
A Stability Evaluation of Feature Ranking
Algorithms on Breast Cancer Data

Analysis

Shaode YU a, Bingjie LI a, Boji LIU a, Mingxue JIN a, Junjie WU b, and Hang YU c,1

a School of Information and Communication Engineering, Communication University of
China, Chaoyang, Beijing, China

b Department of Radiation Oncology, University of Texas Southwestern Medical Center,
Dallas, Texas, United States

c School of Aerospace Science and Technology, Xidian University, Xi’an, Shanxi, China

Abstract. Stability of feature preference is a most vital yet rarely explored charac-
teristics of feature ranking algorithms. In this study, 23 feature rankers are evalu-
ated on 4 breast cancer datasets (BCDR-F03, WDBC, GSE10810 and GSE15852)
using an advanced stability estimator (S), and 3 rankers are identified showing good
stability (S ≥ 0.55) consistently on the four datasets. It suggests that data suffi-
ciency is crucial for the construction of feature importance measure, since more
rankers are stable on medical imaging datsets (BCDR-F03 and WDBC) than on
gene expression datasets (GSE10810 and GSE15852), and high-dimensional small-
sample-size datasets are big challenges of stability estimation. In our future work,
more attention should be paid to the topics of developing stable feature ranking al-
gorithms and stability estimators to well tackle different sizes of medical datasets.
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1. Introduction

Feature ranking (FR) becomes increasingly important in the fields of precision medicine
due to the dramatic growth of feature dimension [1]. As one of FR’s most crucial charac-
teristics, stability quantifies how different training sets affect its feature preferences [2].

Four studies have evaluated the stability of feature selection algorithms. For breast
cancer (BC) risk prediction, 6 algorithms are analyzed using correlation coefficient and
Jaccard index [3]. For colorectal cancer risk forecasting, 6 methods are assessed with two
similarity-based estimators [4]. On high-dimensional datasets, the stability of 5 methods
is estimated via correlation coefficients and adapted Tanimoto distance [5]. Besides, rel-
ative weighted consistency, partially adjusted average Tanimoto index and some other
correlation based similarity measures are employed [6].

This study focuses on FR stability and differs itself from three points. First, 23 algo-
rithms are evaluated that surpasses previous studies. Second, an advanced estimator [2]
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is used to observe the dynamic change of stability. Third, stable algorithms are identified
on 4 breast cancer datasets. The study could enrich our understanding of FR stability on
diverse cancer data analysis.

2. Materials and Methods

2.1. Data collection

Four BC datasets shown in Table 1 are collected for FR stability analysis. BCDR-F03
includes 406 breast lesions (230 benign and 176 malignant)2 and 17 features are provided
[7]. To avoid one lesion with multiple records [8], the first feature record is used and
406 records are analyzed. WDBC contains 357 benign and 212 malignant instances3.
For a digitized fine needle aspiration (FNA) image, based on multiple delineation, the
mean, standard error and largest values of each feature are collected, and 30 features are
formed [9]. GSE10810 provides 31 tumor and 27 control samples of valid specimens
[10], and 18,382 genes are collected4. GSE15852 involves 43 tumor samples and 43
control samples of Malaysian women5, and 22,283 gene points are detected [11].

Table 1. Summary of the datasets used in this study

benign (train/test) malignant (train/test) feature number (p) data source

BCDR-F03 230 (141/89) 176 (141/35) 17 MAM

WDBC 357 (170/187) 212 (170/42) 30 FNA

GSE10810 27 (22/5) 31 (22/9) 18382 gene

GSE15852 43 (34/9) 43 (34/9) 22283 gene

2.2. Experiment design on stability estimation

Figure 1 shows the experiment design. In each iteration, a dataset {(X ,y)} is divided into
two subsets and one is for training {(Xtrain,ytrain)}, and each method yields a feature
rank in terms of feature importance. Here, vector < fi,1, ..., fi,k, ..., fi,p > is the output of
the ith running of p features of an algorithm, and fi,k is the order of the kth feature. In this
study, N = 100, and 100 iterations of each algorithm are conducted.

The outcome is the stability value (S) when top-m features are selected. An algo-
rithm generates a rank in descending feature importance order. When the number (m) is
defined, it yields a subset of features. In this study, N = 30, and m ranges from 3 to 9
features. When m = 3 and S ≥ 0.55, the algorithm is assumed to be stable.

2http://bcdr.inegi.up.pt
3https://archive.ics.uci.edu/ml/datasets/
4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10810
5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852
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Figure 1. The procedure of stability estimation. (The figure can be enlarged for viewing.)

2.3. Feature ranking algorithms

Twenty-three methods in matFR6 are evaluated, since the others exceed time expectation
(≥ 0.5 hour per iteration) on GSE15852. The core ideas of algorithms are based on abso-
lute values of t-test [12], relative entropy [13], Bhattacharyya distance [14], area between
the empirical receiver operating characteristic curve and random classifier slope [15], ab-
solute values of Mann-Whitney test [16], ReliefF [17], least absolute shrinkage and se-
lection operator [18], correlation analysis [19], generalized Fisher score (GFS) [20], Gini
score [21], Kruskal-Wallis test [22], pairwise feature proximity (PWFP) [23], min-max
local structure information [24], local learning-based clustering [25], eigenvector cen-
trality [26], probabilistic latent graph-based measure space [27], concave minimization
and SVM [28], convergence properties of the power series of matrices [29], Laplacian
score [30], L2,0-norm equality constraints (LNEC) [31], adaptive structure learning [32],
robust spectral learning of the spectrum information of the graph Laplacian [33], and
L2,1-norm minimization on processes of both label learning and feature learning [34].

2.4. Stability estimator

The estimator recasts the stability measure as a random variable estimation with explic-
itly embedded parameters7. After sampling distribution is identified, confidence inter-
vals are estimated and hypothesis tests are performed. It allows for reliable comparison
of stability across different procedures. Notably, S value above 0.75 represents excellent
agreement and between 0.40 and 0.75 indicates intermediate to good agreement.

3. Results

Estimated stability is shown in Tables 2 and 3. The values with S ≥ 0.55 when m = 3 are
highlighted in red, indicating the algorithms are stable. Table 2 shows most algorithms

6https://github.com/NicoYuCN/matFR
7https://github.com/nogueirs/JMLR2018
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achieve excellent stability. The S values of [12, 22, 23, 26, 30, 33, 34] are larger than 0.75
on both datasets. On contrast, [19] and [24] on BCDR-F03, and [19] and [28] on WDBC,
are highly sensitive to data perturbations.

On gene expression datasets, Table 3 indicates few algorithms with good stability.
On GSE10810, [14, 20, 23, 28, 31] are with 0.58 ≤ S ≤ 0.78, and on GSE15852, [20,
22, 23, 26, 29–31] have values between 0.56 and 0.85. Notably, [13] and [23] achieve
S ≥ 0.70 on GSE10810 and [23] and [27] are with S ≥ 0.80 on GSE15852, with good
agreement when feature subsets change.

In summary, 19, 20, 5, and 7 algorithms show good stability (S ≥ 0.55 when m = 3)
on BCDR-F03, WDBC, GSE10810 and GSE15852, respectively. Further observation
reveals that [13, 22, 26, 29, 30] are robust on 3 datasets, and 3 feature rankers (GFS [20],
PWFP [23] and LNEC [31]) are consistently stable on all the datasets.

4. Discussion

The stability of 23 FR algorithms is investigated using an advanced estimator on 4 BC
datasets. Stability is central in massive applications. Since higher stability increases user
confidence in complex data analysis, a user prefers an algorithm that yields stable feature
ranks even though perturbations exist in training data [2, 5].

Three algorithms show good stability consistently on the datasets. Initially, 19 meth-
ods cannot handle GSE15852 effectively. Besides high-performance hardware, these al-
gorithms need massive time to process gene datasets (GSE10810 and GSE15850). Sec-
ondly, most of the remaining algorithms achieve stable feature ranks on BCDR-F03 and
WDBC, while substantially fewer algorithms are stable on GSE10810 and GSE15850.
It is found that more than 18 samples describe a feature on BCDR-F03 and on WDBC,
while on gene datasets, samples are far from sufficient to express a feature. This might
suggest that data sufficiency is vital to the construction of measure spaces before accurate
estimation of feature importance [6]. Close observation finds that GFS [20], PWFP [23]
and LNEC [31] are consistently robust on all the four datasets.

There are several reasons that the three algorithms generate stable feature ranks ef-
ficiently. To GFS [20], it first finds a subset of features jointly to filter out redundant and
unrelated variables. In a reduced feature space, data subsets are optimized in regularized
discriminant analysis. Second, in the data space spanned by selected features, the dis-
tances between samples in different classes will be expanded as large as possible, and
that between samples in the same class will be reduced as small as possible. Finally, the
feature ranking problem is formed as a multiple kernel learning problem in each itera-
tion, and thus, time cost decreases and the computing is efficient. To PWFP [23], instead
of looking at the samples in groups, it evaluate feature efficiency based on pairwise fash-
ion, i.e., a pair of samples is considered at a time. In particular, the features bringing the
sample pairs closer or putting the pairs far away is selected as a good choice for feature
ranking. And to LNEC [31], feature selection and data partition are considered in a joint
manner that increases interdependence among data samples, cluster labels and selected
features. Using L2,0-norm equality constraints of dependence guided terms, learned clus-
ter labels are used to fill the information gap between data samples and selected fea-
tures, and alternating direction method of multipliers is designed to solve the constrained
minimization problem iteratively and efficiently.
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Table 2. Stability of algorithms on medical image datasets

top-3 top-4 top-5 top-6 top-7 top-8 top-9

B
C

D
R

-F
03

[12] 1.00 0.85 0.77 0.76 0.77 0.78 0.74
[13] 0.85 0.81 0.80 0.69 0.66 0.68 0.64
[14] 0.87 0.82 0.80 0.68 0.66 0.67 0.63
[15] 0.80 0.79 0.89 0.79 0.73 0.71 0.71
[16] 0.73 0.76 0.84 0.80 0.82 0.93 0.84
[17] 0.46 0.39 0.37 0.39 0.39 0.40 0.39
[18] 0.74 0.59 0.54 0.50 0.46 0.43 0.47
[19] 0.06 0.08 0.07 0.10 0.11 0.14 0.14
[20] 0.67 0.74 0.77 0.83 0.84 0.80 0.86
[21] 1.00 0.82 0.77 0.73 0.63 0.59 0.59
[22] 0.81 0.81 1.00 1.00 1.00 1.00 1.00
[23] 1.00 0.89 0.90 0.91 0.92 0.92 0.99
[24] 0.24 0.27 0.35 0.36 0.35 0.36 0.38
[25] 0.72 0.89 0.85 0.91 1.00 0.92 0.91
[26] 0.83 1.00 0.88 0.75 0.70 0.73 0.73
[27] 0.52 0.62 0.63 0.62 0.62 0.54 0.48
[28] 0.73 0.82 0.79 0.84 0.75 0.68 0.71
[29] 0.79 1.00 0.87 0.78 0.78 0.79 0.83
[30] 1.00 1.00 0.93 0.89 1.00 0.99 0.92
[31] 0.77 0.80 0.94 0.85 0.99 0.88 0.88
[32] 0.79 0.80 0.82 0.78 0.82 0.79 0.69
[33] 0.88 0.90 0.93 0.94 0.87 0.91 0.89
[34] 1.00 0.85 1.00 1.00 1.00 0.96 0.89

W
D

B
C

[12] 0.81 1.00 1.00 0.95 0.92 0.89 0.92
[13] 0.74 0.76 0.78 0.86 0.88 0.86 0.85
[14] 0.56 0.71 0.84 1.00 0.88 0.95 0.94
[15] 0.75 0.87 1.00 0.94 0.90 0.89 0.97
[16] 0.89 1.00 0.88 0.86 0.80 0.86 0.91
[17] 0.59 0.59 0.56 0.53 0.53 0.51 0.50
[18] 0.67 0.63 0.57 0.54 0.50 0.47 0.47
[19] 0.08 0.12 0.14 0.17 0.21 0.22 0.25
[20] 0.81 0.98 0.97 0.91 0.92 0.95 0.97
[21] 0.61 0.78 1.00 0.88 0.82 0.85 0.88
[22] 1.00 0.97 1.00 0.89 1.00 0.94 1.00
[23] 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[24] 0.82 0.95 0.96 1.00 0.91 1.00 0.98
[25] 0.86 0.86 0.90 0.83 0.80 0.78 0.80
[26] 0.96 1.00 0.88 0.99 1.00 0.96 0.98
[27] 0.90 0.97 0.91 0.85 0.87 0.95 0.93
[28] 0.19 0.22 0.23 0.23 0.23 0.23 0.25
[29] 0.98 1.00 0.88 0.98 1.00 0.96 0.97
[30] 0.98 0.87 1.00 0.98 1.00 0.98 0.95
[31] 1.00 1.00 0.90 0.90 0.96 1.00 1.00
[32] 0.47 0.57 0.66 0.72 0.77 0.81 0.83
[33] 0.98 0.87 1.00 1.00 1.00 0.98 0.92
[34] 0.80 0.86 0.77 0.75 0.73 0.80 0.82
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Table 3. Stability of algorithms on gene expression datasets

top-3 top-4 top-5 top-6 top-7 top-8 top-9

G
SE

10
81

0

[12] 0.44 0.55 0.54 0.52 0.52 0.51 0.50
[13] 0.78 0.87 0.81 0.77 0.73 0.71 0.72
[14] 0.44 0.52 0.52 0.49 0.49 0.50 0.50
[15] 0.52 0.51 0.46 0.44 0.43 0.44 0.47
[16] 0.21 0.26 0.25 0.25 0.25 0.25 0.25
[17] 0.43 0.42 0.41 0.41 0.41 0.41 0.42
[18] 0.15 0.20 0.20 0.20 0.21 0.23 0.24
[19] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[20] 0.58 0.50 0.49 0.48 0.48 0.47 0.49
[21] 0.52 0.51 0.46 0.44 0.43 0.44 0.47
[22] 0.31 0.40 0.39 0.39 0.37 0.39 0.39
[23] 0.71 0.77 0.82 0.85 0.86 0.84 0.84
[24] 0.11 0.12 0.13 0.16 0.18 0.21 0.22
[25] 0.00 0.00 0.01 0.01 0.01 0.01 0.01
[26] 0.46 0.51 0.59 0.66 0.73 0.78 0.80
[27] 0.00 0.00 0.00 0.00 0.00 0.00 0.01
[28] 0.63 0.56 0.52 0.50 0.46 0.45 0.44
[29] 0.46 0.50 0.59 0.66 0.71 0.78 0.80
[30] 0.25 0.28 0.30 0.30 0.33 0.35 0.36
[31] 0.73 0.64 0.64 0.65 0.67 0.66 0.66
[32] 0.05 0.05 0.07 0.09 0.09 0.09 0.09
[33] 0.51 0.52 0.50 0.48 0.51 0.54 0.57
[34] 0.17 0.18 0.18 0.21 0.22 0.23 0.24

G
SE

15
85

2

[12] 0.40 0.49 0.51 0.52 0.59 0.61 0.61
[13] 0.51 0.51 0.56 0.60 0.61 0.60 0.62
[14] 0.47 0.51 0.57 0.59 0.58 0.57 0.57
[15] 0.28 0.33 0.38 0.40 0.40 0.42 0.44
[16] 0.48 0.52 0.59 0.65 0.70 0.73 0.76
[17] 0.31 0.41 0.46 0.52 0.55 0.58 0.60
[18] 0.16 0.21 0.21 0.20 0.20 0.21 0.21
[19] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[20] 0.57 0.56 0.57 0.61 0.66 0.71 0.75
[21] 0.21 0.24 0.26 0.30 0.32 0.35 0.38
[22] 0.59 0.62 0.62 0.67 0.73 0.78 0.81
[23] 0.84 0.88 0.88 0.86 0.88 0.88 0.89
[24] 0.24 0.26 0.24 0.26 0.27 0.28 0.30
[25] 0.53 0.46 0.44 0.42 0.43 0.42 0.43
[26] 0.87 0.97 0.89 0.88 0.85 0.87 0.86
[27] 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[28] 0.25 0.28 0.27 0.29 0.31 0.31 0.32
[29] 0.85 0.96 0.89 0.89 0.86 0.86 0.88
[30] 0.62 0.65 0.66 0.74 0.80 0.88 0.87
[31] 0.56 0.54 0.56 0.57 0.59 0.60 0.61
[32] 0.05 0.05 0.06 0.07 0.06 0.07 0.07
[33] 0.54 0.58 0.56 0.55 0.55 0.55 0.55
[34] 0.16 0.18 0.22 0.24 0.26 0.27 0.29
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Several limitations exist in this study. First, how the change of training sizes impacts
on the stability estimation is interesting. However, due to insufficient samples of gene
datasets, the training sample sizes of each dataset is fixed. Second, using one estimator
to assess stability seems not convincing, even if the estimator possesses the properties of
a good stability measure. One desirable approach is to use more stability estimators for
a comprehensive evaluation [2]. In addition, besides handcrafted features, deeply learnt
features will be in our future work to improve network robustness and generalization
capacity [35]. In this kind of settings, deep networks perform as feature extractors [36,
37]. When using dropout [38] to determine which nodes are activated or selected, a subset
feature selection method is formed, and its stability can be measured.

5. Conclusions

This study investigates the stability of 23 FR algorithms on four BC datasets using an
advanced estimator, and three algorithms are identified as consistently exhibiting good
stability on all the datasets. Stability is crucial for many decision-making applications. In
our future work, experiments will be conducted by involving more algorithms, estimators
and datasets to recognize stable algorithms for data analysis.
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