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Abstract. In this paper, the effect of a hunting cooperation functional response in
discrete predator-prey model is first to be studied. By surveying the existence con-
ditions and stability of the fixed points, a preliminary foundation for bifurcation
analysis is provided. Then, flip bifurcation of the nonhyperbolic fixed points is in-
vestigated, the theoretical explanation for our results from a biological perspective
is presented.
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1. Introduction

Mathematical model is a vital tool to reveal the interaction and internal relationship on
the population of predator and prey. The general predator-prey discrete model is of the
following form{

xn+1 = xn +g(xn)xn− f (xn,yn)yn,

yn+1 = yn + ε f (xn,yn)yn + syn,
(1)

where xn and yn denote the densities of prey and predator in generation n, g(xn) is the
net growth rate of prey in the absence of predators, s denotes death rate (if s < 0) or
intrinsic growth rate (if s > 0) of predator, f (xn,yn) is the rate of consumption of prey by
a predator and ε is the rate at which captured prey becomes predators. The term f (xn,yn)
can reflect the behavior of a predator toward a prey, so, it is also called functional re-
sponse. Since Maynard Smith [1] proposed Lotka-Volterra type functional response (i.e.
f (xn,yn) = mxn) in predator-prey model (1), many researchers have assumed various
functional responses and studied the dynamical property of (1). Levine [2] and Liu and
Xiao [3] gave Lotka-Volterra type of model (1) and analyzed the fold, flip and Neimark-
Sacker bifurcations. Hadeler and Gerstmann [4] and Neubert and Kot [5] considered
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the model (1) with Holling type II functional response, of which non-hyperbolicity and
codimension 1 bifurcations were completely discussed by Li and Zhang [6] and Arias
et al [7]. Singh and Malik [8] studied a Leslie-Gower type with Holling II. In [9], He
and Lai considered a Leslie-Gower type with Holling III and investigated its bifurcation
and chaotic behaviors. In [10], Huang et al investigated the model with nonmonotonic
Holling IV response and shown Bogdanov-Takens bifurcation. More research in this area
can be found in [11-15] and the references cited therein.

Motivated by all the above ideas of assuming functional response functions for mod-
el (1), in this paper, we consider another functional response function as follows

f (xn,yn) =
αxnyn

1+ xnyn
. (2)

This function was first put forward by Cosner et al [16] to show the hunting cooperation
mechanism by which a group of predators search, touch and kill a group of prey. Obvi-
ously, f (x,y) is not just monotonically increasing for x and y and it is even upper bound-
ed. This means that predators are more efficient when their population size is large, but
not when their population size is too large, because signals between predators cannot be
transmitted smoothly if their foraging queue is too long [16]. This mechanism is not like
the one caused by conventional responses as mentioned above.

To the best of our knowledge, there is no literature that has proposed functional re-
sponse function (2) in any discrete model and studied its effects. Therefore, The main
purpose of this paper is to discuss what kind of interesting dynamics the functional re-
sponse (2) brings to the model (1). By assuming g(x) is the logistic prey growth rate and
substituting (2) in model (1), we have{

xn+1 = xn + xn (1− xn)− αxnyn
2

1+xnyn
,

yn+1 = yn +
βxnyn

2

1+xnyn
− γyn,

(3)

where α , β and γ are positive.
The research content is arranged as follows. The linear stability of the model fixed

points are discussed in the next section. The analysis of the flip bifurcation is arranged in
Section 3. Finally, the theoretical explanation of our results is given from the perspective
of biology.

2. Stability of the fixed points

We write model (3) as the following planar mapping F : R2 �→ R2

F :
(

x
y

)
�→

⎛
⎝ x(2− x)− αxy2

1+xy

(1− γ)y+ βxy2

1+xy

⎞
⎠ . (4)

Then (4) has at least a trivial fixed point E0(0,0) and a semi-trivial fixed point E1(1,0).
Moreover, (4) has interior fixed point E∗(x,y) which satisfies x > 0, y > 0 and

x3− x2 +
αγ2

β 2−βγ
= 0, y =

γ
β − γ

x−1. (5)
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We first get the following conclusion for (4). The proof is simple and is omitted.
Lemma 1 Assume β > γ and let αc := 4

27
β (β−γ)

γ2 . If α > αc, we have no interior

fixed point; If α = αc, we have unique interior fixed point E∗0 (x0,y0), where x0 =
2
3 ,y0 =

3γ
2(β−γ) ; If α < αc, we have two interior fixed points E∗1 (x1,y1) ,E∗2 (x2,y2) satisfying (5)

and x2 <
2
3 < x1.

The Jacobi matrix at any point E(x,y) of mapping (4) is

J(E) =

⎛
⎝2(1− x)− αy2

1+xy +
αxy3

(1+xy)2 −αxy(2+xy)
(1+xy)2

βy2

(1+xy)2 1− γ + βxy(2+xy)
(1+xy)2

⎞
⎠ . (6)

Corresponding to fixed points E0,E1, we have

J(E0) = diag(2,1− γ) ,J (E1) = diag(0,1− γ) .

Hence, we easily get the following conclusions (omitted proofs) on linear stability of E0
and E1.

Lemma 2 The properties of fixed point E0 hold: (i) if 0 < γ < 2, E0 is a saddle; (ii)
if γ > 2, E0 is an unstable node; (iii) if γ = 2, E0 is non-hyperbolic.

Lemma 3 The properties of fixed point E1 hold: (i) if γ > 2, E1 is a saddle; (ii) if
0 < γ < 2, E1 is an stable node; (iii) if γ = 2, E1 is non-hyperbolic.

Corresponding to positive fixed points E∗1 , we have

J(E∗1 ) =
(
(2− γ0)s1 −α(1− γ2

0 )γγ0
α(1−γ0)

s1 1+ γγ0

)
,

where γ0 := 1− γ
β , and s1 := 1− x1, and their characteristic polynomials

P(λ ) = λ 2− ((2− γ0)s1 + γγ0 +1)λ +((2− γ0)s1 +3γγ0s1).

For the convenience, we let

γ1 :=
1+ s1γ0−4s1

3s1γ0
.

The linear stability of E∗1 is given as follows.
Lemma 4 If α < αc, the following properties of fixed point E∗1 hold:

(i) when − 1
3 < s1 <

1
3 , E∗1 is a source if γ < γ1, E∗1 is a saddle if γ > γ1;

(ii) when s1 <− 1
3 , E∗1 is a source if γ > γ1, E∗1 is a saddle if γ < γ1;

(iii) when s1 =− 1
3 , E∗1 is a saddle;

(iiii) when s1 �=− 1
3 , E∗1 is non-hyperbolic if γ = γ1.

Proof. From Lemma 1, positive fixed point E∗1 satisfies x1 > 2
3 , then s1 < 1

3 . We
have P(1) = γγ0(3s1−1) < 0, P(−1) = 2+2(2− γ0)s1 + γγ0(1+3s1). Thus, we know
characteristic equation P(λ ) = 0 has no conjugate complex root in view of P(1) < 0.
Without loss generality, we suppose two real roots λ1 and λ2 of P(λ ) = 0 satisfy λ1 < λ2.
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(i) When − 1
3 < s1 < 1

3 , if γ < γ1, then P(−1) < 0. We get λ1 < −1 and λ2 > 1,
which means that E∗1 is a source. If γ > γ1, then P(−1) > 0. We get −1 < λ1 < 1 < λ2,
which means that E∗1 is a saddle.

(ii) The proof is similar to that of (i), we may omitted it.
(iii) When s1 =− 1

3 , we get P(−1)> 0, which means that E∗1 is a saddle.
(iiii) When s1 �= − 1

3 , we get P(−1) = 0 if γ = γ1. It means that −1 is a root of
P(λ ) = 0, therefore, E∗1 is non-hyperbolic.

3. Analysis of flip bifurcation

In the following, we will use bifurcation theory to study the flip bifurcations of the above
fixed points E0, E1 and E∗1 when the non-hyperbolic conditions are satisfied.

3.1. Flip bifurcation at E0 and E1

From Lemma 2 and Lemma 3, when γ = 2, the corresponding eigenvalues are |λ1| �= 1
and λ2 = −1. This indicates that the mapping (4) may occur flip bifurcation at E0 and
E1. Because of the practical implications of the model, we discuss the bifurcation at
semi-trivial fixed point E1 only. We introduce a parameter γ∗ satisfying γ∗ = γ−2 in the
following discussion.

Theorem 1 The mapping (4) experiences a supercritical flip bifurcation at E1 when
parameter γ∗ pass through 0. Specifically, assume β < 1 (or, β > 1), a stable period
doubling point bifurcates from (E1,γ∗) = (E1,0) when γ∗ > 0 (respectively, γ∗ < 0).
Moreover, E1 is unstable (or, stable) when β < 1 (respectively, β > 1).

Proof By using transformation T : x = μ + 1,y = υ ,γ = γ∗+ 2 and Taylor series
expansion, the mapping (4) can be written as follows

F1 :

⎛
⎝ μ

υ
γ∗

⎞
⎠ �→

⎛
⎝0 0 0

0 −(1+ γ∗) 0
0 0 1

⎞
⎠
⎛
⎝ μ

υ
γ∗

⎞
⎠+

⎛
⎝ f1(μ,υ ,γ∗)

f2(μ,υ ,γ∗)
0

⎞
⎠ (7)

where parameter γ∗ is considered as a new independent variable, f1(μ,υ ,γ∗) = −μ2−
αυ2−αμυ2 +αυ3 +O(‖ (μ,υ ,γ∗) ‖4) and f2(μ,υ ,γ∗) = βυ2 +β μυ2−βυ3 +O(‖
(μ,υ ,γ∗) ‖4) . Hence, by the theory of [17], we have a center manifold at (μ,v) = (0,0)
in a small neighborhood of γ∗ = 0, which satisfies the following condition

Wloc(0,0) = {(μ,υ ,γ∗) ∈ R3| μ = h(υ ,γ∗),h(0,0) = 0,Dh(0,0) = 0, |υ |< ε, |γ∗|< δ}

where ε and δ are sufficiently small positive numbers. Assume that

μ = h(υ ,γ∗) = c1υ2 + c2υγ∗+ c3γ∗
2
+O(‖(υ ,γ∗)‖3).

From the invariance of the central manifold μ = h(υ ,γ∗), we obtain

N (h(υ ,γ∗)) = h
(
− (1+ γ∗)+ f2(h(υ ,γ∗),υ),γ∗

)
− f1(h(υ ,γ∗),υ) = 0.
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By comparing the coefficients of υ2,υγ∗ and γ∗2
, we obtain c1 =−α,c2 = c3 = 0. Thus

the center manifold is

μ = h(υ ,γ∗) =−αυ2 +O(‖(υ ,γ∗)‖3).

On the center manifold, Mapping (7) is

υ �→ f̃2(υ ,γ∗) =−(1+ γ∗)υ +βυ2−βυ3 +O(‖(υ ,γ∗)‖4). (8)

Consider the second iterate of mapping (8), we have

f̃ 2
2 (υ ,γ

∗) = υ−2υγ∗ −βυ2γ∗+υγ∗
2
+2βυ3−2β 2υ3 +O(‖(υ ,γ∗)‖4).

By computation, we have

f̃2(0,0) = 0, ∂ f̃2
∂υ (0,0) =−1, ∂ f̃ 2

2
∂γ∗ (0,0) = 0,

∂ f̃ 2
2

∂υ (0,0) = 1, ∂ 2 f̃ 2
2

∂γ∗∂υ (0,0) =−2, ∂ 3 f̃ 2
2

∂υ3 (0,0) = 12β (1−β ),

and we get nondegeneracy condition

(
−∂ 3 f̃ 2

2 (0,0)
∂υ3

/
∂ 2 f̃ 2

2 (0,0)
∂γ∗∂υ

)
= 6β (1−β ) �= 0.

According to the result in [17], the mapping (4) has flip bifurcation at E1 and it
is supercritical, if β < 1 (or, β > 1), a stable period doubling points arise at point
(E1,γ∗) = (E1,0) when γ∗ > 0 (respectively, γ∗ < 0).

Next, we discuss the stability of E1 if γ∗ = 0. From (8), we have

υ �→ f̃2(υ ,0) =−υ +βυ2−βυ3 +O(‖(υ ,γ∗)‖4).

By computation, we get the Schwarizan derivative of f̃2(υ ,0) is

S f̃2(υ ,0) =
f̃ (3)2 (υ ,0)
f̃ ′2(υ ,0)

− 3
2

(
f̃ ′′2 (υ ,0)
f̃ ′2(υ ,0)

)2

= 6β (1−β )

From Theorem 2.3 (ii) in [18], we get E1 is unstable (or, stable) when β < 1 (or, β > 1).

3.2. Flip bifurcation at E∗1

From Lemma 4, if γ = γ1 the characteristic equation at fixed point E∗1 (x1,y1) has two
roots λ1 = −1 and λ2 = 2+ s1 (2− γ0)+ γ1γ0 when s1 �= − 1

3 . By selecting γ as a bifur-
cation parameter and using a transformation of

x = μ + x∗1, y = υ + y∗1, γ = γ1 + γ∗,

we change mapping (4) into the following Taylor series form at origin (μ,υ ,γ∗) =
(0,0,0)
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F3 :
(

μ
υ

)
�→

(
c11 c12
c21 c22

)(
μ
υ

)
+

(
f1(μ,υ ,γ∗)
f2(μ,υ ,γ∗)

)
(9)

where
f1(μ,υ ,γ∗) = c13μ2 + c14μυ + c15υ2 + e1μ3 + e2μ2υ + e3μυ2 + e4υ3

+O(‖(μ,υ ,γ∗)‖4),
f2(μ,υ ,γ∗) = c23μ2 + c24μυ + c25υ2 +d1γ∗+d2μγ∗+d3υγ∗+d4μ2γ∗+d5μυγ∗

+d6υ2γ∗+q1μ3 +q2μ2υ +q3μυ2 +q4υ3 +O(‖(μ,υ ,γ∗)‖4),
and the concrete expressions of all coefficients will be omitted for reducing the size of
the page.

Constructing an invertible linear transformation(
μ
υ

)
=

(
c12 c12

−1− c11 λ2− c11

)(
ξ
η

)
. (10)

we convert the mapping F3 to(
ξ
η

)
�→

(−1 0
0 λ2

)(
ξ
η

)
+

(
g1 (ξ ,η ,γ∗)
g2 (ξ ,η ,γ∗)

)
(11)

where
g1 (ξ ,η ,γ∗) = 1

c12(1+λ2)
(D13μ2 +D14μυ +D15υ2 + c12μγ∗+E11μ3 +E12μ2υ

+E13μυ2 +E14υ3)+O(‖(ξ ,η ,γ∗)‖4),
g2 (ξ ,η ,γ∗) = 1

c12(1+λ2)
(F13μ2 +F14μυ +F15υ2− c12μγ∗+ J21μ3 + J22μ2υ

+J23μυ2 + J24υ3)+O(‖(ξ ,η ,γ∗)‖4),
and the concrete expressions of all coefficients will be omitted for reducing the size of
the page.

Similar proof as of Theorem 1, on center manifold, the mapping (11) is

ξ �→ g1c(ξ ,γ∗) =−ξ + l1ξ 2 + l2ξ γ∗+ l3ξ 2γ∗+ l4ξ 3 +O(‖(ξ ,γ∗)‖3) (12)

where the expressions of li,(i = 1,2,3,4) are omitted for reducing the size of the page.
In order to get the condition of mapping (12) undergoing flip bifurcation, we com-

pute

(
∂ 2g1c

∂γ∗∂ξ
+

1
2

∂g1c

∂γ∗
∂ 2g1c

∂ξ 2

)∣∣∣∣
(0,0)

= l2,

(
1
6

∂ 3g1c

∂ξ 3 +

(
1
2

∂ 2g1c

∂ξ 2

)2
)∣∣∣∣∣

(0,0)

= l4 + l2
1 .

By Theorem 3.5.1 in [19], we get bifurcation result of mapping (4) at E∗1 (x1,y1).
Theorem 2 If l2 �= 0 and l4 + l2

1 �= 0, when γ∗ is perturbed in a sufficiently small
neighborhood of the origin, the mapping (4) undergoes flip bifurcation at E∗1 (x1,y1).
Moreover, if l4 + l2

1 > 0(< 0), the bifurcation is supercritical (subcritical), that is, the
period doubling orbit bifurcating from E∗1 (x1,y1) is stable (unstable).

4. Biological explanation

According to Theorem 1, the flip bifurcation undergoes at E1(1,0), which means there
is no predator, the number of prey will oscillate with period-2 around the maximum
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environmental capacity, and the oscillation is stable (or, unstable) with γ > 2 (or, γ < 2).
From Theorem 2, flip bifurcation arises at E∗1 (x1,y1), which indicates the coexistence of
prey and predator with period doubling oscillation when l2 �= 0 and l4+ l2

1 > 0. Therefore,
the effect of the hunting cooperation mechanism determines the fluctuation stability of
predator and prey populations.

5. Simulations

First, if let α = 0.7, β = 0.73 and initial value (x0,y0) = (0.98,0.14), we get the bifur-
cation diagram (see Fig. 1). From Fig. 1, we know that when γ cross through 2, a sta-
ble periodic-2 points bifurcate from point (1,0). Moreover, when γ continues to grow
through 2.4, a stable periodic-4 points will occur.

Fig. 1 Bifurcation diagram at point E1(1,0) with α = 0.7, β = 0.73

Second, if let α = 0.9765, β = 3.00 and γ = 0.9, then we have γ0 = 0.7, E∗1 (x1,y1) =
(0.8074,0.5308) and αc = 1.152, so, α < αc which satisfies the condition of Lemma
4. By tedious calculation, we get l1 ≈ 1.0533, l2 ≈ 18.0752 and l4 ≈ −4.0813. So, the
conditions of Theorem 2 will be satisfied, i.e., l2 �= 0 and l4 + l2

1 < 0. Therefore, from
Fig. 2, we see that as γ cross through 0.9, an unstable period-2 orbit bifurcates from E∗1 .

Fig. 2 Bifurcation diagram at point E∗1 = (0.8074,0.5308) with α = 0.9765, β = 3.00 and γ = 0.9
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