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Abstract. Modelling the concept of explanation is a central matter in AI systems,
as it provides methods for developing eXplainable AI (XAI). When explanation
applies to normative reasoning, XAI aims at promoting normative trust in the
decisions of AI systems: in fact, such a trust depends on understanding whether
systems predictions correspond to legally compliant scenarios. This paper extends
to normative reasoning a work by Governatori et al. (2022) on the notion of stable
explanations in a non-monotonic setting: when an explanation is stable, it can be
used to infer the same normative conclusion independently of other facts that are
found afterwards.
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1. Introduction

The literature on the concept of explanation is vast (especially in philosophy; see, among
many others, [1,14]), and the AI community is recently paying more and more attention
to it due to the development of eXplainable AI (XAI) [12]. The AI&Law community has,
in turn, a long tradition in this direction [3], since ‘transparency’ and ‘justification’ of
legal decision-making both require formalising normative explanations.

We propose the novel idea of stable normative explanation extending the notion of
stable inference of [4]. Roughly speaking, the problem of determining a stable normative
explanation for a certain legal conclusion means to identify a set of facts, obligations,
permissions, and other normative inputs able to ensure that such a conclusion continues
to hold when new facts are added to a case. This notion is interesting from a logical point
of view (think about the classical idea of inference to the best explanation), but it can also
pave the way to develop symbolic models for XAI when applied to the Law (consider, for
instance, systems of predictive justice [11]).

Reasoning with legal norms exhibits features that distinguish it from other types of
reasoning. For instance, while examining a case, we are limited to (i) the facts presented
(and the admissible ones) for that case, and (ii) the norms in force for the time relevant to
the case itself, norms that, sometimes, stem from different sources. Given the facts of the
case, the proceeding aims at determining what legal requirements (expressed as obliga-
tions, prohibitions and permissions) hold, and whether such legal requirements have been
fulfilled. If more/new facts were presented, the outcome of a case might be quite different
or can even be modified; moreover, such additional facts may be themselves the outcome
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of some norms establishing other legal requirements (i.e., obligations, prohibitions and
permissions), possibly not in the sphere of control of the current proceeding.

Accordingly, one of the major issues is how to ensure a specific outcome for a
case, which, in an adversarial setting, can be understood as how to ensure that the facts
presented by a party are ‘resilient’ to the attacks from the opponent. Furthermore, such an
issue is not restricted to adversarial situations only. Still, it is relevant even in cases where
one party does their due diligence to determine if they comply with a particular piece of
legislation (e.g., to identify all requirements that a business must satisfy to legally serve
alcohol in an entertainment environment, according to the Queensland liquor licensing
and gaming regulations).

Let us ground the above discussion with a concrete scenario. The Australian Spent
Conviction discipline governs (1) the conditions under which a conviction is spent, and (2)
when it is permitted to withhold information about it (or when it is mandatory to disclose
that a conviction has occurred). At the federal level, Spent Conviction is regulated by
Part VII C of the Crimes Act 1914; in addition, States and Territories enacted their own
legislation and schemas supplementing and complementing the federal one.

Part VII C of the Crimes Act 1914 consists of six divisions. Division 1 gives the
terms and definitions for the topics. Divisions 2, 3, and 4 establish the baseline conditions
for (i) when a conviction is spent, (ii) when a person is permitted to withhold information
about a (spent) conviction, (iii) when a person is required to provide such information,
and (iv) when third parties are either permitted or forbidden to disclose information they
might have about a (spent) conviction. Division 5 deals with “administrative” aspects
(complaints) of improper releases of spent conviction information. Finally, Division 6
specifies the exclusions (exceptions) to Divisions 2 and 3. Among the various provisions,
Section 85ZZGB (Exclusion: disclosing information to a person or body) recites:

Divisions 2 and 3 do not apply in relation to the disclosure of information to a
prescribed person or body if:
(a) The person or body is required or permitted by or under a prescribed Common-

wealth law, a prescribed State law or a prescribed Territory law, to obtain and
deal with information about persons who work, or seek to work, with children;
and

(b) The disclosure is for the purpose of the person or body obtaining and dealing
with such information in accordance with the prescribed law.

Part VII C of the Crimes Act 1914 clearly demonstrates the abovementioned issues. First
of all, examining the baseline conditions given in Divisions 2 and 3 is not sufficient to
determine if the information about a spent conviction can be withheld: the exclusions
specified in Division 4 must be considered. Moreover, Section 85ZZGB specifies that the
conditions set in Division 2 or 3 depend upon deontic aspects (“required” or “permitted”)
determined by regulatory instruments outside what is specified by Part VII C, which can
be assumed as (external deontic) facts of the case.

In this paper, we work with a non-monotonic formalism (Defeasible Deontic Logic)
apt to model norms and able to deal with exceptions and deontic concepts. The logic
is needed to provide a precise and formal grounding of the problem of stability and
stable normative explanation. We also examine the computational complexity of ensuring
stability.
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2. Stable Explanations

Finding a normative explanation for a certain normative conclusion 𝑙 (such as an obliga-
tion) means determining as input a piece 𝐹 of normative information that supports the
derivation of 𝑙 through norms and other rules of the normative system. If 𝐹 is a stable
explanation, then adding new facts to that explanation does not affect its power to explain
the normative conclusion. Stable explanations are naturally considered because they are
insensitive to input knowledge changes. In other terms, stable explanations are, to some
extent, monotonic, even when the considered logic is not.

In this investigation, we work on a deontic extension of Defeasible Logic (DL), called
Defeasible Deontic Logic (DDL). In DDL, we have three types of elements: (1) facts,
(2) rules, and (3) superiority relation >. Facts are the input knowledge describing those
indisputable things that are true beyond any doubt. Rules are ways to obtain (normative)
conclusions that are considered plausible (or typical), whereas the superiority relation is
thought of as a means to establish whether one rule for a conclusion might prevail against
another rule for the opposite conclusion.

DDL is DL plus the deontic operators O and P, respectively, for obligations and
permissions, and the operator ⊗ according to which an expression 𝑎 ⊗ 𝑏 means that 𝑎 is
obligatory, but if such an obligation is violated, then 𝑏 is obligatory and compensates this
violation [8]. In addition to standard rules (which are hereafter referred to as constitutive
rules, with arrow⇒C), we have deontic rules, such as

𝛼 : 𝑎1, . . . , 𝑎𝑛 ⇒O 𝑏 ⊗ 𝑐 𝛽 : O𝑐, 𝑑1, . . . , 𝑑𝑚 ⇒P 𝑒.

If 𝛼 is applicable (namely, 𝑎1, . . . , 𝑎𝑛 are the case), then we derive O𝑏. Suppose that we
know ¬𝑏, meaning thatO𝑏 is violated. In this case, we deriveO𝑐. Accordingly, if we also
know that 𝑑1, . . . , 𝑑𝑚 are the case, then we conclude that 𝑒 is permitted, i.e., that P𝑒.

Two peculiar features of DDL make the idea of normative explanation not obvious:
• The set 𝐹 of facts may include deontic expressions such as O𝑝, and ¬P𝑞. Such
deontic facts encode a normatively indisputable input. For example, suppose the
set of rules represents norms of the Italian legal system. In that case, we can take
O𝑏 ∈ 𝐹 as indisputable as grounded on the Italian constitution or because it is
imported from European law.

• DDL adopts the concept of rule conversion [9], which amounts here to use non-
deontic rules to derive obligations and permissions. Consider the rule 𝛼 : 𝑎 ⇒C 𝑏,
and assume we prove P𝑎. We can use 𝛼 to determine that 𝑏 is permitted. For
example, in football, if the ball passing completely over the goal line between the
goal posts and under the crossbar ‘counts as’ scoring a goal and it is permitted for
the ball to pass such a goal line, then we can indeed derive that scoring a goal is
permitted.

To illustrate the idea of stable normative explanation, consider the following example.

Example 1. Suppose the Law forbids engaging in credit activities without a credit license.
If you violate this prohibition, the civil penalty is 2,000 penalty units. Furthermore, such
activities are permitted for a person acting on behalf of another person (the principal)
when the person is an employee or the director of the principal and the principal holds
a credit license. Moreover, some conditions are specified under which a person could be
banned from credit activities. For example, a person is banned if they become insolvent.
Finally, using the equity mobilised by the credit institutions counts as a credit activity.
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𝛾 : ⇒O ¬creditActivity ⊗ civilPenalty
𝛿 : creditLicense⇒P creditActivity
𝜖 : actsOnBehalfPrincipal, principalCreditLicense⇒P creditActivity
𝜁 : Obanned⇒O ¬creditActivity
𝜂 : insolvent⇒O banned
𝜃 : Opay,¬pay⇒C insolvent
𝜄 : equity⇒C creditActivity

where 𝛿 > 𝛾, 𝜖 > 𝛾, 𝜁 > 𝜖 , 𝜄 > 𝛾, and 𝜄 > 𝜁 .
• The set {creditLicence} is stable for PcreditActivity;
• The set {actsOnBehalfPrincipal, principalCreditLicense} is not stable for

• The set {Pequity} is stable for PcreditActivity;
• The set {creditAcvitiy} is not stable for the conclusion OcivilPenalty (if we add,
e.g., creditLicence).

3. Defeasible Deontic Logic

Defeasible Logic [13,2] is a simple, flexible, and efficient rule-based non-monotonic for-
malism, whose strength lies in its constructive proof theory that allows drawing mean-
ingful conclusions from a (potentially) conflicting and incomplete knowledge base. In
non-monotonic systems, more accurate conclusions can be obtained when more pieces of
information become available. Many variants of DL have been proposed for the logical
modelling of different application areas, especially for legal reasoning (for an overview
of the literature, see [10]).

In this research, we focus on the Defeasible Deontic Logic’s framework advanced in
[5], that allows us to model a large variety of normative concepts, as well as to determine
what prescriptive behaviours are in force in a given situation.

We shall now briefly recall the main elements of the logic, and start by defining the
language of a defeasible deontic theory. Let PROP be a set of propositional atoms, and
Lab be a set of arbitrary labels (the names of the rules). Lower-case Roman letters denote
literals, whereas lower-case Greek letters denote rules. Accordingly, PLit = PROP ∪

{¬𝑙 | 𝑙 ∈ PROP} is the set of plain literals, the set of deontic literals is ModLit =
{�𝑙,¬�𝑙 | 𝑙 ∈ PLit ∧ � ∈ {O,P}}, and finally, the set of literals is Lit = PLit ∪ModLit.
The complement of a literal 𝑙 is denoted by ∼𝑙: if 𝑙 is a positive literal 𝑝 then ∼𝑙 is ¬𝑝,
and if 𝑙 is a negative literal ¬𝑝 then ∼𝑙 is 𝑝.

Definition 1 (Defeasible Deontic Theory). A defeasible deontic theory 𝐷 is a tuple
(𝐹, 𝑅, >), where 𝐹 is the set of facts, 𝑅 is the set of rules, and > is a binary relation over
𝑅 (called superiority relation).

The set of facts 𝐹 ⊆ Lit denotes simple pieces of information that are considered to
be always true. A theory is meant to represent a normative system, where the rules encode
the norms of such a system, and the set of facts corresponds to “factual information”, or
“given deontic positions” (as, for instance, indisputable obligations or deontic positions
imported from other higher-ranked normative systems). The rules are used to conclude
the institutional facts, obligations and permissions that hold given the set of facts.

The set of rules 𝑅 is finite and contains three types of rules: strict rules, defeasible
rules, and defeaters. Rules are also of two kinds:
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• Constitutive rules (non-deontic, counts-as rules) 𝑅C model constitutive statements;
• Deontic rules model prescriptive behaviours, which are either obligation rules
𝑅O determining when and which obligations are in force, or permission rules
representing strong (or explicit) permissions 𝑅P.

Lastly, the superiority relation, > ⊆ 𝑅 × 𝑅, solves conflicts among rules’ conclusions.
Following the ideas of [8], obligation rules gain more expressiveness with the com-

pensation operator ⊗ for obligation rules, which is to model reparative chains of obliga-
tions. Intuitively, 𝑎 ⊗ 𝑏 ⊗ 𝑐 means that 𝑎 is the primary obligation, but if, for some reason,
we fail to comply with 𝑎, then 𝑏 becomes the new obligation in force, and so on for 𝑐 if
we also fail with 𝑏. This operator, called ⊗-expressions, is hence used to build chains of
“preference reparations” (𝑐 is still acceptable but less preferred than 𝑏).

Definition 2 (Rule). A rule is an expression of the form 𝛼 : 𝐴(𝛼) ↩→� 𝐶 (𝛼), where
1. 𝛼 ∈ Lab is the unique name of the rule;
2. 𝐴(𝛼) ⊆ Lit is the set of antecedents;
3. An arrow ↩→∈ {⇒,�} denotes, respectively, defeasible rules, and defeaters;
4. � ∈ {C,O,P};
5. 𝐶 (𝛼) is the consequent, which is either

(a) a single plain literal 𝑙 ∈ PLit, if (i) ↩→≡� or (ii) � ∈ {C,P}, or
(b) an ⊗-expression, if � ≡ O.

If � = C then the rule is used to derive non-deontic literals (constitutive statements),
whilst if � is O or P then the rule is used to derive deontic conclusions (prescriptive
statements). The conclusion𝐶 (𝛼) is a single literal in case� = {C,P}, or an ⊗-expression
when � = O. Note that ⊗-expressions can only occur in prescriptive rule though we do
not admit them on defeaters (see [5]).

We use some standard abbreviations on rule sets. The set of defeasible rules is 𝑅⇒,
the set of defeaters is 𝑅dft. 𝑅� [𝑙] is the set of rules with conclusion 𝑙 andmodality�, while
𝑅O [𝑙, 𝑖] denotes the set of obligation rules where 𝑙 is the 𝑖-th element in the ⊗-expression.
Given that the consequent of a rule is either a single literal or an ⊗-expression, in what
follows, we are going to shorten the notation and use 𝑙 ∈ 𝐶 (𝛼).

Definition 3 (Tagged modal formula). A tagged modal formula is an expression of the
form ±𝜕�𝑙, with the following meanings

• +𝜕�𝑙: 𝑙 is defeasibly provable (short, provable) with mode �,
• −𝜕�𝑙: 𝑙 is defeasibly refuted (short, refuted) with mode �;

Accordingly, the meaning of +𝜕O𝑝 is that 𝑝 is provable as an obligation, and −𝜕P¬𝑝
is that we have a refutation for the permission of¬𝑝. Similarly, for the other combinations.

Definition 4 (Proof). Given a defeasible deontic theory 𝐷, a proof 𝑃 of length 𝑚 in
𝐷 is a finite sequence 𝑃(1), 𝑃(2), . . . , 𝑃(𝑚) of tagged modal formulas, where the proof
conditions defined in the rest of this paper hold. 𝑃(1..𝑛) denotes the first 𝑛 steps of 𝑃.

The notational convention ‘𝐷 � ±𝜕�𝑙’ means that there is a proof 𝑃 for ±𝜕�𝑙 in 𝐷.

Core notions in DL are that of applicability/discardability of a rule. This paper
uses the one developed in [9,6]. As knowledge in a defeasible theory is circumstantial,
given a defeasible rule like ‘𝛼 : 𝑎, 𝑏 ⇒� 𝑐’, there are four possible scenarios: the theory
defeasibly proves both 𝑎 and 𝑏, the theory proves neither, the theory proves one but not
the other. Naturally, only in the first case, where both 𝑎 and 𝑏 are proved, we can use 𝛼
to support/try to conclude �𝑐.
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Definition 5 (Applicability). Assume a defeasible deontic theory 𝐷 = (𝐹, 𝑅, >).
1. Rule 𝛼 ∈ 𝑅C ∪ 𝑅P is applicable at 𝑃(𝑛 + 1), iff for all 𝑎 ∈ 𝐴(𝛼)

(a) if 𝑎 ∈ PLit, then +𝜕C𝑎 ∈ 𝑃(1..𝑛),
(b) if 𝑎 = �𝑞, then +𝜕�𝑞 ∈ 𝑃(1..𝑛), with � ∈ {O,P},
(c) if 𝑎 = ¬�𝑞, then −𝜕�𝑞 ∈ 𝑃(1..𝑛), with � ∈ {O,P}.

2. Rule 𝛼 ∈ 𝑅O is applicable at index 𝑖 and 𝑃(𝑛 + 1) iff Conditions 1a–1c hold, and
(d) ∀𝑐 𝑗 ∈ 𝐶 (𝛼), 𝑗 < 𝑖, then +𝜕O𝑐 𝑗 ∈ 𝑃(1..𝑛) and +𝜕C∼𝑐 𝑗 ∈ 𝑃(1..𝑛).

3. Rule 𝛼 ∈ 𝑅C is applicable at 𝑃(𝑛 + 1) for +𝜕�𝑙 where � ∈ {O,P}, iff
(e) 𝛼 ∈ 𝑅C [𝑙],
(f) for all 𝑎 ∈ 𝐴(𝛼), 𝑎 ∈ PLit, and 𝐴(𝛼) ≠ ∅,
(g) +𝜕�𝑎 ∈ 𝑃(1..𝑛).

Note that discardability of a rule is obtained by applying the principle of strong
negation to the definition of applicability [7], and thus omitted.

Condition 1 establishes that (a, b) every positive literal has been proved, and (c) every
deontic negative literal has been rejected at a previous derivation step.

Condition 2 deals with ⊗-chains: a rule is applicable at a certain index when each
element 𝑐 𝑗 before have been proved as obligation +𝜕C𝑐 𝑗 and violated +𝜕O∼𝑐 𝑗 .

Lastly, Condition 3 formalises rule conversion mentioned in Section 2, which is a
way to derive a conclusion with a certain modality by using rules for another modality
[9]. In our case, constitutive rules can be used to derive obligations and permissions. This
is formalised by Condition 3, which reads very easily: there must be a constitutive rule
whose none of the antecedents is an obligation or permission (hence all of them plain
literals), if all such antecedents are proved as obligations (resp. permissions) then the
rule becomes applicable in supporting its conclusion as an obligation (resp. permission).
Therefore, if we change rule 𝛼 of above as ‘𝛼 : 𝑎,O𝑏 ⇒C 𝑐’, then this new 𝛼 cannot be
used through conversation and may only be used to support ‘a constitutive 𝑐’.

For space reasons, we provide conditions for +𝜕O and +𝜕P only, since (i)−𝜕O and−𝜕P
can be obtained by applying the strong negation principle to the positive counterparts,
and (ii) the proof conditions for constitutive statements are the standard for DL [2].

Definition 6 (Obligation Proof Conditions).

+𝜕O𝑙: If 𝑃(𝑛 + 1) = +𝜕O𝑙 then
(1) O𝑙 ∈ 𝐹, or
(2) O∼𝑙,¬O𝑙,P∼𝑙,¬P𝑙 ∉ 𝐹, and
(3) ∃𝛽 ∈ 𝑅O

⇒[𝑙, 𝑖] ∪ 𝑅C
⇒[𝑙] s.t.

(3.1) 𝛽 is applicable at index 𝑖 if 𝛽 ∈ 𝑅O
⇒[𝑙, 𝑖], or

𝛽 is applicable for +𝜕O𝑙 if 𝛽 ∈ 𝑅C
⇒[𝑙], and

(3.2) ∀𝛾 ∈ 𝑅O [∼𝑙, 𝑗] ∪ 𝑅P [∼𝑙] ∪ 𝑅C [∼𝑙] either
(3.2.1) 𝛾 is discarded at index 𝑗 if 𝛾 ∈ 𝑅O [∼𝑙, 𝑗], or
(3.2.2) ∃𝜁 ∈ 𝑅O [𝑙, 𝑘] ∪ 𝑅C

⇒[𝑙] s.t.
(3.2.2.1) 𝜁 is applicable at index 𝑘 if 𝜁 ∈ 𝑅O

⇒[𝑙, 𝑘] or
𝜁 is applicable for +𝜕O𝑙 if 𝜁 ∈ 𝑅C

⇒[𝑙], and
(3.2.2.2) 𝜁 > 𝛾.

Definition 7 (Permission Proof Conditions).
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+𝜕P𝑙: If 𝑃(𝑛 + 1) = +𝜕P𝑙 then
(1) P𝑙 ∈ 𝐹, or
(2) ¬P𝑙,O∼𝑙 ∉ 𝐹, and
(3) +𝜕O𝑙 ∈ 𝑃(1..𝑛), or
(4) ∃𝛽 ∈ 𝑅P

⇒[𝑙] ∪ 𝑅C
⇒[𝑙] s.t.

(4.1) 𝛽 is applicable if 𝛽 ∈ 𝑅P
⇒[𝑙] or

𝛽 is applicable for +𝜕P𝑙 if 𝛽 ∈ 𝑅C
⇒[𝑙], and

(4.2) ∀𝛾 ∈ 𝑅O [∼𝑙, 𝑗] ∪ 𝑅C
⇒[∼𝑙] either

(4.2.1) 𝛾 is discarded at index 𝑗 if 𝛾 ∈ 𝑅O [∼𝑙, 𝑗], or
(4.2.2) ∃𝜁 ∈ 𝑅P [𝑙] ∪ 𝑅O [𝑙, 𝑘] ∪ 𝑅C

⇒[𝑙] s.t.
(4.2.2.1) 𝜁 is applicable at index 𝑘 if 𝜁 ∈ 𝑅O [𝑙, 𝑘],

or for +𝜕P𝑙 if 𝜁 ∈ 𝑅C
⇒[𝑙] and

(4.2.2.2) 𝜁 > 𝛽.

The set of positive and negative conclusions of a theory is called extension. The
extension of a theory is computed based on the literals that appear in it; more precisely,
the literals in the Herbrand Base of the theory HB(𝐷) = {𝑙,∼𝑙 ∈ PLit| 𝑙 appears in 𝐷}.

Definition 8 (Extension). The extension 𝐸 (𝐷) of a defeasible deontic theory 𝐷 is
𝐸 (𝐷) = (+𝜕C,−𝜕C, +𝜕O,−𝜕O, +𝜕P,−𝜕P),

where ±𝜕� = {𝑙 ∈ HB(𝐷) | 𝐷 � ±𝜕�𝑙}, with � ∈ {C,O,P}.

Theorem 1. [See [5,9]]Given a defeasible theory𝐷, its extension 𝐸 (𝐷) can be computed
in time polynomial to the size of the theory.

4. Normative Explanation: The Formal Definition

As outlined in the previous sections, we explore the idea of stable deontic explanation by
identifying those facts that ensure to prove a certain deontic conclusion. More precisely,

• Facts are added to an initial theory 𝐷𝑖𝑛𝑖𝑡 and used to explain deontic conclusions
in the resulting theory;

• We impose that only literals that do not appear as a consequence of any rule can
be admissible facts for our purpose (factual literals).

The output theory (obtained by adding factual literals), as well as the whole opera-
tions, must thus satisfy certain properties.

Definition 9 (Admissible factual literals). Given (an initial) theory 𝐷𝑖𝑛𝑖𝑡 = (∅, 𝑅, >), we
define the set of admissible factual literals (shortly, factual literals) as
{𝑎,¬𝑎,O𝑏,O¬𝑏,P𝑐,P¬𝑐 | 𝑅C [𝑎] ∪ 𝑅C [¬𝑎] = ∅,

𝑅O [𝑏, 𝑖] ∪ 𝑅C [𝑏] ∪ 𝑅O [¬𝑏, 𝑖] ∪ 𝑅C [¬𝑏] = ∅

𝑅O [𝑐, 𝑖] ∪ 𝑅P [𝑐] ∪ 𝑅C [𝑐] ∪ 𝑅O [¬𝑐, 𝑖] ∪ 𝑅P [¬𝑐] ∪ 𝑅C [¬𝑐] = ∅}.

We say that an admissible factual literal 𝑙 is deontic iff 𝑙 ∈ ModLit.

It follows that the set of factual literals is the set of literals for which there are no
rules; consequently, such literals can only be derived if they are facts of the theory.

Definition 10 (Consistent set of literals). A set of literals is consistent if it does not
contain any pair of literals (𝑝,¬𝑝), (�𝑝,�¬𝑝), (�𝑝,¬�𝑝), (O𝑝,P∼𝑝), or (O𝑝,¬P𝑝).
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Example 2. Assume 𝐷𝑖𝑛𝑖𝑡 is (∅, 𝑅, ∅), with
𝑅 = {𝛼 : 𝑎 ⇒C 𝑧, 𝜁 : 𝑧 ⇒O 𝑙, 𝛽 : O𝑏 ⇒P ¬𝑧, 𝛾 : ¬P𝑧 ⇒O 𝑙 ⊗ 𝑐, 𝛿 : 𝑑,P𝑧 ⇒O ¬𝑐}.

Here, literals such as 𝑎, 𝑑, O𝑏, 𝑙, and ¬𝑧 are (admissible) factual literals, whilst 𝑧, O𝑙,
P¬𝑧, O¬𝑐, and O𝑐 are not.

Secondly, the output theory must be stable, i.e., consistently adding facts does not
change the provability of the target literal. To formalise when a theory is stable, we firstly
define which characteristics the output theory must satisfy, and we name such “valid”
output theories normative cases.

Definition 11 (Normative Case). Let theory 𝐷𝑖𝑛𝑖𝑡 = (∅, 𝑅, >) be the initial theory and
𝑙 ∈ Lit ∪ModLit be the target literal, we say that a theory 𝐷 = (𝐹, 𝑅, >) is a normative
case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff
1. 𝐹 is consistent,
2. For all 𝑓 ∈ 𝐹, 𝑓 is a factual literal, and
3. 𝐷 � +𝜕�𝑝 if 𝑙 = �𝑝 with � ∈ {O,P}, or 𝐷 � +𝜕C𝑝 if 𝑙 = 𝑝.

Definition 12 (Stable Normative Case). Given the initial theory 𝐷𝑖𝑛𝑖𝑡 = (∅, 𝑅, >) and
the target 𝑙, we say that a theory 𝐷 = (𝐹, 𝑅, >) is
1. A stable normative case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff (1) 𝐷 is a case for 𝑙 (of 𝐷𝑖𝑛𝑖𝑡 ), and (2) for
all 𝐷′ = (𝐹′, 𝑅, >) s.t. if 𝐹 � 𝐹′ and 𝐹′ is consistent, then 𝐷′ � +𝜕�𝑝 if 𝑙 = �𝑝,
or 𝐷′ � +𝜕C𝑝 if 𝑙 = 𝑝;

2. A deontically stable normative case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff (1) 𝐷 is a case for 𝑙 (of 𝐷𝑖𝑛𝑖𝑡 ),
and (2) for all 𝐷′ = (𝐹′, 𝑅, >) s.t. if 𝐹 � 𝐹′, 𝐹′\𝐹 ⊆ ModLit, and 𝐹′ is consistent,
then 𝐷′ � +𝜕�𝑝 if 𝑙 = �𝑝, or 𝐷′ � +𝜕C𝑝 if 𝑙 = 𝑝.

We thus observe that, in contrast with the non-normative case [4], two sub-types of
normative cases can be distinguished:

• A general case where a certain conclusion follows whatever facts are added to the
initial theory;

• A deontic case where a certain conclusion follows whatever deontic facts (such
as O𝑝 or ¬P𝑞) are added to the initial theory, but it is not ensured the stability if
non-deontic facts are added.

Example 3. Consider the theory 𝐷𝑖𝑛𝑖𝑡 as in Example 2. The case theory 𝐷 = (𝐹 =
{P𝑎}, 𝑅, ∅) is not stable for P𝑧 as 𝐷′ = (𝐹′ = {P𝑎,O𝑏}, 𝑅, ∅) proves −𝜕P𝑧. On the
contrary, theories where the set of facts is {P𝑎,O𝑏,∼𝑙} are stable normative cases for
O𝑐.

Suppose we add the rule ‘𝜖 : ¬P𝑧, 𝑒 ⇒P ∼𝑐’. Theories with set of facts {P𝑎,O𝑏,∼𝑙}
are deontically stable normative cases, but we can no longer hold that they are stable in
general, since adding the non-deontic fact 𝑒 would prevent deriving O𝑐.

Symmetric to the concept of case, the notion of normative refutation case is:

Definition 13 (Normative Refutation Case). Let � ∈ {O,P}. Given the initial theory
𝐷𝑖𝑛𝑖𝑡 = (∅, 𝑅, >) and the target literal 𝑙 ∈ Lit ∪ ModLit, we say that a theory 𝐷 =
(𝐹, 𝑅, >) is a normative refutation case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff
1. 𝐹 is consistent,
2. For all 𝑓 ∈ 𝐹, 𝑓 is a factual literal, and
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3. 𝐷 � −𝜕�𝑝 if 𝑙 = �𝑝, or 𝐷 � −𝜕C𝑝 if 𝑙 = 𝑝.

Definition 14 (Stable Normative Refutation Case). Given the initial theory 𝐷𝑖𝑛𝑖𝑡 =
(∅, 𝑅, >) and the target 𝑙, we say that a theory 𝐷 = (𝐹, 𝑅, >) is
1. A stable normative refutation case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff (1) 𝐷 is a normative refutation
case for 𝑙 (of 𝐷𝑖𝑛𝑖𝑡 ), and (2) for all 𝐷′ = (𝐹′, 𝑅, >) s.t. if 𝐹 � 𝐹′ and 𝐹′ is
consistent, then 𝐷′ � −𝜕�𝑝 if 𝑙 = �𝑝, or 𝐷′ � −𝜕C𝑝 if 𝑙 = 𝑝;

2. A deontically stable normative refutation case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 iff (1) 𝐷 is a normative
refutation case for 𝑙 (of 𝐷𝑖𝑛𝑖𝑡 ), and (2) for all 𝐷′ = (𝐹′, 𝑅, >) s.t. if 𝐹 � 𝐹′,
𝐹′\𝐹 ⊆ ModLit, and 𝐹′ is consistent, then 𝐷′ � −𝜕�𝑝 if 𝑙 = �𝑝, or 𝐷′ � −𝜕C𝑝 if
𝑙 = 𝑝.

Clearly, the following result trivially holds.

Proposition 1. For any theories 𝐷𝑖𝑛𝑖𝑡 and 𝐷, if 𝐷 is a stable (refutation) case for 𝑙 of
𝐷𝑖𝑛𝑖𝑡 , then 𝐷 is a deontically stable (refutation) case for 𝑙 of 𝐷𝑖𝑛𝑖𝑡 .

The notion of unstable case can be directly introduced, which is the situation when
a case is not resilient to the addition of facts to the theory.

Definition 15 (Unstable Normative Case). Given the initial theory 𝐷𝑖𝑛𝑖𝑡 = (∅, 𝑅, >) and
the target 𝑙, we say that a theory 𝐷 = (𝐹, 𝑅, >) is (deontically) normative unstable for 𝑙
of 𝐷𝑖𝑛𝑖𝑡 iff (1) 𝐷 is a normative case for 𝑙 (of 𝐷𝑖𝑛𝑖𝑡 ), and (2) there exists 𝐷′ = (𝐹′, 𝑅, >)
s.t. if 𝐹 � 𝐹′ (if 𝐹 � 𝐹′, 𝐹′\𝐹 ⊆ ModLit) and 𝐹′ is consistent, then 𝐷′ � +𝜕�∼𝑝 if
𝑙 = �𝑝, or 𝐷′ � +𝜕C∼𝑝 if 𝑙 = 𝑝

Note that, naturally, 𝐷 is “just” a case for 𝑙, and not a stable (refutation) case.
A final interesting property is to identify a stable normative explanation which

optimises the degree of deontic compliance.

Definition 16 (Optimal Stable Explanation). Given a theory 𝐷 and its extension
𝐸 (𝐷) = (+𝜕C,−𝜕C, +𝜕O,−𝜕O, +𝜕P,−𝜕P),

the degree of compliance Degree(𝐷) of 𝐷 is |Compl(𝐷) | where Compl(𝐷) = {𝑙 |𝐷 �

+𝜕O𝑙 and 𝐷 � −𝜕C∼𝑙}. A theory 𝐷 is an optimal stable normative explanation for a target
literal 𝑙 iff 𝐷 is a stable normative case and there is no other stable normative case 𝐷′

for 𝑙 such that Degree(𝐷′) ≤ Degree(𝐷).

Example 4. Consider again Example 2. A theory 𝐷 with set of facts ‘𝐹 = {P𝑎,O𝑏,∼𝑙}’
is an optimal stable normative cases for O𝑐. However, if we have in 𝑅 also ‘𝜃 :⇒O 𝑐’,
such that 𝜃 > 𝛿, then 𝐷 is no longer optimal.

5. Complexity Results

The problem of determining if a case is stable is intractable in standard propositional
DL [4]. The same results hold for DDL and the proof already developed can be directly
used here as well: it is enough to show that for each Defeasible Deontic Theory, an
equivalent propositional Defeasible Theory can be defined. The transformation is based
on the procedure given in [15] to reduce a Defeasible Deontic Theory into a conclusion
equivalent Defeasible Theory.

Theorem 2. [15, Theorem 40] There is a polynomial transformation from any theory in
DDL into its counterpart in DL.
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This theorem allows us to extend the complexity results for stability in DL [4,
Theorems 2, 3 and 4] to the case of DDL.

Theorem 3. Given a Defeasible Theory and a case, the problem of determining if the
case is stable is co-NP-complete.

Theorem 4. Given aDefeasible Theory and a refutation case, the problem of determining
if the refutation case is stable is co-NP-complete.

Theorem 5. Given a Defeasible Theory and a case, the problem of determining if the
case is unstable is NP-complete.

6. Summary

Weexamined the notion of deontic stability.We usedDefeasibleDeontic Logic, a tractable
computationally oriented logic for the formalisation of norms, to provide a formal defi-
nition of the stability problem. We proved that to determine if an extension of a case is
stable is computationally intractable even when the underlying (legal) reasoning system is
tractable. The result indicates that, in general, creating an automated question-answering
system posing questions to a user to determine a legal status (e.g., to determine what
set of facts warrants a given legal outcome) is not feasible without additional heuristics.
Accordingly, having determined the complexity, we plan to investigate suitable heuristics
and identify tractable instances of the stability problem.
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