
An Automata-Based Formalism for
Normative Documents with Real-Time

Stefan CHIRCOP a,1, Gordon J. PACE a and Gerardo SCHNEIDER b

a Department of Computer Science, University of Malta, Msida, Malta
b Department of Computer Science and Engineering, University of Gothenburg,

Gothenburg, Sweden

Abstract. Deontic logics have long been the tool of choice for the formal analysis
of normative texts. While various such logics have been proposed many deal with
time in a qualitative sense, i.e., reason about the ordering but not timing of events, it
was only in the past few years that real-time deontic logics have been developed to
reason about time quantitatively. In this paper we present timed contract automata,
an automata-based deontic modelling approach complementing these logics with
a more operational view of such normative clauses and providing a computational
model more amenable to automated analysis and monitoring.

Keywords. real-time logic, deontic logic, normative systems, legal contracts

1. Introduction

The duality of automata-based and logic-based formalisms has long been acknowledged
in computer science. The former excelling on providing a visual and operational model,
while the latter provide a more compositional and denotational view, the two approaches
complement each other. Automata-based approaches are ideal for describing models
and for automated analysis, logic-based approaches for writing specifications. In earlier
work, we have developed contract automata [8], an automata-based approach to a class of
deontic logics and proved equivalence of expressiveness between the two [3]. The class
of logics contract automata addressed was that of logics which have a qualitative notion
of time, i.e., caring about the ordering of action occurrence but not the actual real-time
elapsed between them.

Since then, various real-time deontic logics and calculi have been proposed as ways
to express real-time clauses in normative documents. In this paper we borrow from work
done in real-time automata-based formalisms, particularly timed automata [1] to extend
our previous work on contract automata to deal with real-time aspects and norms. We
present timed contract automata, which can be seen either as contract automata [8] en-
riched with real-time constraints, or as timed automata [1] enriched with deontic notions.
In order to evaluate the effectiveness of our approach, we present a use-case describing
an airline-passenger agreement [5].

1Corresponding Author: Department of Computer Science, University of Malta; E-mail:
stefan.chircop.15@um.edu.mt.

Legal Knowledge and Information Systems
E. Francesconi et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220460

158

Related work. The starting point of our work are contract automata [2], an untimed
operational approach to the formalisation of normative systems. Contract automata are
finite state machines where states are annotated with permissions, prohibitions and obli-
gations over single actions, and transitions are labelled with actions. The formalism al-
lows for the encoding of reparations. In our work we take contract automata and extend
it with clocks, inspired by timed automata [1], resulting in a combination of the two.

Different partial formalisations of normative specifications with time have been
given by Governatori et al., for instance in [6,7], in the context of defeasible logic, clas-
sifying timed deontic actions depending on their duration and scope: achievement, main-
tenance and punctual. In our work we consider achievement obligations, maintenance
permissions and treat prohibitions as maintenance obligations to avoid an event.

Finally, we refer the reader to the paper [4] for a discussion on the difficulties and
challenges of defining and monitoring a formal timed normative language.

2. Timed Contract Automata

Timed contract automata regulate the behaviour of multiple parties over time. They bring
together deontic notions from contract automata [9] and real-time notions from timed
automata [1] in order to express how the actions performed by the different parties over
time reflect their expected behaviour moving forward.

The underlying notion of time we will use throughout the paper is a continuous one,
ranging over the non-negative reals R+∪{0}, and denoted by T. In keeping with timed
automata, we allow automata to use multiple clocks from a denumerable set C. We will
allow for the resetting of clocks, all of which will be assumed to run at the same rate. We
will assume throughout the existence of a global clock (which cannot be reset) γ ∈ C. A
clock valuation, of type C→ T, gives a snapshot of the values carried by the clocks. We
use valC to denote the set of of all clock valuations. We will need to write conditions over
the values of clocks, for which we will use clock predicates ranging over valC → B and
which, given a clock valuation, return whether the predicate is satisfied. We use predC to
refer to the set of all such predicates.

We will write v � δ to denote the advancement of clock values in v by δ to be
defined as λc · v(c)+ δ . A valuation v is said to exceed the latest satisfaction of a clock
predicate τ , written v > max(τ), if for any non-negative progress in time δ ∈ T, the
predicate is not satisfied ¬(τ(v+δ)).2 Finally, we also defined the overriding of a clock
valuation by another v⊕v′ to be defined to be the clock valuation which returns the value
given by v′ when defined, or that given by v otherwise.

The underlying deontic approach used in these automata is a party-aware and action-
based one, i.e., they talk about what, for instance, a party ought-to-do as opposed to the
state the party ought-to-be in. Timed contract automata will be parametrised by the set
P of parties involved and actions A.

In order to identify violations to permissions, we will assume that attempts to per-
form an action are observable. In order to do so, given a set of actions A, we will write
Aattempted to denote the enriched alphabet A∪{aattempt | a ∈ A}.

Our semantics will be based on an observed timed trace of actions (and attempted
ones). A timed trace over a set of parties P and alphabet A is a finite sequence of ob-

2This does not take into account the possibility of clocks being reset.

S. Chircop et al. / An Automata-Based Formalism for Normative Documents with Real-Time 159

served events — where an event is an action with associated party and timestamp (as
per the global clock): seq(P×Aattempted ×T) such that the timestamp progresses with
each observed action, i.e., given timed trace ts, then for any i and j such that i < j, if
ts(i) = (pi,ai, ti) and ts(j) = (p j,a j, t j) then ti < t j.

In keeping with the action-based approach, norms refer to particular parties and ac-
tions. Timed contract automata allow a range of norms to be expressed, ranging over
obligations, prohibitions and permissions. Real-time norms have been discussed in the
literature with various useful semantics. For instance, consider granting John the permis-
sion to access a digital resource over the coming 10 minutes. Two possible semantics can
be given to this permission — a one-time semantics, i.e., John can access the resource
over the coming 10 minutes, but uses up that permission in doing so, or a continuous
semantics, i.e., John can access that resource any number of times over the coming 10
minutes. Neither is intrinsically correct (or incorrect), since it depends on what sort of
permission one intends to give John. Rather than replicate the discussion of which norms
are appropriate in the real-time context, we limit ourselves to a number of norms which
can, however, be extended if we want to adopt other norms as part of timed contract
automata in the future.
Definition. The norms we will use are parametrised by: (i) the party on which the norm
applies; (ii) temporal constraints when the norm applies; and (iii) the action on which
the norm applies. For a given set of actions A, a set of clocks C and parties P, the set
of possible norms, denoted by D, covers objects of the form: Nτ(p : a) where: (i) N is
norm ranging over permission P , prohibition F and obligation O; (ii) p ∈ P is the party
to whom the norm applies; (iii) τ ∈ predC is a clock predicate indicating when the norm
applies; and (iv) a ∈ A is the action which the norm refers to.
Syntax. Time contract automata can be seen as a combination of timed automata [1] in
that they allow the use of real-time clocks and clocked events, and contract automata [8]
in that they use states as norm-carrying modes. Similar to timed automata, (i) we allow
for multiple clocks (all progressing at the same rate); (ii) transitions are guarded by clock
conditions; and (iii) transitions may reset any number of clocks to particular values.

Similar to contract automata, states are associated with a number of norms. How-
ever, the temporal modality offered by the automaton can interrupt deontic norms. For
instance, being in a particular state may prohibit John from reading a file as long as clock
c does not exceed 10 minutes. However, a transition is taken from that state when c still
reads 2 minutes, thus exiting that state. Whether the prohibition is discarded (since we
are no longer in that state) or persists (since the temporal constraint has not yet run out)
is a choice one has to make. On one hand, we can see the norms in the states as being
active as long as we are in the state, or as being enacted when we enter the state. Both
forms can be useful, and we keep both forms of ephemeral and persistent norms.
Definition. A timed contract automaton C, over parties P, actions A and that uses clocks
C, is a tuple 〈Q, q0, →, →timeout, pers, eph〉 where: (i) Q is the set of states, with q0 ∈ Q
being the initial state; (ii) →⊆ Q× (P×A×predC× valC)×Q is the transition relation
labelling each transition with a party and action which trigger it, a clock predicate which
guards it, and a (possibly partial) clock valuation to reset any number of clocks upon
taking the transition; (iii) →timeout⊆ Q× (C×T× valC)×Q is the timeout transition
relation with resets, enabling leaving a state when a particular timer reaches a particular
value and resetting any number of clocks; and (iv) pers, eph ∈ Q → 2D are functions,
which given a state, return the sets of persistent and ephemeral norms active when in that

S. Chircop et al. / An Automata-Based Formalism for Normative Documents with Real-Time160

state. We will write q
p:a | τ �→ ρ−−−−−−→ q′ to denote (q, (p, a, τ, ρ), q′)∈→ and q

c=t �→ ρ−−−−−→timeout
q′ to denote (q, (c, t, ρ), q′) ∈→timeout.

A timed contract automaton is well-formed if (i) the global clock is never reset, i.e., if

q
p:a | τ �→ ρ−−−−−−→ q′, then γ /∈ dom(ρ); and (ii) the automaton is deterministic, i.e., an observed

action only allows for one transition to fire: if q
p:a | τ1 �→ ρ1−−−−−−−→ q1 and q

p:a | τ2 �→ ρ2−−−−−−−→ q2, then
either q1 = q2 and ρ1 = ρ2, or for any clocks valuation v, ¬(τ1(v)∧ τ2(v)). In the rest of
the paper we will assume that timed contract automata are well-formed.
Timed Semantics. In order to define the semantics, we start by defining the configuration
of a timed contract automaton. This stores all relevant information about the automaton
during an execution, namely (i) current state; (ii) current value of clocks; and (iii) active
persistent and ephemeral deontic norms.
Definition. A configuration of a timed contract automaton M = 〈Q, q0, →, pers, eph〉
has type: Q × valC ×D×D. We write ConfM to denote the set of all configurations,
leaving out M when clear from the context. The initial configuration conf0 is (q0,λc ·
0,pers(q0), eph(q0)).

Based on this, we can define the temporal progression of configurations upon ob-
serving a new event (p,a, t). Recall that the time t of the event in the trace will be accord-
ing to the global clock γ . We define the configuration relation conf

p:a, t
===⇒ conf′ showing

how a configuration evolves, breaking it down into (i) a temporal step conf
p:a, t
===⇒
temp

conf′;

and (ii) a deontic step conf
p:a, t
===⇒
norm

conf′. Firstly, we allow progression along a matching
timeout transition using the following rule:

q
c=t′ �→ ρ−−−−−→timeout q′ (q′, (v � δ)⊕ρ, P∪pers(q′), eph(q′)) p:a, t

===⇒
temp

C

(q, v, P, E)
p:a, t
===⇒
temp

C
δ = t ′ − v(c), t ′ − v(γ)> δ

Note that if a timeout transition fires before the event time, that transition is taken, and
we must move to the destination state of the timeout transition, updating the persistent
and ephemeral norms accordingly. If no timeout transition matches the antecedent of the
rule above, we can consume the event as per the following rule:

q
p:a | τ �→ ρ−−−−−−→ q′

(q, v, P, E)
p:a, t
===⇒
temp

(q′, (v � δ)⊕ρ, P∪pers(q′), eph(q′))
δ = t − v(γ), τ(v � δ)

If no transition matches the rule above, we progress by remaining in the same state:

(q, v, P, E)
p:a, t
===⇒
temp

(q′, v � δ , P, E)
δ = t − v(γ)

Deontic Semantics. We can now turn to the deontic aspect of the semantics of timed
contract automata. The semantics of the individual norms is characterised using a sat-
isfaction and a violation predicate which decides how an observed action interacts with
that norm, allowing to extend the progress relation to address configuration changes from
a deontic both in the case of a violation or otherwise.

vio(Pτ (p : a), (p : aattempt, v))
d f
= τ(v) sat(Pτ (p : a), (p′ : a′, v))

d f
= v > max(τ)

vio(Fτ (p : a), (p : a, v))
d f
= τ(v) sat(Fτ (p : a), (p′ : a′, v))

d f
= v > max(τ)

vio(Oτ (p : a), (p′ : a′, v))
d f
= v > max(τ) sat(Oτ (p : a), (p : a, v))

d f
= τ(v)

S. Chircop et al. / An Automata-Based Formalism for Normative Documents with Real-Time 161

∃n ∈ P∪E · vio(n, (p : a,v � δ))

(q, v, P, E)
p:a, t
===⇒
norm

⊥
δ = t − v(γ)

¬∃n ∈ P∪E · vio(n, (p : a,v � δ))

(q, v, P, E)
p:a, t
===⇒
norm

(q, v, active(P, (p : a, v)), active(E, (p : a, v)))
δ = t − v(γ)

Note that active removes satisfied norms given an observed event, i.e., active(N, (p :
a, v)) is defined to be {n ∈ N | ¬sat(n, (p : a, v))}. In addition, we will have rules to
ensure that a violation ⊥ will not evolve further, i.e., ⊥ p:a, t

===⇒
temp

⊥ and ⊥ p:a, t
===⇒
norm

⊥.

Combining Temporal and Deontic Semantics. We can combine these relations by
putting them in sequence, i.e., c e

=⇒ c′ is defined to mean that there exists configuration c′′

such that c e
===⇒
norm

c′′ e
==⇒
temp

c′. The residual configuration after a well-formed timed trace

can be computed using the transitive closure of this combined relation, starting from the
initial configuration conf0. A timed trace ts violates the timed contract automaton if and
only if conf0

ts
=⇒⊥.

3. Use Case: Airport Regulations

We consider a use case from the literature expressing airport regulations, and based on
the Madrid Barajas airport regulations [5]. Due to space restrictions, we only present a
selection of the regulations, as shown below. The parties involved are (i) the passenger
p; and (ii) the airline company ac.

1. The passenger is permitted to check in (ci) 2 hours before take-off. However, the check in desk is closed
half an hour before take-off, and the passenger is prohibited from checking in from that point onwards.

2. The passenger is then obliged to present their boarding pass (bp) within 5 minutes, after which they have
another 5 minutes to produce their passport (ppt).

3. Having done so, the passenger is permitted 10 minutes to dispose of any liquids in their hand luggage (dlhl),
and present it to the staff (prs). The passenger is also prohibited from carrying any weapons (wps).

4. In the meantime, should the airline company find reason to stop the passenger (stop), then they must put
their hand luggage in the hold (hold) within 20 minutes, as well as call security (sec) within 1 minute.

5. Should the staff find no issues (clear), then the passenger is permitted to board the plane (board) within 90
minutes since producing the passport.

We can express this snippet of the regulations using the timed contract automaton
shown in Fig. 1. Note that we label transitions as p : a | τ �→ ρ to denote the transition
tagged by party p, action a, clock constraints τ and resets ρ . Also note that we write �
for the clock constraint which always returns true, and we express resets as assignments.
Ephemeral and persistent norms are tagged individually for clarity.

Note that the automaton uses much of the structure of the original text. On the other
hand, it provides a more operational view of the agreement, and is more amenable to
automated analysis.

S. Chircop et al. / An Automata-Based Formalism for Normative Documents with Real-Time162

Peph
takeoff−γ<2h(p : ci)start Oeph

c<5m(p : bp) Oeph
c<5m(p : ppt)

F eph
� (p : ci)

Peph
c<10m(p : dlhl)

Peph
c<10m(p : prs)

F per
� (p : wps)

Peph
c<90m(p : board)

Oeph
c<20m(ac : hold)

Oeph
c<1m(ac : sec)

γ = takeoff−30 �→ /0

p : ci | takeoff− γ < 2h �→ c := 0 p : bp | c < 5m �→ c := 0

p : ppt | c < 5m �→ c := 0

ac : clear | c < 10m �→ /0 ac : stop | � �→ c := 0

ac : stop | � �→ c := 0

Figure 1. Automaton for the airport regulation use case.

4. Conclusions

In this paper we have presented timed contract automata, combining contract automata
with timed automata to enable the operational modelling of real-time normative agree-
ments. We do not envisage such automata as the specification language in which agree-
ments can be modelled. Logic-based deontic approaches are more effective in that they
provide better structure. Instead, we see timed contract automata as the operational model
in which one can reason more effectively about real-time agreements. We are currently
looking at formally correct compilation from deontic logics into timed contract automata,
and algorithms for efficient analysis of timed contract automata. We already inherit many
decidability (and non-decidability) results from timed automata, and the interesting ques-
tion is how far we can push analysis such as conflict analysis and model checking of
timed contract automata, and their use in runtime verification.

References

[1] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

[2] Shaun Azzopardi, Gordon J. Pace, and Fernando Schapachnik. Contract automata with reparations. In
JURIX’14, pages 49–54. IOS Press, 2014.

[3] Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik, and Gerardo Schneider. Contract automata -
an operational view of contracts between interactive parties. Artif. Intell. Law, 24(3):203–243, 2016.

[4] Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik, and Gerardo Schneider. On the specification
and monitoring of timed normative systems. In RV’21, volume 12974 of LNCS. Springer, 2021.

[5] Alberto García, María-Emilia Cambronero, Christian Colombo, Luis Llana, and Gordon J. Pace. Themu-
lus: A timed contract-calculus. In MODELSWARD’20, pages 193–204. SciTePress, 2020.

[6] Guido Governatori, Joris Hulstijn, Régis Riveret, and Antonino Rotolo. Characterising deadlines in tem-
poral modal defeasible logic. In AI’07, pages 486–496, 2007.

[7] Guido Governatori and Antonino Rotolo. Justice delayed is justice denied: Logics for a temporal account
of reparations and legal compliance. In CLIMA XII, pages 364–382, 2011.

[8] Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting Two-Party Systems. In FLACOS’12,
volume 94 of ENTCS, 2012.

[9] Gordon J. Pace and Fernando Schapachnik. Types of rights in two-party systems: A formal analysis. In
JURIX’12, pages 105–114, 2012.

S. Chircop et al. / An Automata-Based Formalism for Normative Documents with Real-Time 163

