

(4) � �  

 
Each vector defined in  associated with the links can be written in terms of a 

multiplication between a scalar and a unit vector. That is:  
 

� �  

(5) � �  

The local bases shown in Figure 1.a) are defined in the deformed or final 
configuration and are representations of the rigid rotations of the inertial base located at 
point O (Figure 1). These rotations are modeled below:  
 

� � � � �p�P 

(6) 
� � � � � � , 

� � � � �q�Q, 

� � � � �s�S, 
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Here  are the Quaternions related to the final or deformed configuration 
and are Quaternions associated with the initial configuration. Figure 1.b) 
shows graphically the sequence of rotations of the local bases. The angles θ i are 
associated with the Quaternions of the reference configuration and the angles αi are 
associated with the Quaternions of the final configuration. The loop equations in terms 
of Quaternions are expressed as follows: 
 

� � � �p�P � � � �r�R   

(7) � � � �q�Q � � � �s�S  

In addition, it is necessary to: �|P�|=�|Q�|= �|R�|= �|S�|=1. The relationships between 
Quaternions , angles and rotation axes are: 

 

(8) 

 

The inverse kinematic problem is formulated with the equations (8) and the 
expressions of the unit norm which are nonlinear and with the parameters of the 
Quaternions. Therefore, there are 8 nonlinear scalar equations with 8 unknowns (P0, P1, 
Q0, Q1, R0, R1, S0, S1). The input data are the coordinates of the "pot" point and the 
outputs are the angles and axes of each joint. The known data are the dimensions of the 
links and the quaternions , as well as the coordinates of point "1" and "2" 
(Figure 1). The explicit model in scalar equations is generated with equations (1) and the 
unit norms of the quaternions. 

4. Training of a neural network 

In this section we will describe the training of a multilayer neural network which is fed 
by a database generated by solving the kinematic problem related to the delta planar 
robot using the Newton-Raphson method. Subsequently, experimentation with the 
representative network will be performed by varying four training parameters and using 
a filtering method to generate an improved network. 

The methodology used to carry out the training was: 1) Selection of a region in the 
plane of the robot's working area, 2) Calculation of the inverse kinematic problem using 
the Newton-Rapshon method considering a list of selected points, and the elimination of 
mirror configurations, 3) Generation of two databases: one for training and one for 
validation, 4) Normalization of the input data, 5) Design of the neural network topology, 
6) Configuration of the neural network, 7) Training of the network, 8) Validation of the 
network and comparison with the Newton-Raphson, 8) Conformation of a reference 
network, 9) Selection of parameters to be modified for network improvement, 9) 
Running the experiment and 10) Filtering and selection of the improved network. 
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To carry out the training of the multilayer network and the experimentation to locate 
an improved network, Matlab software was used. To generate the database 10,000 points 
were considered, the network configuration was 2 layers with 3 neurons each, the 
activation function considered was Hyperbolic tangent sigmoid and the performance 
function was the mean square error (mse). The Bayesian Regulation training algorithm 
was selected to train the network and the statistical method for validation was linear 
regression. A total of 1000 epochs and a performance of 0.001 were taken into account. 
Figure 2 shows a plot of neural performance and the training state of the network. The 
representative network configuration was [2, 3, 1000, 0.001], i.e., [layers, neurons, 
epochs, throughput]. 

 

 

a) b) 

Figure 2. a) Neural performance and b) Training status
   

Table 1 shows the validation of the network and the error obtained between the 
trained network and the data obtained from the Newton-Raphson method. 

 
Table 1. Neural network validation. 

Neuronal Network 

Input X Input Y P0 P1 Q0 Q1 R0 R1 S0 S1 

7.37 78.899 -0.1951515 0.98077311 0.89872536 -0.4385119 0.31058701 0.95054495 -0.9128551 -0.4082838 

35.68 84.198 -0.0087858 0.9999614 0.90693017 -0.421281 0.56072273 0.82800363 -0.9684203 -0.2493232 

32.97 120.0999 -0.1061099 0.99435441 0.98562882 -0.1689255 0.57365692 0.81909568 -0.9999799 0.00633318 

Newton Raphson 

Input X Input Y P0 P1 Q0 Q1 R0 R1 S0 S1 

7.37 78.899 -0.1951515 0.98077311 0.89872536 -0.4385119 0.31058701 0.95054495 -0.9128551 -0.4082838 

35.68 84.198 -0.0087858 0.9999614 0.90693017 -0.421281 0.56072273 0.82800363 -0.9684203 -0.2493232 

32.97 120.0999 -0.1061099 0.99435441 0.98562882 -0.1689255 0.57365692 0.81909568 -0.9999799 0.00633318 

Input X Input Y Error 

7.37 78.899 3.75E-12 1.36E-12 4.63E-12 4.79E-12 1.59E-12 4.42E-12 7.79E-13 1.73E-12 
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35.68 84.198 2.48E-12 2.04E-12 -1.45E-12 4.25E-12 4.96E-12 7.79E-13 5.41E-14 -4.49E-12 

32.97 120.0999 4.55E-13 3.98E-12 -3.89E-12 -3.77E-12 -1.36E-12 -3.43E-12 1.91E-12 3.63E-12 

 

In order to obtain an improved neural network, experimentation was carried out 
taking into account and varying the number of layers (2, 3, 4), the number of neurons per 
layer (3, 4, 5), the number of epochs (1000, 2000, 3000) and the yields (0.001, 0.0001, 
0.00001). The total number of runs was 81. The information generated was filtered by 
the following concepts: Yield, epochs, gradient, and test, and three types of networks 
were selected: best, worst, and fuzzy. Figure 3 shows the performances of the best [2, 4, 
2000, 0.00001] and worst [3, 4, 2000, 0.00001] networks that were generated during 
training.  

 
(1) 

 
(2) 

Figure 3. Best training Performance: 1) Red [2, 4, 2000, 0.00001] y 2) Red [3, 4, 2000, 0.00001] 
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5. Conclusion 

A topology of an improved network obtained by modifying four parameters and filtering 
variables was found. Such a network was obtained from a set of 81 experiments and 
whose nature was that it learned to compute the inverse kinematics of a delta planar robot. 
Under the filtering parameters, the network topology [2, 4, 2000, 0.00001] was the best 
because it presented a better fit. The experimentation was performed after obtaining a 
representative network, which in this case was: [2, 3, 1000, 0.001]. The mathematical 
model associated with the robot developed with Quaternions generated a system of eight 
nonlinear algebraic equations and eight unknowns, and was the basis, together with the 
Newton-Raphson method to generate the database used to train and validate the 
representative and improved network. 
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