
An End-to-End Pipeline from Law Text
to Logical Formulas

Aarne RANTA a,1, Inari LISTENMAA b, Jerrold SOH b, Meng Weng WONG b

a Chalmers University of Technology and University of Gothenburg
bCentre for Computational Law, Singapore Management University

Abstract. We propose a pipeline for converting natural English law texts
into logical formulas via a series of structural representations. Text texts
are first parsed using a formal grammar derived from light-weight an-
notations. An intermediate representation called assembly logic is then
used for logical interpretation and supports translations to different
back-end logics and visualisations. The approach, while rule-based and
explainable, is also robust: it can deliver useful results from day one,
but allows subsequent refinements and variations.

Keywords. legal formalisms, legal text parsing, Grammatical Framework

1. Introduction

Expressing laws computably is a classic objective of AI & Law [1] and a pre-
requisite to automating downstream tasks such as compliance checking [2], policy
support [3], legislative simulation [4], and formal verification [3]. But faithfully
translating law to logic is challenging [5], often requiring expertise in both le-
gal and formal methods. This “natural language barrier” [6] poses a significant
“knowledge bottleneck” [7] to computational law. Numerous strategies have been
devised for bridging the gap. These include domain-specific ontologies [8], inter-
mediate formalisms [6], and specialised human workflows [8,9]. Early on, [10] had
already imagined automatic parsers for translating laws into logic. Several steps
have been taken towards that vision. McCarty [6] used [11]’s statistical parser to
extract from judicial opinions syntax trees then converted into semantic repre-
sentations. [12] extract formal rules from deontically- and structurally-annotated
legal texts with the standard NLP parsers, while [5] experiment with neural se-
mantic parsing and open relation extraction.

However, whether the chosen framework accommodates the logic representa-
tion desired is not always clear [13]. This paper contributes a partially-automated

1Corresponding Author: Aarne Rante, aarne.ranta@cse.gu.se. This research is supported by
the National Research Foundation (NRF), Singapore, under its Industry Alignment Fund —
Pre-Positioning Programme, as the Research Programme in Computational Law. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation, Singapore.

Legal Knowledge and Information Systems
E. Francesconi et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220473

237

law to logic pipeline based on Grammatical Framework (GF, [14]). While prior le-
gal GF applications [15,16] focused on Controlled Natural Languages (CNL, e.g.,
[17,18]), our application tackles real-world law texts, albeit still exploiting key GF
features such as modularity, precision, and support for semantic back-ends via an
abstract syntax. We develop a method for automatically extracting a grammar
from light-weight annotations which non-experts can create. This grammar is us-
able as-is for a rough analysis of law texts but can also be manually improved.
Our code is available open-source.2

2. Methodology

The initial input is a statutory text in natural language which we assume has
been tokenised by some standard tool. The tokenised text is converted to abstract
syntax trees (ASTs) line by line using the GF parser driven by a grammar (Section
2.1). The ASTs are converted into an intermediate representation called assembly
logic (Section 2.2) using the Haskell-based methodology from [19]. Assembly logic
is more abstract than ASTs from the parser, but preserves more distinctions
than standard back-end logics. These distinctions are useful for deriving different
output formats such as downstream logics and visualisations (Section 2.3).

2.1. From Law Text to ASTs

GF parsers are driven by grammars, such as GF’s general-purpose Resource
Grammar Library (RGL, [20]). However, the RGL is insufficient for law texts,
which contain special constructs that are essential for the logical structure, such
as itemised lists and indented paragraphs. Thus we developed a tailored grammar
on top of the RGL. Figure 1 illustrates the grammar building workflow, which
adopts a data-driven, top-down approach starting from the text itself. We devel-
oped a semi-automated method for grammar writing based on user annotations.
The annotations are based on the RGL’s grammatical categories (e.g. NP, VP, VP2,
CN) which are well-known in NLP. Annotators may further specify their own cat-
egories, such as Line, Item and Ref, and any categories added will be added to
the custom grammar. Completely novel categories could be created, but if they
deviate too much from the RGL, the resulting grammar cannot leverage the RGL
as much. Finally, a Haskell script generates GF rules from the annotated text.
The rules are generated in a context-free format that GF can process.

2.2. From ASTs to Assembly Logic

Assembly logic is an intermediate representation between ASTs and standard log-
ics. It is designed to preserve enough syntactic structure to generate representa-
tions that humans can easily relate to the original text. For example, it distin-
guishes between ordinary and reverse implications (“if A then B” vs. “B if A”)
and preserves quantified noun phrases as units (e.g. “‘any organisation”). It is

2https://github.com/smucclaw/sandbox/tree/default/aarne#readme

A. Ranta et al. / An End-to-End Pipeline from Law Text to Logical Formulas238

https://github.com/smucclaw/sandbox/tree/default/aarne##readme

A line in the raw text:

(2) without limiting subsection (1)(a), a data breach is deemed to result in significant

harm to an individual —

The line annotated with marks for terminals (#) and nonterminals (*):

*Item (2) #without #limiting #subsection *Ref (1)(a) #,
#a *CN data breach #is #deemed #to
*VP result in significant harm to an individual #-

Grammar rules derived automatically by the script:

Line ::= Item "without" "limiting" "subsection" Ref ","
"a" CN "is" "deemed" "to" VP "-" ;

Item ::= "(2)" ;
Ref ::= "(1)(a)" ;
CN ::= "data" "breach" ;
VP ::= "result" "in" "significant"

"harm" "to" "an" "individual" ;

The VP rule above refined into more general rules:

VP2 ::= "result" "in" NP ;
NP ::= "significant" "harm" "to" NP ;
NP ::= "an" CN ;
CN ::= "individual" ;

Figure 1. The grammar extraction process.

intended to be sufficient for this purpose, so that when the grammar is extended
(e.g., new law texts), the assembly logic and its back-ends can be kept constant.

Figure 2 shows a sample of the assembly logic implemented as a Haskell
datatype Formula. It also shows part of an interpretation function [19], iNP, which
converts ASTs of GF type NP (Noun Phrase) to assembly logic. These functions
use pattern matching over trees. Each AST constructor may have its own pattern,
such as for NP_any_CN in Figure 2. When the grammar is extended, new patterns
can be added. But even if this is not done, the function can take care of the new
constructors by the catch-all case (_) which treats the new expressions as atomic.
Atomic expressions can then be converted to atomic formulas or constants in
logics and to single cells in spreadsheets (see Section 2.3).

2.3. From Assembly Logic to Downstream Logics or Visualisations

Assembly logic is mapped into many-sorted logic and then into ordinary predicate
logic in TPTP notation [21]. We use many-sorted logic as it better supports com-
positional translation. Quantification expressed by noun phrases (e.g. “any organ-
isation”) are compositionally interpreted as quantifiers with sorts rather than di-
vided into unsorted quantifiers and sort predicates, whereas definite noun phrases
(e.g. “that organisation”) are interpreted as Russell’s iota terms (we write ι(A)
instead of (ιx)A(x), leaving possible variable bindings to A itself, as is custom-
ary in higher-order logic). Both sorted quantifiers and iota terms are eliminated
in the conversion from many-sorted to ordinary predicate logic. Iota terms are
eliminated in a pass that looks for non-iota terms in their context of use.

A. Ranta et al. / An End-to-End Pipeline from Law Text to Logical Formulas 239

Some assembly logic constructors:

data Cat =
CProp | CSet | CInd | ...

data Formula =
Atomic Cat Atom

| Implication Formula Formula
| Conditional Formula Formula -- reverse implication
| Quantification String Formula -- quantifier + domain

Semantics of ASTs in the assembly logic:

iNP :: Env -> NP -> Formula
iNP env np = case np of

NP_any_CN cn -> Quantification "ANY" (iCN env cn)
NP_each_CN cn -> Quantification "EACH" (iCN env cn)
...
_ -> Atomic CInd (toAtom env np) -- convert to string

Figure 2. Data structures and conversions related to the assembly logic.

Below is a minimal example, with an existential quantifier in the antecedent
and definite noun phrase referring to it in the succedent: “if a notification
is a data breach, the notification is affected”. Its compositional interpretation
in many-sorted logic with iota terms is (∃x : notification)data breach(x) ⊃
affected(ι(notification)). When converted to ordinary predicate logic, the existen-
tial quantifier is changed into a universal one with a wide scope of implication,
and the iota term is interpreted as the bound variable:

![X]:(notification(X) => data_breach(X) => affected(X))

The AST can also be automatically visualised in a spreadsheet (see Figure
3) displaying the formula trees in a structured format. The spreadsheet format,
which serves as the input to a low-code programming platform, is currently under
development and will be more fully described in future work.

3. Formalizing the Personal Data Protection Act

We illustrate our pipeline using Part 6A of the PDPA, which comprises 47 lines,
1053 tokens, 228 unique tokens. Figure 3 below illustrates the pipeline as applied
to one paragraph. The PDPA is Singapore’s primary data protection statute and
Part 6A governs data breach notifications. While the PDPA has not been ex-
amined in AI & Law literature, its subject matter connects it to prior work on
the General Data Protection Regulation [8,2]. Part 6A is also complex enough to
demonstrate the utility of a computational law approach. Modelling these rules
surfaced a race condition in the PDPA: an organisation which promptly noti-
fies both the regulator and the affected individuals of a data breach, as s 26D
PDPA generally requires, might violate s 26D(6) which provides that organisa-
tions should not inform affected individuals if the regulator so directs. A more
complete formalism of Part 6A can be found on our code repository.

A. Ranta et al. / An End-to-End Pipeline from Law Text to Logical Formulas240

A paragraph in the raw text:

AST of line (a) and spreadsheet visualization of the paragraph

LabLine_Item_Line

Item_a Line_NP__Conj

NP_the_unauthorised_ConjN2_of_NP Conj_or

ConjN2_N2__ConjN2 NP_CN

N2_access ConjN2_N2__ConjN2

N2_collection ConjN2_N2__ConjN2

N2_use ConjN2_N2__ConjN2

N2_disclosure ConjN2_N2__ConjN2

N2_copying ConjN2_N2_Conj_N2

N2_modification Conj_or N2_disposal

CN_personal_data

Logical formula in TPTP notation:

![X]:(data_breach(X) & ?[Y]:(personal_data(Y) & IN_RELATION_TO(X,Y)) <=>

(personal_data(X) & ?[Y]:((access(Y,X) | collection(Y,X) | use(Y,X) | disclosure(Y,X) |

copying(Y,X) | modification(Y,X) | disposal(Y,X)) & unauthorized(Y))) | (((storage_medium(X) |

device(X)) & (personal_data(X) & ?[Y]:((circumstances(Y) & (((unauthorized(Y) & (access(Y) |

collection(Y) | use(Y) | disclosure(Y) | copying(Y) | modification(Y) | disposal(Y))) &

is_likely_to_occur(Y))) & is_stored_in(X,Y)))) & loss(X))))

Figure 3. An example through the pipeline

4. Conclusion

This paper proposed a pipeline which parses legal text into ASTs using the GF
grammar formalism, an intermediate assembly logic, and finally predicate logic.
Some pipeline steps can work out of the box when the input scope is extended.
The main things to be added are text annotations for extending the grammar, and
the conversion of the new grammar rules to the assembly logic. These steps are
light-weight enough to make the system feasible to apply to new texts. Further,
since GF’s mapping between ASTs and natural language is fully reversible, the
pipeline can be extended to support natural language generation. Once parsed
into GF trees, the source text can be converted into novel forms: declarative
sentences can become questions, negations, hypotheticals, etc. That said, this
work is a proof of concept and has a some limitations. Importantly, we have not
evaluated the accuracy of our PDPA formalisation and aim to do so in future
work. A proper evaluation would implicate gold standards developed by human
legal and technical experts and vetted by the relevant regulatory body. The legal

A. Ranta et al. / An End-to-End Pipeline from Law Text to Logical Formulas 241

language barrier is far from solved, but we hope to have taken one more step
towards realising that vision.

References

[1] Sergot MJ, Sadri F, Kowalski RA, Kriwaczek F, Hammond P, Cory HT. The British
Nationality Act as a logic program. Communications of the ACM. 1986 May;29(5):370-86.

[2] Hickey D, Brennan R. A GDPR International Transfer Compliance Framework Based
on an Extended Data Privacy Vocabulary (DPV). In: Proceedings of JURIX. IOS Press;
2021. p. 161-70.

[3] Haan ND. TRACS: A Support Tool for Drafting and Testing Law. In: Proceedings of
JURIX; 1992. p. 63-70.

[4] Bench-Capon TJM. Support for Policy Makers: Prospects for Knowledge Based Systems.
In: Proceedings of JURIX; 1992. p. 41-50.

[5] Ferraro G, Lam HP, Tosatto SC, Olivieri F, Islam MB, Beest Nv, et al. Automatic extrac-
tion of legal norms: Evaluation of natural language processing tools. In: JSAI International
Symposium on Artificial Intelligence. Springer; 2019. p. 64-81.

[6] McCarty LT. Deep semantic interpretations of legal texts. In: Proceedings of ICAIL; 2007.
p. 217-24.

[7] Nazarenko A, Lévy F, Wyner A. A Pragmatic Approach to Semantic Annotation for
Search of Legal Texts – An Experiment on GDPR. In: Proceedings of JURIX. IOS Press;
2021. p. 23-32.

[8] Palmirani M, Martoni M, Rossi A, Robaldo L. Legal Ontology for Modelling GDPR
Concepts and Norms. In: Proceedings of JURIX; 2018. p. 91-100.

[9] Witt A, Huggins A, Governatori G, Buckley J. Converting copyright legislation into
machine-executable code: interpretation, coding validation and legal alignment. In: Pro-
ceedings of ICAIL. São Paulo Brazil: ACM; 2021. p. 139-48.

[10] Bing J. Designing text retrieval systems for conceptual searching. In: Proceedings of
ICAIL. Boston, Massachusetts, United States: ACM Press; 1987. p. 43-51.

[11] Collins M. Head-Driven Statistical Models for Natural Language Parsing. Computational
Linguistics. 2003 Dec;29(4):589-637.

[12] Dragoni M, Villata S, Rizzi W, Governatori G. Combining natural language processing
approaches for rule extraction from legal documents. In: AI Approaches to the Complexity
of Legal Systems. Springer; 2015. p. 287-300.

[13] Wyner A, Governatori G. A Study on Translating Regulatory Rules from Natural Lan-
guage to Defeasible Logic. In: Proceedings of the 7th International Web Rule Symposium;
2013. p. 16.1-16.8.

[14] Ranta A. Grammatical Framework: Programming with Multilingual Grammars. Stanford:
CSLI Publications; 2011.

[15] Angelov K, Camilleri J, Schneider G. A Framework for Conflict Analysis of Normative
Texts Written in Controlled Natural Language. The Journal of Logic and Algebraic Pro-
gramming. 2013;82:216-40.

[16] Digital Grammars, Signatu. GDPR Lexicon; 2018. https://gdprlexicon.com/.
[17] Fuchs NE, Kaljurand K, Kuhn T. Attempto Controlled English for Knowledge Repre-

sentation. In: Reasoning Web, Fourth International Summer School 2008. 5224. Springer;
2008. p. 104-24.

[18] Ranta A, Angelov K. Implementing Controlled Languages in GF. In: Proceedings of
CNL-2009, Marettimo. vol. 5972 of LNCS; 2010. p. 82-101.

[19] Ranta A. Translating between Language and Logic: What Is Easy and What Is Difficult.
In: Automated Deduction – CADE-23. Springer Berlin Heidelberg; 2011. p. 5-25.

[20] Ranta A. The GF Resource Grammar Library. Linguistics in Language Technology.
2009;2.

[21] Sutcliffe G. The TPTP problem library and associated infrastructure. Journal of Auto-
mated Reasoning. 2009;43(4):337-62.

A. Ranta et al. / An End-to-End Pipeline from Law Text to Logical Formulas242

https://gdprlexicon.com/

