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Abstract. Translating often has the meaning of converting from one human lan-
guage to another. However, in a broader sense, it means transforming a message
from one form of communication to another form. Logic is an important form of
communication and the ability to translate natural language into logic is important
in many different fields, in which logical reasoning and logical arguments are used.
In the legal field, for example, judges must often reason from facts and arguments
presented in natural language to logical conclusions. In this paper, toward the goal
of support for this kind of reasoning with machines, we propose a method for trans-
lating natural language into logical representations using a combination of deep
learning methods. Our approach contributes methodologies and insights to the de-
velopment of computational methods for converting natural language into logical
representations.
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1. Introduction

Although the law is written in natural language, this form is probably not the best op-
tion. First, natural language is ambiguous. This means that there can be more than one
interpretation of what a sentence in law means [1]. This can lead to confusion and can
make it hard to enforce the law. Second, natural language is constantly changing [2].
Words can change meaning over time, which can become a challenge in understanding
old laws. Finally, natural language is not the same in every country. This can make it hard
to write laws that can be enforced internationally. Representing the law in a logical form,
such as first-order logic, can help to solve these problems. First-order logic is a formal
language that can be used to write down laws in a way that is clear and unambiguous.
First-order logic is also not subject to the same problems as natural language. This is be-
cause first-order logic is a fixed and well-defined language. This means that the meaning
of the formula in first-order logic is the same in every country.

Using logic programming to support judges and attorneys has many benefits. Per-
haps the most significant benefit is that it can help to ensure that the law is applied con-
sistently across cases. By representing the law using formal logic, it becomes possible to
develop an automated system that can check for inconsistencies and errors. As a result,
the quality of legal decision-making can be improved. Another benefit of using logic
programming to support judges and attorneys is that it can help to make the law more
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accessible to the general public. By representing the law using formal logic, it becomes
possible to develop systems that can generate plain-language explanations of the law.
This can help to increase public understanding of the law and improve compliance with
the law. Finally, using logic programming to support judges and attorneys can help to
make the law more efficient. By representing the law using formal logic, it becomes pos-
sible to develop systems that can automatically generate legal documents. This can save
significant time and effort for both judges and attorneys.

Despite the above benefits, writing logical formula is a huge challenge. Writing cor-
rect logical expressions for law sentences requires expertise and experience. No matter
how powerful the system is, without correct inputs, the result can be incorrect. In addi-
tion, the result of the reasoning system might be overwhelming to users which are not
familiar with logical reasoning. Therefore, using law expert systems that are based on
logic programming is not a trivial task. The most difficult requirement is to design the
system so that law experts, usually those who are not specialized in logic, can give input
to the system. Efforts to date such as controlled natural language or existing translation
systems have not met this requirement.

The ideal system should translate both legal rules and case descriptions written in
natural language sentences into logical formulas so that judgement could be fully au-
tomatically made. However, as far as legal rule translation is concerned, it is usually
very difficult to translate legal rules written in natural language into logical formulas. It
is because there are some hidden conditions only derived from legal interpretations of
the whole set of legal rules and this information only can be obtained from legal litera-
ture, not from legal rules themselves. We, therefore, take the intermediate approach for
producing judgment as follows.

1. We manually translate legal rules into logical formulas with the consultation of
legal scholars and legal literature.

2. We translate case descriptions into logical formulas (fact formulas) automatically.
3. We reason about judgement by applying logical rule formulas to logical fact for-

mulas.

For step 2, the problem is how to extract relevant information from case descriptions.
One approach would be pattern-based information retrieval from case descriptions [3].
However, their approach is not robust, that is, if sentences do not follow pre-designed
patterns, we cannot extract information, and preparing for various patterns manually will
be very time-consuming.

In this paper, we take a robust approach to retrieve relevant fact formulas from a
case description written in natural language using large pre-trained language models. To
do so, we need to answer the following two questions: First, we want to see whether a
large language model trained on a large amount of natural language text can be used to
automatically generate logical formulas that are consistent with the text after some fine-
tuning. Second, we want to see the weakness of this approach by looking at the types of
errors the model makes. To answer the first question, we use large pretrained language
models to translate natural language into logical formulas. To answer the second ques-
tion, we examine the types of errors the model makes. We find that large pretrained lan-
guage models can be used to automatically generate logical formulas that are consistent
with the text after some finetuning. However, with the translation approach, a few slight
mistakes in the prediction results can cause syntax errors in logical formulas, which is
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tolerable in natural language translation. This information can be used to prepare neces-
sary resources and improvements for the model.

Our main contribution is a novel approach to reason about judgments using manu-
ally translated logical rule formulas and automatically translated logical fact formulas. In
particular, for automatic translation from case description into logical facts, we combine
translation and correction of natural language into a logical formula using deep learning.
To this end, we develop an effective deep learning framework with an appropriate train-
ing strategy to perform the translation and correction with PROLEG syntax[4]. We con-
duct experiments to verify the effectiveness of our approach and discuss the insights we
gain from the experiments. The structure of this paper is as follows. In Section 2, we have
preliminaries covering the basics of the existing logical form in English and the current
status of machine translation methods. Section 3 provides a description of the proposed
multi-step translation approach. In Section 4, we show the experiments and evaluation of
the proposed model. Finally, we conclude in Section 5 and discuss some future works.

2. Backgrounds

2.1. Controlled Natural Languages

Controlled natural languages have been long invented for reducing ambiguity in natu-
ral languages. Basically, they are natural languages with restrictions of vocabulary and
grammar so that sentences in such languages can be translated into unique logical ex-
pressions.

Attempto Controlled English (ACE) [5] is one notable controlled natural language
which has been used for representing laws and regulations [6]. Each sentence in ACE
can be translated into a first-order expression. For instance, the sentence Every house-
hold creates some garbage can be translated into ∀x[household(x) → ∃y[garbage(y)∧
create(x,y)]] . To achieve this, ACE restricts its vocabulary and grammar, for example,
every common noun must occur in a noun phrase with a quantifier. Hence, some accept-
able sentences in natural English are unacceptable in ACE. For instance, the sentence
Every household should pay tax for garbage is unacceptable in ACE because there are
no qualifiers for tax and garbage. Furthermore, strict interpretation rules of ACE may
lead to unintended interpretations. For instance, since a pronoun in ACE refers to the
most recent noun, its garbage in the sentence Every household should pay some tax for
its garbage is interpreted to the tax’s garbage, which is counterintuitive. In addition, it is
hard to link the complex forms of words to their simple form. For instance, it is hard to
link taxation to tax. Hence, simple forms are preferred to complex forms in ACE.

Logical English [7] is one more recent controlled natural language which has been
used for representing laws and regulations [8]. Each sentence in Logical English can be
translated into a Prolog rule. In the same manner to ACE, Logical English restricts its
vocabulary and grammar, for example, the first occurrence of a common noun phrase
must begin with a/an and the repeated noun phrase in the same sentence must begin with
the. It is reported in [8] that Logical English attempts to serve as a syntactic sugar to
make logic programs understandable for lay persons; however, it is still hard to write
readable Logical English sentences. Assistive tools for writing in Logical English are
being developed.
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2.2. Existing Machine Translation Methods

A dictionary-based approach to automated translation relies on a set of lexical items,
each mapping a concept to a set of alternative meanings. These dictionary entries are
written by human experts and are often based on the structure of the source language [9].
In many cases, however, the mapping of concepts to a set of alternative meanings is not
one-to-one. In these cases, the dictionary-based approach may require a human expert to
choose the appropriate meaning for each concept. Another weakness of this approach is
that it can not deal with the variance in wording that is characteristic of natural language.
It is impossible to write a dictionary that covers all of the possible ways that a concept
can be expressed.

Template methods generate translated sentences following a linear, rule-based ap-
proach [10]. This approach is also known as a finite state machine. The template method
consists of a set of rules for different sentence templates, which are instantiated to input a
sentence and generate a sentence. The simplest form of sentence generation is a sequence
of replacement rules. This simple form is not sufficient for real-world applications and
data-driven approaches are proposed. A data-driven approach is built using a corpus of
parallel sentences, which can be used to build either a translation rule or a translation
model.

The statistical approach to machine translation is based on the hypothesis that the
translation of a text is a function of the source text and its context. This approach over-
comes the problem of dictionary-based and rule-based machine translation by using a
statistical model that can deal with the complexity of natural languages. Learning from
data, the statistical approach can automatically discover the latent rules that govern the
relationship between the source text and the target text. As a result, this approach does
not require the knowledge of linguistics or the development of dictionaries and rules.
In the era of big data, the statistical approach has become the most popular approach to
machine translation with the development of neural machine translation. Large language
models like BERT [11], BART [12], T5 [13] and GPT-3 [14] have achieved state-of-the-
art results in various natural language processing tasks, including machine translation.

Although the problem of machine translation has been studied for a long time, the
studies that directly solve the problem of converting from natural language to logical
expressions are quite limited. The main reason is the lack of a large-scale dataset and
a method for end-to-end learning from input natural language to output logical expres-
sion. In the software industry, converting natural language to another form of software
resource like database schema receives more attention than logical expressions. There-
fore, it becomes easier to find a large-scale dataset for database schema [15]. The second
reason is that to be meaningful, the logical formula should be well defined in a formal
language containing definitions and rules. Building such a language consumes a lot of
effort in both research and development. Fortunately, PROLEG [4] provides a language
for representing logical expression in the legal domain. With that condition, this work
can be considered the first step to solving the problem of converting natural language to
logical expressions automatically. In the domain of law, current studies about translation
are not about machine translation but about human translation. In their paper, Witt et al.
[16] provide a detailed analysis of the translation problem in the context of legal texts and
propose approaches for improving human translation of legal texts into logical formulas.
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3. Method

3.1. General Framework

Solving the problem of translating natural language into a logical formula, we need to
deal with two challenges. The first one is the limitation of training data. There is no
available dataset that can be used to directly train a model for this task. Furthermore, the
professional annotators who can provide high-quality data are also limited. The second
challenge is that the logical syntax is much more rigid than the natural language. The
translation should be very precise in order to get the correct logical formula. We find that
this is an interesting and challenging problem that has not been well explored in the field
of natural language processing and deep learning.

We propose the general framework as in Figure 1. There are two main modules:
translation and correction. Both of them are pretrained language models. By the universal
approximation theorem, all the functions can be approximated by a very deep neural
network. Theoretically, we only need one neural network for translation. However, in
the context of limited training data, we need to have an appropriate approach to make
the system more robust. The translation module is responsible for the translation of the
source sentence into the target sentence. The correction module is responsible for the
final correction of the translation result. The training data for the translation module is
required more expert knowledge and human effort to annotate, but the training data for
the correction module is much easier to obtain. This is the key idea that makes our method
more effective and efficient, making the goal feasible with limited expert annotations. We
present in detail how to prepare the training data for translation and correction modules
in Section 3.2.

Figure 1. The general framework of the system.

3.2. Data Preparation

To prepare the data for the translation module, we have experts construct the pairs of fact
descriptions in natural language and in logical representation (i.e. PROLEG). The log-
ical representations need to be syntactically correct and follow the PROLEG grammar;
however, the natural language descriptions can have multiple variations. As an initial in-
vestigation, we ask the experts to create logical representations for 15 different scenarios
and their variance. Finally, we have 150 logical representations and their corresponding
natural language descriptions. An example of data is shown in Table 1.

With a relatively small set of 150 samples, we do not expect that the translation mod-
ule will be able to cover all the possible variations of the natural language descriptions.
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Input

This Room Rental Agreement(this “Agreement”) is made and executed on the next
business day, by and between Sanna Mirella Marin(hereinafter referred to as “Landlord”);
and LEITCH Michael(hereinafter referred to as “Tenant”). In consideration whereby the
Landlord leases the leased premises with the address located at Sunrise Village, Arkansas,
72207 United States. In consideration that the lease term shall commence on October 15, 2018
with the agreed payment term by which the tenant shall make the payment on a monthly basis.
The Tenant shall pay the amount of $5 per month to the Landlord on an agreed payment basis.

Output

- Lessor(“Sanna Mirella Marin”).
- Lessee(“LEITCH Michael”).
- agreement of lease contract(“Sanna Mirella Marin”,“LEITCH Michael”,“Room”,“Sunrise
Village, Arkansas, 72207 United States”,“$5 per month”,“2018 year 10 month 15 day”, ,
“the next business day”,“This Room Rental Agreement”).

Table 1. Sample of data for translation module.

Strategy Original Error

Random capitalization This is a sample sentence this is a sAMple sentence

Random split This is a sample sentence Th is is a sample sent ence

Random removing This is a sample sentence This is a smple setence

Random adding This is a sample sentence This is a saample senjtence

Random replacing This is a sample sentence This is ant sample sentence
Table 2. Example of error generation strategies.

Interestingly, its errors follow some patterns, which can be learned by another neural
network module (the correction module). Data preparation for the correction module can
be done in several automatic strategies with examples described in Table 2. We generate
a dataset of 20,000 samples, which is much larger than the training set of the translation
module.

3.3. Training

In the framework described in Figure 1, the translation module and correction module
are trained in a sequential manner:

• Train the translation module with the 150 samples constructed in Section 3.2.
• Train the correction module with the generated incorrect logical representations.
• Use the trained translation module and correction module to translate new natural

language descriptions into logical representations.

We do not train the models from scratch but make use of large version of BART to
initialize the parameters of our models. We train the translation module and the correction
module with early stopped by validation set.
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4. Experiments

4.1. Evaluation Metrics

We implement two metrics for this typical translation task. The first metric is exact match
accuracy and the second is the longest common non-continuous subsequence (LCNS).
We do not use BLEU [17] or ROUGE [18] or other standard translation metrics because
these are not suitable for the problem of translating natural language to logical formulas.
With these metrics, there need to be several reference translations from which the trans-
lation can be judged. In our case, we have only one reference translation. The syntax
of logical formulas is very rigid and they do not accept variance in the translation. The
exact match accuracy can let us know the percentage of translation units that are exactly
matched with the reference translation (ready for the application) and the LCNS can tell
how far the current performance is from the ideal case. The exact match evaluation is
calculated by Formula 1.

1
N

N

∑
i=1

Ipredi=goldi (1)

To compute the LCNS evaluation, we implement a dynamic algorithm to find the
longest common non-continuous substring of two strings pred and gold as in Algorithm
1:

Algorithm 1 LCNS’s algorithm
1: procedure LCNS(gold, pred) � lcns of gold and pred
2: m ← length of gold
3: n ← length of pred
4: L size of mxn � dynamic programming matrix
5: for i ← 1,2, ...,m and j ← 1,2, ...,n, do

6: if predi = gold j then

7: Li, j ← Li−1, j−1 +1
8: else

9: Li, j ← max{Li−1, j,Li, j−1}.
10: end if

11: end for

12: return Lm,n � The lcns is Lm,n
13: end procedure

The LCNS evaluation value is the division of LCNS(gold, pred) by the length of
gold.

4.2. Experimental Results

Table 3 shows the experimental result of the translation system with and without the cor-
rection module. With a relatively small dataset, the translation module itself can produce
a translation that has about 45% of exact match accuracy with the reference translation
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Table 3. The experimental result of the translation system with and without correction module

System Exact Match LCNS

Translation Module w.o. Correction Module 0.45 0.94

Translation Module w. Correction Module 0.58 0.97

and 94% of LCNS. The correction module can further improve the translation quality to
58% of exact match accuracy and 97% of LCNS. We can have three observations from
these experimental results:

• The translation module alone can produce a translation with fairly high quality.
• The correction module can further improve the translation quality. The improve-

ment is not that significant given the small training dataset, but it is significant
enough to show that the correction module has the potential to improve the trans-
lation quality.

• The translation quality can be further improved if we have a larger training dataset.

While the Exact Match and LCNS metrics show us the overall performance and
improvement of the system, it’s hard to imagine how good the system really is and what
errors the correction module can detect and correct. Therefore, in Section 4.3, we analyze
the specific cases that we observed in our experiment.

4.3. Error Analysis

Table 4. Translation examples for the translation system with and without correction module

Expected/Generated Formula LCNS

Gold Translation fact of duress(personC,personB,rescission(contract0),1998 year 5 month 25 day). -
w.o Correction Module fact of duress(personC,personB,resCission(Contract0),1998 year 5 month 25 day). 0.97
Full System fact of duress(personC,personB,rescission(contract0),1998 year 5 month 25 day). 1.00
Gold Translation manifestation fact(rescission(contract0),personA,personB,2030 year 12 month 1 day). -
w.o Correction Module manifeStation fact(resCission(Contract0),personA,personB,2030 year 12 month 1 day). 0.96
Full System manifestation fact(rescission(contract0),personA,personB,2030 year 12 month 1 day). 1.00
Gold Translation contract(personB,personA,this real estate,300,1995 year 11 month 13 day,contract0). -
w.o Correction Module contract(personB,personA,this real estate,300,2000 year 11 month 13 day 0.81
Full System contract(personB,personA,this real estate,300,2000 year 11 month 13 day 0.81

Table 4 shows some translation examples for the translation system with and with-
out the correction module. The reference translation is provided in the first column. The
translation generated by the translation module is in the second column and the transla-
tion generated by the translation module with the correction module is in the third col-
umn. We can see that the system can extract the key information from the input sen-
tence and generate a translation with fairly high quality. Although the predicates in the
target logical form do not appear in the input sentence, the system can produce a cor-
rect translation by reusing the existing predicates in the training dataset. In the version
with solely the translation module, the system sometimes misspells the predicates and
variable names in the logical formula. The correction module can correct some of these
errors. In some cases, the correction module can also correct the case of the predicate
names and variable names, which is important for the correctness of the logical formula.
In the case of wrong date translation, the correction module based on noised generation
can only reformat the date but can not assure the correctness of the date.
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Looking at Table 4, we see that in the first two examples, the translation module
produces pretty good but not perfect outputs. Words like “rescission”, “contract” are mis-
capitalized as “resCission”, “Contract”. These errors are insignificant to humans, and
may not be detected at a glance. The LCNS metric also shows that these translations
are almost identical to the original (0.96-0.97). However, they are serious errors for the
reasoning engine, which is very strict in syntax. Correction module is effective in cases
like this.

However, in the last example, where the translation module completely distorts the
content of the argument, the correction module loses its effect. As we see, it can only
remove an redundant space in the variable “this real estate” and this is of no value in
terms of formula correction. The logical expression is still both syntactically and seman-
tically wrong. These analyzes give us suggestions for the design of models focusing on
recognizing the arguments, which will be implemented and introduced in future work.

4.4. Discussions

From the experimental results, we can see that the translation system can achieve fairly
high quality with a small amount of training data. However, the system still has some
limitations. First, in our current dataset, the number of predicates and variables is limited.
Therefore, the translation system can not generate a logical formula containing predi-
cates and variables that are very different from the predicates and variables in the train-
ing dataset. Second, the translation system is not robust in recognizing the dates. In the
third output in Table 4, the translation system translates the date “1995 year 11 month
13 day” to “2000 year 11 month 13 day”. This result should be due to the lack of date
recognition skill in the model and overfit to the training dataset. The correction mod-
ule can not deal with this kind of error. Third, the system sometimes returns an output
that is not complete. Also in the third output, the function “contract” does not have all
required arguments and the closing “)” is missing. In future work, the combination of
template-based fill-in-slot training is a promising method to improve the completeness
of the output. In addition, a larger dataset and more types of predicates and variables is
required to improve the robustness of the translation system.

5. Conclusions

In this work, we propose a translation system that translates natural language text into
logical formulas. We use PROLEG syntax as our target language. As an investigation
step, we hire experts to create a small translation dataset from natural language to logical
formulas. To improve the translation performance, we propose the multi-step framework
by appending the correction module to deal with translationś errors. The correction mod-
ule is constructed by learning a reverse function from the error generator. The experi-
mental results show that this design can improve the translation quality. The translation
system with the correction module can achieve 58% of exact match accuracy and 97% of
LCNS in the current small dataset. This work is a promising first step toward automati-
cally translating natural language into logical formulas. To make the system more robust,
we need to either improve the quality of the data used to train the model or use a more
sophisticated approach to handle the errors. In future works, we want to experiment with
other approaches inspired by other work on neural machine translation.
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