
A Generative Learning Architecture Based 

on CycleGAN for Steganalysis with 

Unpaired Training Images 

Han ZHANG a*, Zhihua SONG b, 1*, Feng CHENb, Xiangyang LINb, Qinghua XINGb, 

Qingbo ZHANGb and Yongmei ZHAOa 
a Equipment Management and UAV Engineering College of Air Force Engineering 

University, Xi’an, China  
 b

 Air and Missile Defense College of Air Force Engineering University, Xi’an, China 

Abstract. Steganalysis based on deep learning has made noticeable progress over 
the past few years where the training is all based on paired images. However, scenes 
without paired training data exist. We present an architecture for learning to generate 
corresponding pseudo stego image from a cover-image in the absence of paired 
training images. We seek a mapping G that can generate pseudo stego images 
indistinguishable from the real but unpaired stego images using an adversarial loss. 
Because this mapping is highly under-constrained, we designed a CycleGAN and 
introduce spectrum of stego images to reinforce the adversarial loss. Qualitative 
comparisons demonstrate the superiority of our approach. 
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1. Introduction 

Steganalysis and steganography are two sides of a coin and cannot be studied separately. 

In this communication game, the steganography player attempts to achieve communication 

by hiding secret message or image in a carrier image, which we named it cover as shown 

in Figure 1, through the public communication channel. The steganalysis player tries to 

anticipate the risk of misusing of the public communication channel by steganography, i.e., 

to calculate the probability that the images on the public communication channel are 

embedded with secret information.  

 
Figure 1: The architecture of the steganography and steganalysis game. The cover in the left stands for 

the carrier image to hide the secrete message. The stego in the middle stands for the image generated by a 
steganographic algorithm using the cover and the secret message.  
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For the steganalysis player, paired cover and stego images are ideal to train the 

steganalysis neural network. But what if there are no paired cover images? Compared with 

stego image, the paired cover image is more difficult to get on the public communication 

channel as the cover image usually does not need to be transmitted to the receiver. 

In this study, we are seeking to generate paired cover and pseudo stego images all in 

the absence of any paired training images: capturing special spatial and spectrum 

characteristics of the stego image collection and translating them to a cover image 

collection to generate corresponding pseudo stego image collection. 

This problem can be described as an unpaired image-to-image translation problem[1]. 

Unlike the other image-to-image translation applications, such as style transfer[1], object 

transfiguration[2], and image synthesis[3], the cover-to-stego image translation must work 

between two extremely similar image collections, while the minimization of distortion loss 

is a relentless pursuit goal for the steganography player.  

We therefore focused on cycle-consistent generative adversarial network 

(CycleGAN) [1] which is a state-of-the-art unpaired image-to-image translation 

architecture. In theory, the CycleGAN prevents mode collapse, where all input images map 

to the same output image, and can add stego styles to a cover image to make a pseudo stego 

image if the styles are obvious enough to be captured. But in reality, it is usually difficult 

to distinguish the style of a brilliant stego image from that of an ordinary image. Our early 

experiments also proved this conjecture, the generated images were not good enough to 

train any of the baseline steganalysis neural networks and they tend to be the same as the 

cover. This indicates that the CycleGAN cannot grasp the style difference between the two 

collections. Such a result is consistent with the nature of the problem, the two image 

collections are highly similar in the texture and visual effect, while these are the features 

that the convolution layers at the CycleGAN are good at.  

The next thing we need to do is add more detailed and distinguishable information to 

our network. Therefore, we exploit the spectrum disequilibrium property, that the 

steganography distribution over different frequency is generally uneven. The rest of the 

paper is arranged as follows: after a brief review of related works in Section 2, we describe 

the architecture of the proposed network in Section 3. In Section 4, the experimental results 

are presented. Finally, Section 5 discusses the conclusion and future work.  

2. Related Works 

CycleGAN[1] was presented by Jun-Yan Zhu in 2017 for the problem of unpaired image-

to-image translation and achieved impressive results in object transfiguration, season 

transfer, collection style transfer, and photo enhancement. The key to CycleGAN’s success 

is the idea of cycle-consistent loss that encourages the bijection mapping between the 

generated image and the real source image and forces the generated image to be 

indistinguishable from images in the target domain. We adopt a cycle-consistent loss to our 

network. To the best of our knowledge, there is no study has reported using CycleGAN-

generated images for the extensive training of steganalysis models.  

In [4], a deep residual steganalysis architecture called SRNet is proposed to minimize 

the use of heuristics and externally enforced elements and it provides state-of-the-art 

performance for both spatial-domain and JPEG steganography. We borrows this 

architecture directly in our network as the steganalysis block. 

Baluja[5] present an image-into-image steganography network, which can embed a 

full-sized image inside another image with minimal quality loss. There are three 
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components in the system, i.e., the preparation network, the hiding network, and the reveal 

network. These three components are trained simultaneously as a single network and the 

reveal network uses the stego images only. We call the network Baluja-Net for convenience 

and choose it as one of our baseline for our experiments. 

3. Model  

The key is to learn mapping functions between the cover image collection � and the stego 

image collection � , given unpaired training samples �������� ∈ � and �	�

���

� ∈ �, using 

the CycleGAN. However, such an approach does not guarantee that the output �  can 

embody the subtle feature difference between the cover and its corresponding stego. The 

CycleGAN is good at transfer texture difference and the texture distortion is usually what 

the steganography player is trying to minimize.  

Moreover, in practice, we have found it difficult to optimize the adversarial objective: 

standard CycleGAN leads to the problem of mapping collapse, where input image is 

mapped to the same image as itself. Therefore, we exploit the spectrum information of the 

training samples.  

The proposed model is shown in Figure2. The model includes two generators ��: � →
� and �	: � → �, and two discriminators �� and �	.  

 

Figure2: Architecture of the proposed model 

For the mapping function ��: � → � and its discriminator ��, we express the loss 

function: 

�
�
� �ℒ�� ��� �ℱ�������� , 0� � ℒ������ℱ�	��, 1�� /2 

���
� ℒ�� ��� �"�������� , 1� 

where ℒ���∙� is a binary cross entropy loss function, ℱ�$� is the spectrum of image $. 

�� tries to generate pseudo stego images that resemble unpaired real stego images in the 

frequency domain, while �� aims to distinguish between the pseudo stego images and 

real stego images in the frequency domain. 

For the mapping function �	: � → � and its discriminator �	, we express the loss 

function in the spatial domain as there is no need for the spectrum similar for the cover 

images: 

�
�
� %ℒ����	��	�	��, 0� � ℒ����	���, 1�&/2 

���
� ℒ����	��	�	��, 1� 
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where �	 tries to generate pseudo cover images that resemble corresponding real cover 

images in the spatial domain, while �	 aims to distinguish between the pseudo cover 

images and real cover images in the spatial domain. 
Similarly, we introduced identity losses in the frequency domain of stego images 

and in the spatial domain of cover images: 

���
� ℒ�� ��� �ℱ����	��� , 0� 

���
� ℒ����	��	����, 0� 

The total GAN loss is  

���� � '��
�
� (��
�

� '����
� (����

� '����
� (����

 

where we can adjust their weights'� and (�, * ∈ �1,2,3�, to strengthen or weaken the 

desired domain. 
The structures of generator and discriminator are shown in Figure3. 

 

(a)generator 

 

(b)discriminator 

 

(c)basic layer 

Figure 3. Structure of the generator (a) and the discriminator (b). There are four types of layers. The first 
type of layers is residual convolution layer with 3 � 3-kernal as the first layer in (c). The second type of layer 
is convolution layer with 1 � 1 kernel as the second layer shown in (c). The third type of layer is convolution 

layer with 1 � 1 kernel as the third layer shown in (c). The number in each layer is its number of input channels. 
Unlike the SRNet, we use Tanh as the activation function. The fourth type of layer is a fully connected layer 
with a mean operation for each input channel as. 
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4. Experiments and Analysis 

Our experiments are conducted on a commonly used publicly available sources BOSSBase 

v.1.01. The Baluja-Net [5] is used to embed a full-sized image into a cover image. We 

generate 2000 real stego images from the BOSSbase in such a way: for an image � in 

BOSSbase, we randomly select any other image � ∈ ��|1 ≤ � ≤ 10000, � ≠ �, � ∈ �� as 

secret image for steganography.  

We conducted several experiments for performance comparison and show the results 

in Table 1. The Non in the second column stands for the steganalysis is trained with the 

real unpaired cover and stego images only. 

Table1. Performance comparisons of proposed architecture  

Steganography generator 

Training size 

200 400 800 

Baluja-Net[5] 
RES 86.33% 91.61% 96.31% 

Non 93.33% 89.46% 93.11% 

S_UNIWARD 

(0.2bpp) 

RES 61.05% 70.19% 73.28% 

Non 50.00% 50.00% 50.00% 

S_UNIWARD 

(0.4bpp) 

RES 59.83% 72.60% 77.89% 

Non 50.00% 50.13% 50.58% 

S_UNIWARD 

(0.6bpp) 

RES 65.39% 74.88% 79.15% 

Non 50.540% 51.03% 51.85% 

For the unpaired dataset composed of stego images generated by Baluja-Net, the 

generative learning framework proposed in this paper has certain advantages over the Non 

mode when the training size is 400 and 800. However, for the unpaired dataset composed 

of stego images generated by S-UNIWARD algorithm, the generative learning framework 

proposed in this paper has obvious advantages. If there is no paired dataset, the stego image 

generated by S-UNIWARD algorithm can be recognized by steganalysis module at about 

50%, which is basically equivalent to random guess.  

5. Conclusions and Future Work 

In this paper, we proposed a generative learning network for steganalysis. The experiment 

results showed that the generative learning architecture improves the detecting accuracy of 

the steganalysis when the training images are unpaired. The generative learning framework 

proposed in this paper is a feasible and effective strategy for steganalysis training in the 

case of unpaired training dataset. 

Although the generative learning framework proposed in this paper has achieved good 

results in the case of unpaired datasets, there is still much work to be done This architecture 

performance bad for other classic steganography algorithms such as WOW [6] and HUGO 

[7]. Future work includes exploring more unpaired training sets generated by different 

steganography algorithms, and trying to improve the performance of the generative 

learning framework from the aspects of network structure and learning algorithms.  
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