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Abstract. Feature evolutionary relationship discovery based on tree structure pat-
tern mining and spatial co-location pattern mining in spatial cliques aims to com-
bine spatial co-location pattern mining algorithm and tree structure pattern mining
algorithm to find spatial cliques in spatial data and evolutionary relationships of
spatial features in these spatial cliques. This allows for a deeper analysis of possi-
ble causal relationships between spatial features, predicting the occurrence of other
spatial features based on the occurrence of certain spatial features, or summarizing
general laws. For a spatial clique, the appearance of one spatial feature may lead to
the appearance of another spatial feature, which is called evolutionary relationship.
Previous spatial co-location pattern mining algorithms (such as join-based) focus
on discovering prevalent co-occur spatial features and prevalent co-location pat-
terns. We further discovered evolutionary relationships between prevalent co-occur
spatial features in spatial cliques through tree structure pattern mining algorithm.

Keywords. Spatial co-location pattern mining, Tree structure pattern mining,
Evolutionary relationship

1. Introduction

Nowadays, all kinds of data are growing rapidly, including spatial data. More and more
spatial data mining techniques are being developed to discover hidden patterns of in-
terest. Spatial co-location pattern is one of patterns that people are interested in. Many
related research efforts for spatial co-location patterns mining has been proposed, such
as the joinless [1] approach, it can obtain all prevalent spatial co-location patterns. When
discovering spatial co-location patterns, prevalent co-occur and adjacent spatial feature
instances (referred to here as spatial cliques) are preserved, which are used to generate
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prevalent spatial co-location patterns. For spatial cliques, prevalent co-occur and adjacent
spatial feature instances symbolize prevalent co-occur and adjacent of spatial features.

One spatial feature emerges may cause another spatial feature emerges(referred to
here as evolutionary relationship). For example, for a region, decrease of temperature
will cause migration of wild geese, and migration of wild geese will cause increase of
local crop storage. So, In this region, decrease of temperature, migration of wild geese
and increase of local crop storage constitute a spatial feature evolutionary relationship.

At present, in the field of spatial co-location pattern mining, most studies focus on
mining patterns that people are interested in, few people involve in mining the evolution-
ary relationship of spatial features. The reason is that spatial co-location mining is based
on spatial data, which usually does not contain attribute of time, while concept of evolu-
tionary relationship has a great relationship with attribute of time. By adding attribute of
time, a framework based on tree structure pattern mining and spatial co-location pattern
mining is proposed to discover the evolutionary relationship in spatial cliques.

The main contributions of this paper are as follows:
(1) On the basic of spatial co-location patterns mining algorithm, we combined with

tree tructure mining algorithm to find evolutionary relationship in spatial cliques.
(2) The framework overcomes the difficulty that the spatial co-location pattern can

only find the interested patterns on the spatial data without attribute of time.
(3) By adjusting the time threshold and distance threshold, the evolutionary relation-

ship between spatial features at different scales can be found.
The remainder of this paper is organized as follows. Section 2 reviews the related

work. The basic concepts are noted in Section 3. The main mining process and frame-
work are described in Section 4. The experimental results are demonstrated in Section 5.
Lastly, the conclusion and future work are discussed in Section 6.

2. Related work

Spatial data mining [2] is a popular research target for researchers. Mining spatial co-
location patterns is to discover spatial patterns from spatial data which spatial features
prevalently co-occured. For mining of co-location patterns efficiently, many approaches
have been proposed, such as join-based [3] and mapreduce-based algorithms [4].

To process different types of spatial data, Ouyang [5] researched how to discover
co-location patterns from fuzzy spatial data, Wang addressed the problem of mining co-
location patterns from uncertain spatial data [6]. In recent years, some cencepts have
been added to spatial co-location pattern mining to obtain potential and valuable pat-
terns. Wang [8] mining spatial co-location pattern by incorporating fuzzy theory. Wu [9]
mining prevalent co-location spatial patterns by a maximal ordered ego-clique based ap-
proach and Hu [10] mining prevalent co-location spatial patterns by utilizing fuzzy grid
cliques.

Many spatial co-location pattern mining algorithms are focused on spatial data,
which does not include the dimension of time. In order to mine the spatio-temporal data,
it is necessary to do some expansion and innovation on original mining algorithms.

Tree structure pattern mining is one of the important directions of data mining, sub-
tree mining has been used in Web mining and other aspects. The existing sub-tree min-
ing algorithms are divided into three categories: (1) apriori series algorithms, such as
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Figure 1. Spatial features and their spatial instances’ distribution

TreeMiner [11]; (2) algorithms of generating candidate sub-trees by enumeration trees,
such as FREQT [12]; (3) algorithms based on the principle of pattern growth.

The hierarchical relationship between tree structures can be related to the property
of time. Therefore, the tree structure pattern mining algorithm is applied on the spatial
co-location pattern mining algorithm, which can well extend the application field from
two-dimensional spatial data to three-dimensional spatio-temporal data.

3. Basic concepts

In this section, concepts such as spatial co-location pattern, spatial clique, evolutionary
relationship, and prevalent unordered embedded sub-tree will be described.

3.1. Spatial co-location pattern, spatial clique and evolutionary relationship

Definition 1. Spatial feature
Spatial features represent different kinds of things in spatial. A set of spatial features

represent a set of different kinds of things in spatial, denoted as F = { f1, f2, ..., fn}.

Definition 2. Spatial instance
An object at a specific location is called a spatial instance. The set of instances is

called the instance set, denoted as S = S1∪S2∪ ...Sn, where Si(1≤ i≤ n) is the instance
set of corresponding spatial feature fi. In general, spatial instances do not contain the
property of time, but in order to discover evolutionary relationships, in this work, the
spatial instance refers to the object at a specific time and a specific location, represented
by a quad < instance attribute, instance number, spatial location, occurrence time >.

Definition 3. Spatial co-location pattern
A spatial co-location pattern is a set of spatial features c, where c⊆ F. In Figure 1,

{A,B,C} is a spatial co-location pattern.

Definition 4. Spatial clique
Given the spatial instance set I = {i1, i2, ..., im}, if for 1 ≤ j ≤ m,1 ≤ k ≤ m, the

condition 0 ≤ |distance(i j, ik)| ≤ D− threshold is satisfied, then I is said to be a spa-
tial clique. A spatial clique is a subset of the complete set formed by adjacent spatial
instances in spatial. In Figure 1, {A.3,B.3,C.1,D.1} is a spatial clique.
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Lemma 1. If a N-size clique is a spatial clique, then any of its N-1-size sub-cliques
satisfies the definition of the spatial clique.
Proof. Given a 2-size spatial clique I = {i, j}, and a spatial instance k, if and only if be-
tween i and k is satisfied the condition 0≤ |distance(i,k)| ≤D− threshold, and between
j and k is satisfied the condition 0 ≤ |distance( j,k)| ≤ D− threshold. Both of clique
{ j,k} and clique {i,k} are spatial clique, then the clique {i, j,k} is the spatial clique.

Definition 5. Dependency relationship
For two spatital instances i1 and i2, if they have a dependency relationship, the

following conditions must be met: (1) 0 ≤ |distance(i1, i2)| ≤ D− threshold; (2) 0 ≤
|i1.time− i2.time| ≤ T − threshold, denoted as Dep(i1, i2). D− threshold is the distance
threshold given by the user and T − threshold is the time threshold given by the user.

Definition 6. Parent-child relationship
For two spatial instances i1 and i2, i1 is parent entity of i2 if Dep(i1, i2) and i1 occurs

before i2. Parent-child relationship is a manifestation of evolutionary relationship.

Definition 7. Evolutionary relationship
If in all spatial instances, the corresponding instances of spatial feature f1 and f2

always appear together and the corresponding spatial instance of f1 always occur before
the corresponding instance of f2, then f1 and f2 are said to have an evolutionary rela-
tionship and evolve from f1 to f2. For example, without considering the support degree,
given the spatial clique I1 = {i f1 , i f2 , i f3} and I2 = {i f1 , i f2 , i f4}, i f1 is the spatial instance
corresponding to the spatial feature f1, i f2 is the spatial instance corresponding to the
spatial feature f2. If i f1 and i f2 satisfy Dep(i f1 , i f2), and i f1 occurs before i f2 , then f1 and
f2 are said to have an evolutionary relationship, and the evolution from f1 to f2.

3.2. Prevalent unordered embedded sub-tree

Definition 8. Tree and forest
Tree can be expressed as a quintuple T = (V,v0,E,Σ,L), V is a given set of nodes;

v0 is the root of the tree; E is the edge set of the tree; Σ is a set of identifiers; L is a
mapping from V to Σ. For (v1,v2) ∈ E, v1,v2 ∈V , v1 is a parent element of v2, and v2 is
the child of v1. The collection of trees is called a forest.

Definition 9. Unordered tree
For a parent element in a tree, if the children are unordered, the tree is called an

unordered tree, otherwise it is called a order tree.

Definition 10. Embedded sub-tree
Given a tree T = (V,E), and a sub-tree S = (V ′,E ′), where V ′ ⊂ V and E ′ ⊂ E. A

sub-tree S is said to be an embedded sub-tree of T if for each edge e = (va,vb) ∈ E ′, va is
an ancestor (and not necessarily the parent) of vb in T . If for each edge e = (va,vb)∈ E ′,
va is a parent of vb in T , then the sub-tree S is an induced sub-tree of T .

Unordered trees contain more valuable information than ordered trees. Embedded
sub-trees contain more valuable information than induced sub-trees. In Figure 2, if we
mine induced sub-trees, no prevalent trees of size more than one are found. If we mine
ordered embedded sub-trees, no prevalent trees of size more than one are found. But if
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Figure 2. Unordered embedded sub-tree

(a) (b)

Figure 3. (a) A forest, (b) Four of prevalent embedded occurred sub-trees with a minimum support 75%

(a) (b)

Figure 4. (a) A spatial clique and its spatial instance occurrence time, (b) The tree after building

we mine unordered embedded sub-trees, the tree in the box is a prevalent sub-tree in
forest. In Figure 3(a), it shows the forest composed of several examples of tree structure.
In order to discover the evolutionary relationship between spatial features, in this work,
every node in the tree is a spatial feature. Serveral prevalent unordered embedded sub-
trees with a minimum support are shown in Figure 3(b).

A spatial clique prevalently appear is represented as a tree. In a tree, the dependency
relationship is the edge of the tree, and the parent-child relationship is determined by the
occurrence time between spatial instances which satisfying the dependency relationship
in the spatial clique. For example, in Figure 4(a), given a spatial clique and its instances
occurrence time, the tree after building is shown in Figure 4(b).

Thus, given a forest F = {T1,T2, ...,Tk}, the discovery of evolutionary relationship of
spatial features is finding unordered embedded sub-trees with high prevalency in F . For
a sub-tree S and tree T we define support(S,T ) by Eq.(1) and support(S,F) by Eq.(2):
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support(S,T ) =

{
1, if S is a sub-tree of T
0,otherwise

(1)

support(S,F) =
ΣT∈F support(S,T )

|F | (2)

For a sub-tree S, if support(S,F)≥ min sup, where min sup is a minimum support
threshold specified by users, then we say S is a prevalent embedded sub-tree in F .

4. Main mining process

The algorithm framework is based on joinless [1] and SLEUTH [7].

4.1. Joinless [1]

The joinless [1] algorithm can detect prevalent spatial co-location patterns and spatial
cliques. Compared with the join-based [3] algorithm, the joinless [1] algorithm uses the
star partition model to represent spatial neighbor relationships and can find spatial cliques
faster. The joinless [1] algorithm can find spatial cliques and prevalent spatial co-location
patterns. Since this work is to discover the evolutionary relationship of spatial features in
spatial cliques, we use the joinless [1] algorithm to discover all spatial cliques, and the
content of discovering prevalent spatial co-location patterns is simplified in this work.

4.2. SLEUTH [7]

The SLEUTH [7] algorithm can generate candidate sub-trees by enumeration trees. It
uses equivalence class extension scheme and scope-list join to mine prevalent unordered
embedded sub-trees. The contents of equivalence class extension scheme and scope-list
are described in article SLEUTH [7], and will not be repeated here .

4.3. Mining process and framework

We use a multi-step process to discover evolutionary relationships: 1) finding all spatial
cliques; 2) finding dependency relationships; 3) building all trees by parent-child rela-
tionships; 4) finding all prevalent unordered embeded sub-trees.
•Finding all spatial cliques: The first step is to find all spatial cliques in spatial data,
using the spatial clique defined in Section 3 and the joinless [1] algorithm. In Figure 1,
the 3-size spatial cliques that can be found are shown in Figure 5.
•Finding dependency relationships: Finding all spatial instance pairs that satisfy de-
pendency relationship from all the spatial cliques. All the dependent pairs of spatial in-
stances to define the parent-child relationship for each pair.
•Building all trees by parent-child relationships: In all pairs of spatial instances sat-
isfying the dependency relationship, the spatial instance of feature occurring earlier is
parent node of the spatial instance of feature occurring later. In this step, we find all spa-
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Figure 5. The 3-size spatial cliques

Figure 6. A forest that may be generated by cliques

Figure 7. The mining framework

tial instance pairs with parent-child relationship and build all trees to form a forest. The
forest that may be generated by the 3-size cliques in Figure 5 is shown in Figure 6.
•Finding all prevalent unordered embeded sub-trees: The last step is to perform tree
structure pattern mining. The goal is to find all unordered embedded sub-trees in all trees
that satisfy the minimum support threshold given by users.

Figure 7 shows the flow chart of the mining framework. Step 1 is to process spatial
data. In Step 2, 1-size spatial clique set C1 is generated. Step 3 is to generate 2-size to
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n-size spatial cliques set C2−Cn iteratively. Step 4 is to find all spatial instance pairs
satisfy dependency relationship and parent-child relationship. Step 5 is to generate all
unordered trees and from a forest F . Step 6 is to mine all unordered embedded sub-trees
from the forest. Step 1 to Step 3 are shown in Algorithm 1, Step 4 is shown in Algorithm
2, and Step 5 and Step 6 are shown in Algorithm 3.
Algorithm 1

Input: S = {s1,s2, ...,sn}: a set of spatial instance;
distance: D-threshold;

1: instanceSet = buildInstanceSet(S);
2: starNeighborSet = buildStarNeighborSet(instanceSet,distance);
3: c curSet = c1 = build1SizeSpatialClique(instanceSet);
4: c2 cNSet = null, c cur = null;
5: while c curSet != null do

6: newc curSet = null;
7: for c cur in c curSet do

8: for i in instanceSet do

9: if !c cur.contains(i) then

10: canJoinSpatialClique = true;
11: for j in c cur do

12: if !starNeighborSet.getNeighbor(j).contains(i) then

13: canJoinSpatialClique = false; break;
14: end if

15: end for

16: if canJoinSpatialClique then

17: newc curSet.add(c cur.clone().add(i));
18: end if

19: end if

20: end for

21: end for

22: if newc curSet != null then

23: c curSet = newc curSet; c2 cNSet.add(c curSet);
24: end if

25: end while

In Algorithm 1, Step 1 is to process spatial data and form instanceSet. Step 2 is to
generate star neighbor set defined in joinless [1]. Step 3 until the end of Algorithm 1 is
to generate all spatial cliques from low size to high size iteratively. The core idea is to
find a spatial instance that does not exist in the current spatial clique, and if it neighbors
with each spatial instance of the spatial clique, then join the spatial clique.
Algorithm 2

Input: c2 cNSet: all spatial cliques;
instanceSet: all instances;
time: T-threshold;

1: spatialCliqueSetToBuildTree = null;
2: for c curSet in c2 cNSet do

3: for c cur in c curSet do

4: i = c cur.start();
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5: while i != c cur.end() do

6: j = c cur.get(i+1);
7: while j != c cur.end() do

8: if Dep(i,j,time) then

9: spatialCliqueSetToBuildTree.add(c cur); break;
10: end if

11: j = c cur.get(j+1);
12: end while

13: i = c cur.get(i+1);
14: end while

15: end for

16: end for

In Algorithm 2, we mainly find out spatial cliques which can satisfy the time thresh-
old. As long as there is a spatial instance pair of the spatial clique satisfy dependency
relationship and parent-child relationship, this spatial clique can form a tree with at least
2 nodes and will bepreserved. Step 4 to Step 14 is to check whether the spatial instance
pairs formed by pairwise spatial instances within the spatial clique satisfy the depen-
dency relationship.
Algorithm 3

Input: spatialCliqueSetToBuildTree: spatial clique set which can build trees;
minST Sup: minimum prevalent unordered embedded sub-tree support;

Output: UEST Set: prevalent unordered embedded sub-trees that satisfy minSTSup;
1: forest = null; UESTSet = null;
2: for sC in spatialCliqueSetToBuildTree do

3: forest.add(buildTree(sC));
4: end for

5: eC = forest.buildEquivalenceClass();
6: while true do

7: newEC = equivalenceClass.buildNewEquivalenceClass(minSTSup);
8: if newEC != null then

9: for subTree in newEC do

10: UESTSet.add(subTree);
11: end for

12: eC = newEC;
13: end if

14: end while

15: return UESTSet;

Algorithm 3 is to form forests and use the method of equivalence class extension
used in SLEUTH [7] algorithm. The 1-size equivalence class is generated according to
forests, all equivalence classes are generated iteratively, and all trees that satisfy minimal
support degree are lifted out and returned. Step 2 to 5 are to generate forests, Step 6 is to
create 1-size equivalence class according to the forest, Step 8 to Step 16 are to iteratively
generating all equivalence classes and extracting unordered embedded sub-trees.
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Figure 8. The number of spatial cliques and the efficiency of finding spatial cliques

5. Experimental results

In this section, we implement our algorithm framework by Java and experiment it with
two datasets. The experimental environment is as follow: cpu with Intel i5-6500 @
3.20GHz, memory with 8GB. We conducted experiments and evaluate the performance
of our algorithm framework on a traffic trajectory dataset and a synthetic dataset. Two
datasets used in the experiment are described in Table 1.

Table 1. The description of data sets

Spatial dataset Number of instances Number of features

Shenzhen traffic trajectory dataset 10000 100

Synthetic dataset 10000 50

5.1. Distance threshold

We evaluate the impact of different distance thresholds on the results, including the num-
ber of spatial cliques discovered and the efficiency of finding spatial cliques. In Figure
8, synthetic dataset spatial clique number more than Shenzhen traffic trajectory dataset,
its reason is that spatial instances distribution of the Shenzhen traffic trajectroy dataset is
more dispersed, which causes size of spatial cliques found in Shenzhen traffic trajectory
dataset is less than synthetic dataset. With the increase of distance threshold, the number
of space cliques increases, which leads to the increase of time consumption.

5.2. Time threshold

We evaluate the impact of time threshold in the experiment, including the number of
retained spatial cliques, the total amount of generated trees and the efficiency of the al-
gorithm framework. Since different minimum prevalent unordered embedded sub-tree
support degree will affect results, we set the support degree as 0.15 and 0.3, the distance
threshold as 200m to carry out the experiment. In Figure 9, the sight fluctuation of the
time threshold will make the number of retained spatial cliques increase sharply, and be-
cause the number of spatial cliques is directly proportional to the total amount of trees,
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Figure 9. The number of retained spatial cliques, the total amount of generated trees and the efficiency of the
algorithm framework

the total amount of trees will become larger, resulting in the lower efficiency of the algo-
rithm framework. With the increase of the time threshold, the number of retained space
cliques increases, and the number of forests also increases. Then the time consumption
of our algorithm framework increases rapidly.

5.3. Spatial feature evolutionary relationship

The number of sub-trees we mine is the number of spatial feature evolutionary relation-
ships. In this subsection, we evaluate the influence of different minimum prevalent un-
ordered embedded sub-tree support degrees on the number of spatial feature evolutionary
relationships. In Figure 10, since both distance threshold and time threshold will affect
the final results, we adopt the distance threshold is 200m and the time threshold is 2days.

6. Conclusion and the future work

Previous spatial co-location pattern mining algorithms usually only in the spatial data
without time attribute, we through combined with the tree structure pattern mining algo-
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Figure 10. The number of spatial feature evolutionary relationships

rithm, make the spatial co-location pattern mining algorithms to use in spatial data with
time attribute, and get the spatial feature evolutionary relationships in the spatial cliques.
This makes it possible to discover more potentially useful patterns or relationships.

The combination also has some problems. FThe spatial data is generally large, and
the tree structure consumes a lot of memory. As a result, once the amount of data is
increased by one magnitude, the number of trees generated will increase sharply, which
leads to the reduction of time efficiency and the increase of space occupation, and this
also makes our algorithm framework sensitve to the setting of the thresholds. In the future
work, we will try to solve these problems.
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