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Abstract. Recent studies on fuel cell design have showed that the use of simulation 

tools is beneficial in terms of saving time and money. Current density management 

is still a key research problem for several technologies, including Direct 

Borohydride Fuel Cell (DBFC). This paper describes a systematic machine learning 

technique for estimating the cell current density for DBFC as a function of various 

input factors. Artificial Neural Networks (ANN) and Decision Tree Regressor 

(DTR) are two popular machine learning models that were trained and evaluated for 

the current density simulation using a conducted fuel cell experiments presented in 

previous research. The ANN model performed the better than the DTR model in the 

simulation, with a mean absolute error of 3.00015 for training and 5.57614 for 

testing. The simulation exhibits very small error values, indicating that the suggested 

approaches accurately mirror real-world DBFC process. 
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1. Introduction 

The development of fuel cells, which transform chemical energy into electrical energy, 

has attracted research attention due to the growing interest in renewable and sustainable 
energy generation as a method of achieving net-zero carbon emissions in the future. In 

recent studies, fuel cell technology has been identified as one of the top possibilities for 

portable power source batteries [1, 2]. Direct borohydride fuel cells (DBFCs) are gaining 

attention from researchers because they do not require expensive platinum catalysts, 
DBFCs might be manufactured at a lower cost than regular fuel cells and they also have 

a higher power density [3]. DBFCs are a type of alkaline fuel cell that is fed directly with 

sodium borohydride or potassium borohydride as a fuel and either air/oxygen or 

hydrogen peroxide as an oxidant as shown in Figure 1. DBFCs are relatively new forms 
of fuel cells that are currently in development and are appealing owing to their high 

operational potential in comparison to other types of fuel cells [4, 5]. In more traditional 

hydrogen fuel cell systems, sodium borohydride may be employed as a hydrogen storage 
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medium. The borohydride can be catalytically decomposed to regenerate hydrogen for a 

fuel cell as shown in (1). 

 

Figure 1. A schematic of a direct borohydride fuel cell that uses oxygen, air as an oxidant. 

 

      (1) 

Direct borohydride fuel cells immediately oxidize the borohydride, avoiding the 
need for hydrogen generation and even yielding somewhat more energy. 

In an aqueous alkaline solution, the borohydride ion may be directly oxidized on a 

wide range of electrode materials, releasing a minimum of eight electrons. The electro-

oxidation of BH4 takes place in the following manner. The anode chemical reaction can 
be expressed as in (2). 

     (2) 

The cathode chemical reaction can be expressed as in (3).                                     
                           (3) 

The simplified reaction of the DPFC is as expressed in (4). 

(4) 

Although the current commercial fuel cells have a good design, they need several 
laboratory tests that cost a lot of money, time, and effort. Instead of costly laboratory 

trials, we use two popular machine learning models and obtained the best model to 

overcome the design challenge. 

2. Related work 

Many current findings have offered machine learning-based fuel cell modeling methods. 

Hossain et al. [6] have proposed a machine learning algorithm namely Support Vector 

Machine (SVM) regression, Regression Trees, and Gaussian Process Regression (GPR) 
for modeling the effect of palladium supported on carbon nanotube used for formic acid 
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electro-oxidation for DBFC. In previous research, we also have developed an artificial 
neural network-based fuel cell design approach for proton exchange membranes, the 

most prevalent and commonly used fuel cell type [7]. Kheirandish et al. [8-9] have 

studied the SVM, ANN, and Hebbian learning models' performances using their own 

dataset for stack voltage. They demonstrated that SVM was better than ANN in small 
datasets, whereas ANN performs better on bigger datasets. In this research, we used a 

public dataset on DBFC [10] that investigates the relationship between the various fuel 

cell characteristics to simulate the current density depending on four different parameters. 

 

 

Figure 2. (a) A sample artificial neural network architecture. The input layer has four neurons, the 4 hidden 

layers have a sequential increase in the number of neurons. The output layer has one neuron for the current 

density prediction. (b) A sample decision tree regression model with learnable thresholds (t1). 

3. Proposed method 

We compare the performance of two popular machine learning algorithms, which are the 

artificial neural network (ANN) and the decision trees regression (DTR), to simulate the 

performance of DBFC. We employ a public dataset of single DBFC experiments [10] 

for training and test of the proposed models. This dataset contains results from tests on 
the Direct Borohydride Fuel Cell (DBFC) anode's impedance and polarization using 

catalysts with Pd/C, Pt/C, and Pd decorations. In fact, varied anode catalyst loadings, 

applied voltages, and concentrations of Sodium Borohydride (SBH) are considered in 

the results along with an explanation of the experimental specifics of the electrochemical 
investigation. Voltage, power density, and resistance of DBFC are assessed by 

polarization and impedance curves using the suitable equivalent fuel cell circuit, which 

depend on the weight percentage of SBH, applied voltage, and quantity of anode catalyst 

loading. This dataset is helpful for modeling, power source research, and in-depth 
analysis in DB fuel cell studies. In the proposed models, we employ the data of DBDC 

with Pd/C catalyst. The input parameters to the machine learning model are cell voltage, 

SBH weight percent, Pd/C anode catalyst loading, and solution type while the output 

parameter (the parameter to be predicted by the machine learning model) is the cell 
current density. There are fixed parameters which is excluded from input parameters (as 

they are fixed) over all the dataset such as anode catalyst (which is Pd/C), anode support 

(which is Nickel foam), cathode catalyst (which is HypermecTM k14 with a loading of 

5 mg/cm2), cathode support (which is Carbon cloth) and the surface area (4.5 cm2), all 
experiments are done under an electrolyte condition of 2 Moles of KOH with a different 
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concentrations of SBH (1, 3, 5, 8 wt% SBH). The dataset contains 250 sample for training 
and 30 samples for validation.  

The first proposed model is an artificial neural network (ANN) with the architecture 

shown in figure 2. The ANN can be trained on large enough data to form a relationship 

between the input and output parameters through learnable weights. An optimization 
method was used to optimize the training method, which is Adam’s optimizer [11]. The 

basic form of the learnable parameters is as follows: 

    (1) 

where ACT is an activation function in our case, we used Gaussian error linear unit 

(GELU) [12] as an activation for all hidden layer as it produced better results than the 

commonly known rectified linear unit (RELU). wi is the learnable weight parameters 

vector and bi is the biases vector. The optimizer updates the weights vector wi following 
the gradient descent equation as follows: 

          (2) 

where   is the gradient of F with regard to wi vector. function an input layer with four 

neurons was designed to receive the four input parameters, four hidden layers were 

designed to model the relation between the input and the output parameters with gradual 

increasing in the number of neurons in the following order 32 � 64 � 128 � 256, while 

the output layer has a single neuron for current density prediction. 
Several numbers of layers were tested to find the best architecture which corresponds to 

the lowest error value of the prediction as it will be shown in the experimental results 

section. 

The second proposed model is the decision tree regression (DTR) model which is a 
well-known machine learning algorithm with the shape of a tree with nested branches. A 

decision tree has the structure of flowchart in which each leaf node represents a class 

label, each internal node represents a "test" on an attribute and each branch indicates the 

result of the test (decision taken after computing all attributes). Classification or 
regression rules are represented by the routes from root to leaf. The main hyper parameter 

in DTR algorithm is the tree depth which defines the splitting branches of the regression 

tree. DTR aims to learn the splitting thresholds for the nested conditions in the training 

process. A block diagram of the DTR model is shown in figure 3-(b). Least 
squares/standard deviation reduction is used as a metric to choose features in the 

regression tree [13].  

 

Figure 3. (a) MAE training and testing as function of the various hidden layer counts for the ANN model. (b) 

MAE training and testing as a function of maximum depth for the DTR model.  
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4. Experimental results 

To choose the best model performance in case of the ANN, we trained ANN models with 

an increase in the depth of the network (the number of the neurons in each layer is twice 

that for the previous layer e.g. 32 � 64 � 128 �…�4096). Each time we evaluate the 

trained ANN configuration on the validation set and measure the mean absolute error 
(MAE) between the ground truth values of the current density and the predicted values. 

Figure 3-(a) shows the MAE attained for each configuration (from one hidden layer to 8 

hidden layers). The ANN configuration of 4 hidden layers produced the lowest test MAE 

value (5.57614) showing that the more increase in the network depth does not improve 
the model’s performance anymore. For the DTR model, we trained the DTR model while 

varying the max depth each time (from max depth of 1 to 15) to find the best max-depth 

corresponding to the best model’s performance. Figure 3-(b) shows the test MAE value 

for each max depth from 1 to 15 showing that a max-depth of 6 is the best one and 
produces the lowest MAE value (13.), noting that other max-depth values seems to have 

the same performance, but we choose the lowest max-depth that gives the best 

performance and also the lowest DTR complexity, so 6 is the best value. 

We also compare the performance of the ANN to that for the DTR. The ANN 
achieves a lower test MAE value than that for the DTR model. Table 1 shows a 

comparison between the ANN and the DTR model on the DBFC dataset in terms of the 

training and test MAE values showing that the ANN can efficiently learn the DBFC 

simulation problem and more accurately than the DTR model. 
 

Table 1. Comparison between the ANN and the DTR model on the DBFC dataset in terms of the training and 

test MAE values. 

Model Hidden layers 
or Max depth 

Training MAE Test MAE 

ANN 4 3.00015 5.57614 

DTR 6 10.544853 13.90037 

5. Future work 

The achieved results from the experiments are quite encouraging and may result in more 
broadly applicable simulation results in further studies. Future research will concentrate 

on expanding the model's design parameters to include various electrode materials and 

catalysts that are outside the subject of the current study, however this step requires a 

more comprehensive dataset that is gathered through various designs and tests. The 
optimization of ANN on the more generic fuel cell datasets is also a part of the future 

study. 

6. Conclusion 

Two machine learning models, neural networks (ANN) and decision tree regression 
(DTR) were developed and assessed for current density modeling utilizing Direct 

Borohydride Fuel Cell experiments published in a previous article. The ANN model had 

the best simulation results, with mean absolute errors for training and testing of 5.57614 

and 3.00015, respectively. The suggested approaches effectively simulate the real DBFC 
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performance based on the ANN simulation's very low error levels. The entire research 
provides an accurate modeling tool for the DBFC output current density depending on 

other design parameters. 
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