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Abstract. In this paper, we propose some new concepts for the sequence of fuzzy-
number-valued functions by using the notion of inner small variation. Then, we
study some the characteristics of the primitives of strong fuzzy variational Henstock
integrals defined in m-dimensional Euclidean space using these concepts. Finally,
we obtain some convergence theorems for this integrals.
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1. Introduction

Wu and Gong[1,2] initiated the study of the fuzzy Henstock integral in 2000 to pro-
mote the development of fuzzy analysis. In order to study n-dimensional fuzzy number-
s, based on the support functions, Zhang et al.[3] proposed the representation theorem
of n-dimensional fuzzy numbers two years later, which enable us to further discuss the
properties of the primitives of n-dimensional fuzzy integrals.

Since integral theory is one of the important topics as an important part of real anal-
ysis. There are lots of study for the integrals defined in m-dimensional Euclidean space.
Since m-dimensional Euclidean space does not have linearity, the Vitali’s covering the-
orem could not take effect. To avoid the defect, Lu and Lee[4] propose the notions of
the inner cover and the inner variation zero in 1999 to study the properties of the primi-
tive of Henstock integrals defined in m-dimensional Euclidean space. Cabral and Lee[5]
further discussed the properties of the primitive of m-dimensional Henstock integrals in
2002. By using same method, Chew[6] discussed the properties of the primitive of Mc-
Shane integrals in the same year. In 2006, Ye[7] studied the primitive of strong Henstock-
Kurzweil integrals.

To study the initial value problem of solutions for the differential equations defined
in m-dimensional Euclidean space, we have to put forward the convergence theorem-
s first. In high dimensional real analysis, Paredes, Lee and Chew[8] proved the con-
trol convergence theorem of m-dimensional strongly variational integrals with Banach-
valued in 2002, while this convergence theorem does not use the concept of inner varia-
tion zero. Therefore, it does not distinguish between high-dimensional integrals and one-
dimensional integrals. In 2000, Cabral and Lee[9] gave the convergence theorems of real-
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valued strongly variational integrals defined in m-dimensional Euclidean space by using
the concept of inner variation zero. For fuzzy analysis, Gong and Shao[10] proved the
control convergence theorems by using the concepts of ACG∗(X) and equi-integrability
respectively of strong fuzzy Henstock integrals, and established the connection between
the two theorems in 2009. Shao, Gong and Li[11] proposed weak fuzzy equi-integrability
and further gave the fuzzy Henstock lemma in 2017. They also proposed the control
convergence theorem by the fuzzy Henstock lemma of fuzzy Henstock integrals.

The research on fuzzy approximation theory has also achieved good results in recent
years. By using smoothing radial basis functions, Gonzalez-Rodelas et al.[12] study the
method to approximate the trapezoidal fuzzy numbers in 2022. In the same year, Baez-
Sanchez et al.[13] use polygonal fuzzy numbers to approximate fuzzy numbers. Based
on the method of power series summability, Baxhaku et al.[14] prove the Korovkin type
approximation theorem for positive linear fuzzy sequences in 2022. For the study of
fuzzy normed spaces, see[15,16].

The research on the integrals defined in m-dimensional Euclidean space is relatively
rare especially for space of n-dimensional fuzzy numbers. In this paper, by using the no-
tion of inner small variation, we define some sequences of n-dimensional fuzzy-valued
functions. Then, we describe the primitives characteristics of strong fuzzy variational
Henstock integrals defined in m-dimensional Euclidean space using these concepts. Fi-
nally, we give some convergence theorems for this integrals by using the concept of inner
small variation.

The paper is organized as follows. In Section 2, we provide some basic concepts
about n-dimensional fuzzy number space and inner small variation. In Section 3, we de-
fine some sequences of fuzzy-valued functions by using the notion of inner small vari-
ation and derive some convergence theorems of strong fuzzy variational Henstock inte-
grals. In Section 4, we give some conclusions.

2. Preliminaries

2.1. Fuzzy Number Space

Throughout our paper Rn
F denotes a set of all fuzzy subsets on R

n. For 0<α ≤ 1, denote
[ũ]α = {x ∈ R : u(x) ≥ α}. Suppose ũ ∈ R

n
F , satisfies ũ is normal, convex, upper semi-

continuous and [ũ]0 =
⋃

α∈(0,1][ũ]α is a bounded set, then ũ is called a fuzzy number. We
use F (Rn) to denote the fuzzy number space. For addition and scalar multiplication of
fuzzy numbers, refer to [17,18].

The distance between two fuzzy numbers is defined dH : F (Rn)×F (Rn)→ R+∪
{0} by

dH(ũ, ṽ) = sup
α∈[0,1]

d([ũ]α , [ṽ]α),

where

d([ũ]α , [ṽ]α) = inf{ε : [ũ]α ⊂ S([ṽ]α ,ε), [ṽ]α ⊂ S([ũ]α ,ε)}
= max{supa∈[ũ]α infb∈[ṽ]α ‖a−b‖,supb∈[ṽ]α infa∈[ũ]α ‖a−b‖}.
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By [19], we get that: (1) (F (Rn),dH) is complete; (2) dH(ũ+ w̃, ṽ+ w̃) = dH(ũ, ṽ);
(3) dH(h · ũ,h · ṽ) = |h| ·dH(ũ, ṽ).

Let Sn−1 be the unit sphere of Rn, i.e. Sn−1 = {x ∈ R
n : ‖x‖= 1}, 〈·, ·〉 be the inner

product in R
n. Suppose ũ ∈ F (Rn),x ∈ Sn−1,r ∈ [0,1], we call ũ∗(r,x) = supa∈[ũ]r〈a,x〉

the support function of ũ.

2.2. High Dimensional Fuzzy Integrals

Let I0 = [α,β ]⊂ R
m with [α,β ] = [α1,β1]× [α2,β2]×·· ·× [αm,βm]. Let I ⊂ I0 with

its Lebesgue measure m(I). Given r > 0, we denote {y ∈ R
m : ‖y− x‖< r} by B(x,r).

We call P the partial partition of I0 where P = {(Ii,xi) ;xi ∈ I0} satisfied that if i �= j
then m(Ii

⋃
I j) = 0, and

⋃
i Ii ⊂ I0. Furthermore, if we have

⋃
i Ii = I0, we call P a

partition of I0.

Definition 2.1 Given a gauge δ : I0 → (0,+∞). If xi ∈ Ii ⊂ B(xi,δ (xi)) for each i, then
we say P = {(Ii,xi)}m

i=1 is δ -fine.

Denote by Σ(I0) the family of compact subintervals of I0 and let F̃ : Σ(I0) →
F (Rn). If F̃(I1

⋃
I2) = F̃(I1)+ F̃(I2) when m(I1

⋂
I2) = 0, then we say F̃ is additive.

Definition 2.2 Let f̃ : I0 → F (Rn) and F̃ : Σ(I0)→ F (Rn). If for ∀ε > 0, ∃δ (ξ )> 0
s.t. for any partition P = {(I,ξ )} which is δ -fine

(P)∑dH
(

f̃ (ξ ) ·m(I), F̃(I)
)
< ε,

then we say f̃ is strongly fuzzy variational Henstock integrable(SFVH integrable for
short) on I0 with the primitive F̃. We write F̃(I0) =

∫
I0

f̃ dx and f̃ ∈ SFV H(I0).

Definition 2.3 Let f̃n : I0 →F (Rn) and F̃n : Σ(I0)→F (Rn). If for ∀ε > 0, ∃δ (ξ )> 0
independent of n s.t. for any partition P = {(I,ξ )} which is δ -fine, for each n

(P)∑dH
(

f̃n(ξ ) ·m(I), F̃n(I)
)
< ε,

then we say { f̃n} is strongly fuzzy variational Henstock equiintegrable on I0 with the
primitive {F̃n}.

2.3. Inner Small Variation

By using the idea from [4,5,6,7], we now introduce some notations and concepts as
following.

Let f̃ : I0 → F (Rn) and F̃ : Σ(I0) → F (Rn). Given η > 0, δ (x) > 0, r ∈ [0,1]
and s ∈ Sn−1, we define

Γ( f̃ , F̃ ,δ ,η ,r,s) = {(I,x);x ∈ I0,
∣∣F̃(I)∗(r,s)− f̃ (x)∗(r,s) ·m(I)

∣∣≥ η ·m(I)

where (I,x) is δ -fine }
(1)

For given r ∈ [0,1] and s ∈ Sn−1. When f̃ and F̃ are fixed, we replace Γ( f̃ , F̃ ,δ ,η ,r,s)
by Γ(δ ,η ,r,s). Obviously, Γ(δ ,η ,r,s) has the following properties:
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1. for given δ , r and s, let η2 ≤ η1 then we have Γ(δ ,η1,r,s)⊂ Γ(δ ,η2,r,s);
2. for given η , r and s, let δ1(x)≤ δ2(x), then we have Γ(δ1,η ,r,s)⊂ Γ(δ2,η ,r,s).

Let E ⊂ I0, we say Γ(δ ,η ,r,s) is a singular point covering of E if for ∀x ∈ E,
∃(I,x) ∈ Γ(δ ,η ,r,s). We assume that if η is small enough, there always is δ > 0 s.t.
for all r ∈ [0,1] and s ∈ Sn−1, Γ(δ ,η ,r,s) is a singular point covering of E ⊂ I0 . For
simplicity, We replace Γ( f̃ , F̃ ,δ ,η ,r,s) by Γ throughout this article.

Definition 2.4 [7] Let E ⊂ I0 and Γ defined above. If for ∀ε > 0, ∃δ > 0 s.t.

(P) ∑
x∈E

m(I)< ε

holds for every partial partition P = {(I,x)} which is δ -fine satisfy x ∈ E and P ⊂ Γ of
I0, then we say E is with respect to Γ of inner small variation.

3. Convergence Theorems

Let
{

f̃n
}

and
{

F̃n
}

be given and set

Γn = {(I,x);x ∈ I0,
∣∣F̃n(I)∗(r,s)− f̃n(x)∗(r,s) ·m(I)

∣∣≥ η ·m(I)

where (I,x) is δ -fine }
(2)

Definition 3.1 If for ∀ε > 0, ∃δ (ξ ) > 0 independent of n s.t. for any partition P =
{(I,ξ )} which is δ -fine in Γn and s ∈ Sn−1

(P)∑ | F̃n(I)∗(r,s)) |< ε and (P)∑ | f̃n(x)∗(r,s) ·m(I) |< ε

respect to r ∈ [0,1] uniformly. Then
{

f̃n
}

is said to satisfied (UI1) condition.

Theorem 3.1
{

f̃n
}

satisfied (UI1) condition if and only if it is strongly fuzzy variational
Henstock equiintegrable on I0 with the primitive {F̃n}.

Definition 3.2 If for ∀ε > 0, ∃δ (ξ ) > 0 independent of n s.t. for any partition P =
{(I,ξ )} which is δ -fine in Γn and s ∈ Sn−1

(P)∑ | F̃n(I)∗(r,s)) |< ε and (P)∑m(I)< ε

respect to r ∈ [0,1] uniformly. Then
{

f̃n
}

is said to satisfied (UI2) condition.

Theorem 3.2
{

f̃n
}

satisfied (UI1) condition if it satisfied (UI2) condition.

The key points to prove this theorem is to divide I0 into Enk where

Enk = {x ∈ I0 : sup
r

sup
s
| f̃n(x)∗(r,s)|< k,x /∈ Eni},n,k ∈ R

+.
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Theorem 3.3
{

f̃n
}

is strongly fuzzy variational Henstock equiintegrable on I0 if and
only if for ∀ε > 0, ∃δ s.t. (P)∑ | f̃n(x)∗(r,s) ·m(I) |< ε and (P)∑ | F̃n(I)∗(r,s)) |< ε
where P = {(I,ξ )} is δ -fine in Γn.

From Theorem 3.2 and Theorem 3.3, we derive the following corollaries.

Corollary 3.1
{

f̃n
}

is strongly fuzzy variational Henstock equiintegrable on I0 if for
∀ε > 0, ∃δ s.t. (P)∑m(I)< ε and (P)∑ | F̃n(I)∗(r,s)) |< ε where P = {(I,ξ )} is δ -fine
in Γn.

Corollary 3.2 f̃ is strongly fuzzy variational Henstock integrable on I0 if and only if
for ∀ε > 0, ∃δ s.t. (P)∑ | f̃ (x)∗(r,s) ·m(I) |< ε and (P)∑ | F̃(I)∗(r,s)) |< ε where P =
{(I,ξ )} is δ -fine in Γ.

Definition 3.3 Let E ⊂ I0 is with respect to Γ of inner small variation. If for ∀ε > 0,
∃δ independent of n on E s.t. for any partial partition P = {(I,x)} which is δ -fine satisfy
x ∈ E and P ⊂ Γ of I0, for ∀s ∈ Sn−1

(P)∑ |F̃n(I)∗(r,s)|< ε

respect to r ∈ [0,1] uniformly. Then we say {F̃n} with respect to Γ satisfies the USLv
condition on E.

Note that if we replace ”E ⊂ I0 is with respect to Γ of inner small variation” by
”E ⊂ I0 is of measure zero”, {F̃n} is said to satisfy the USL condition.

Definition 3.4 Let Ãn, Ã ∈ F (Rn). If for ∀ε > 0, ∃N ∈ N+ s.t. for ∀s ∈ Sn−1 and n > N

|Ã∗
n(r,s)− Ã∗(r,s)|< ε

respect to r ∈ [0,1] uniformly. Then we say Ãn converges to Ã by support functions.

In this note, we always use the convergence by support functions and write Ãn → Ã
without confusion.

Definition 3.5 Given E ∈ I0 which is with respect to Γ of inner small variation. If
f̃n(x)→ f̃ (x) where x ∈ I0/E, then f̃n → f̃ v.a.e..

Theorem 3.4 If f̃ ∈ SFV H(I0) with primitive F̃ and f̃ = g̃ v.a.e., then f̃ ∈ SFV H(I0)
with primitive F̃.

Theorem 3.5 If fuzzy function sequence { f̃n} ⊂ SFV H(I0) satisfied the following:

1.
{

f̃n
}

satisfy (UI2) condition and f̃n(x)→ f̃ (x) v.a.e. in I0;
2. {F̃n} with respect to Γ satisfy the USLv condition on E,

then, we obtain that f̃ ∈ SFV H(I0) and

∫
I0

f̃ dx = lim
n→∞

∫
I0

f̃ndx.
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Proof.Since f̃n(x) → f̃ (x) v.a.e. in I0, there are E ⊂ I0 is with respect to Γ of inner
small variation satisfied that E = {x ∈ I0 : f̃n(x)� f̃ (x). Define

f̃ ′n(x) = f̃n(x)χI0/E ,

then we obtain that f̃ ′n(x) → f̃ ′(x) for all x ∈ I0. From Theorem 3.4, we only need
to show that f̃ ′(x) ∈ SFV H(I0). By Theorem and 3.1 and 3.2, { f̃ ′} is strongly fuzzy
variational Henstock equiintegrable on I0, that is, for ∀ε > 0, ∃δ (ξ ) > 0 independent
of n s.t. for any partition P = {(I,ξ )} which is δ -fine, for each n

(P)∑dH
(

f̃ ′n(ξ ) ·m(I), F̃ ′
n(I)

)
< ε.

Therefore, we can find N > 0 s.t. for any partition P′ = {(I,ξ )} which is δ -fine

(P′)∑dH
(

f̃ ′n(ξ ) ·m(I), f̃ ′m(ξ ) ·m(I
)
< ε

where n,m > N. So, we can obtain that {F̃ ′
n(I)} is a Cauchy sequence for each I ∈ I0.

That is F̃ ′
n(I)→ F̃ ′(I) for each I ∈ I0. We compete this proof by above conditions.

Note that if we replace ”
{

f̃n
}

satisfied (UI2) condition” by ”
{

f̃n
}

satisfied (UI1)
condition”, the above theorem is also holds by Theorem 3.2.

Theorem 3.6 If fuzzy function sequence { f̃n} ⊂ SFV H(I0) satisfied the following:

1.
{

f̃n
}

satisfy (UI2) condition and f̃n(x)→ f̃ (x) a.e. in I0;
2. {F̃n} satisfy the USL condition.

Then, we obtain that f̃ ∈ SFV H(I0) and

∫
I0

f̃ dx = lim
n→∞

∫
I0

f̃ndx.

Note that Theorem 3.4 is useful since we can transform ” f̃n(x)→ f̃ (x) a.e. in I0”
to ” f̃ ′n(x)→ f̃ ′(x) for all x ∈ I0” where f̃ ′n(x) = f̃n(x)χI0/E and E = {x ∈ I0 : f̃n(x)�
f̃ (x). Theorem 3.1 allows us to adopt the method based on equiintegrability of sequences
for fuzzy-valued functions. In order to obtain this theorem, we demand

{
f̃n
}

correspond-
ing to {F̃n} since we need for every s ∈ Sn−1 | f̃ ′n(x)(r,s) ·m(I)− F̃n(I)(r,s) |< ε respect
to r ∈ [0,1] uniformly.

Corollary 3.3 If fuzzy function sequence { f̃n} ⊂ SFV H(I0) satisfied the following:

1.
{

f̃n
}

satisfied (UI1) condition;
2. f̃n(x)→ f̃ (x) for every x ∈ I0.

Then, we obtain that f̃ ∈ SFV H(I0) and

∫
I0

f̃ dx = lim
n→∞

∫
I0

f̃ndx.

From Theorem 3.2 and Theorem 3.6, we complete this corollary. This theorem cor-
responding to convergence theorem base on equiintegrability by Theorem 3.1.
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4. Conclusion

The purpose of the article is to extend the theory of high-dimensional strong fuzzy vari-
ational Henstock integrals, we firstly define some sequences of n-dimensional fuzzy-
valued functions using the notion of inner small variation, and discuss some basic prop-
erties for this sequences. By using this sequences, we obtain some convergence theorems
for this integrals. For future research, we may focus on the applications of this integral-
s, such as the initial value problem of solutions for fuzzy differential equations for this
integrals.
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