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Abstract. Reducing the number of alerts and anomalies has been the focus of several 
studies, but an automated anomaly detection using log files is still an ongoing 

challenge. One of the pertinent challenges in the detection of anomalies using log 

files is dealing with ‘unlabelled’ data. In the existing approaches, there is a lack of 
anomalous examples and that log anomalies can have many different patterns. One 

solution is to label the data manually, but this can be a tedious task as the data size 
could be very large and log files are not easily understandable. In this paper, we 

have presented an automated anomaly detection model that combines supervised 

and unsupervised machine learning with domain knowledge. Our method reduces 
the number of alerts by accurately predicting anomalous log events based on domain 

expertise, which is used to create automated rules that allow generating a labelled 

dataset from unlabelled log records, which are unstructured and present in many 
different formats. This labelled dataset is then used to train a classification model 

that will help predict anomalous log events. Our results show that we can accurately 

predict anomalous and non-anomalous events with an average accuracy of 98%.  
Our approach offers a practical solution for systems where logs are collected without 

any labelling, making it difficult to create an accurate model to identify anomalous 

log records. The methodology presented is very fast and efficient, which can provide 
real-time anomaly detection for time critical environments. 
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1. Introduction 

Software systems store important events taking place in a system in the form of log files, 

which can be used for troubleshooting purposes via the use of log messages. Log events 

can also be used for anomaly detection. For example, timestamps or severity of the log 

can be used for the identification of anomalies, but these provide limited information, 

hindering the recognition of all anomalous log events. Effective approaches therefore 

require specific domain knowledge to detect abnormalities in the log data.  

Although anomaly detection can be done by checking the log files manually, it is 

not feasible because of the complexity and the sheer size of data available. Therefore, an 

automated process is required to analyse logs and identify anomalies. Automated 

anomaly detection can allow trouble-shooters to spend less time in finding the issues, 

hence more time can be spent to fix the problem.  

There have been several studies that focus on reducing the number of alerts and 

anomalies [1-10], but an automated anomaly detection using log data is still an ongoing 
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challenge. Anomaly detection is, in fact, a binary classification, deciding between normal 

and anomalous classes; however, there are a number of challenges, which can be 

summarised as follows: 

� the sheer rates at which log events are generated, 

� the lack of a unified structure, as log data usually comes in a large variety with 

many different patterns, 

� the absence of labelled records (a.k.a. anomalous examples), which are crucial 

for any classification problems. 

While one solution could be manually labelling and analysing log events, this has 

proven least cost-efficient, requiring a lot of engineers’ time and effort as well as 

computational resources.   

We offer a practical solution where logs are collected with no labels. Our approach 

in this paper combines unsupervised and supervised machine learning techniques with 

insights from domain knowledge to provide more effective and better performing 

anomaly detection models. More specifically, our contributions can be summarised as 

follows: 

� incorporating domain knowledge to create automated rules and generate 

labelled dataset from unlabelled log records, 

� significant reduction in the number of alerts by eliminating and suppressing 

duplicate records, 

� very fast and efficient algorithms, allowing for real-time anomaly detection in 

time critical environments, 

� combining domain expertise with ML algorithms, providing more accurate 

models, 

� not relying on the assumption that “only rare log events are anomalous” or 

“change in the log patterns indicates abnormal behaviour”. 

The rest of the paper is organised as follows: Section 2 briefly overviews the existing 

related work; Section 3 describes our methodology; Section 4 presents experimental 

results and summarises the findings; Section 5 discusses some relevant issues; and 

Section 6 concludes with future work. 

2. Related work 

Several studies have been carried out to reduce number of alerts and anomalies. In [1], 

SOM + K-means algorithms are used to aggregate alerts and Naïve Bayes is used to 

remove false alerts, thus only keeping true alerts, resulting in a 94% reduction in number 

of alerts. In [2], K-means clustering algorithm is used to create an alert clustering model 

for a Network-based Intrusion Detection Systems (NIDS) with an accuracy of 99.67%. 

[3] proposes a two-stage classification system using a SOM neural network and K-means 

algorithm for an Intrusion detection system (IDS) to correlate the relevant alerts and to 

further categorise the alerts into classes of true and false alarms, which led to a reduction 

of all excessive and noisy alerts, which often contribute to more than 50% of false alarms 

generated by a common IDS. [4] uses event correlation analysis to group correlated 

events on log data based on the degree of similarity to reduce alarms compared to 

analysing individual alarms. [5] applies clustering technique and supporting evidence to 

significantly reduce alerts. [6] uses semantic relationships between logs to find those that 

are anomalous. [7] proposes a deep neural network model utilising Long Short-Term 
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Memory (LSTM) to learn log patterns different from the normal to allow detection of 

anomalies. [8] uses semantic relationships between logs to generate word vectors and 

weighted log sequence feature vectors with Term Frequency-Inverse Document 

Frequency (TF-IDF), which is then used with K-Means clustering to detect anomalous 

logs.  [9] uses isolation forest and deep autoencoder neural networks to detect anomalous 

logs. Instead of finding anomalous logs, this approach predicts if logs are positive or 

negative, which reduces false alerts. [10] proposes a two-part deep autoencoder model 

that uses LSTM units which do not require hand-crafted features; this is useful in 

identifying rare/unseen log events by assigning each log event an anomaly score. [11] 

provides an automated anomaly detection solution by using a time series clustering 

approach, where K-means clustering is used to find time spans where the system in 

question does not behave as expected. However, this method offers limited capabilities 

as in this approach small clusters are used to identify anomalous log events with the help 

of domain knowledge. [12] proposes an approach where logs are sampled at regular 

intervals to compute scores which are used to train a semi-supervised deep autoencoder. 

In this approach, normal log events are used to train the model and to find anomalies 

using the trained model. [13] proposes an anomaly detection approach that uses 

thresholds to distinguish between normal and abnormal log events. In this study, Robust 

Random Cut Forest (RRCF) is used to find the outliers and threshold setting is 

determined by various threshold values such as maximum deviation, three-sigma, and 

median absolute deviation to determine the best threshold to identify anomalies.  

In literature, there are many different machine learning techniques that can be used 

to find anomalies in the system. Those that are based on supervised learning have higher 

accuracy rates; however, more often than not, the labelled datasets required by these 

approaches do not exist and preparing such datasets is not a straightforward task either 

in real world scenarios. As for unsupervised learning, log events that deviate from the 

norm are flagged to provide early detection to prevent down-time and reduce Mean Time 

To Repair (MTTR). However, these approaches do not provide any context to help 

trouble-shooters understand what the problem is, leaving them to manually inspect log 

files to find the root causes. 

Our approach is different from the studies reported above because we use a 

combination of unsupervised, supervised machine learning techniques with domain 

knowledge. The aim of unsupervised K-means clustering in our approach is to allow to 

understand data better and to provide a meaningful representation that would allow 

automation rules to be defined using domain expertise. This would then allow creation 

of a labelled dataset to train the classification model for automated anomaly detection. 

Unlike other studies, with this approach we do not rely on the assumption that outliers 

are anomalies. Moreover, because we use domain knowledge to create automated rules 

to label logs, we get a more accurate anomaly detection model as we are not using 

thresholds or semantic meanings of the logs, or rare/unseen logs to label log records as 

anomalies. In addition, our approach does not require the need to create log parsers, as 

all information is kept such that it can be used to identify anomalous log records which 

removes log parser related errors. Furthermore, this approach can be applied to any 

system as it removes the need to have a labelled dataset for anomaly detection. 
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3. Methodology 

In this section, we present our automated anomaly detection method that combines 

supervised and unsupervised machine learning and domain knowledge to reduce the 

number of alerts by accurately predicting anomalous log events. 

 

 

Figure 1. Methodology. 

Our methodology is presented in Figure 1. The Pre-processing step involves the 

removal of digits and punctuation, keeping only textual data. The Term Frequency 

Inverse Document Frequency (TF-IDF) is then used to convert textual data into 

meaningful numerical representation of text data. Both processes are important for 

clustering purposes. In our model, a combination of pre-processing steps, the TF-IDF 

technique, Elbow method and K-means clustering are used to create meaningful clusters. 

Subsequently, these clusters are analysed to create rules for automation that would allow 

the creation of a labelled dataset. The labelled dataset is used to extract features using 

Bag-of-Words (BoW) and TF-IDF models. Naïve Bayes classification model is then used 

to predict log events as anomaly or normal. This is critical for the detection of log events 

which can be addressed promptly to reduce major performance issues. 

3.1. Logs cleaning and unification 

The log events contain different types of information such as timestamp, severity, 

message, source of the message, dynamic changes of software and hardware, etc. Data 

loggers do not necessarily follow a standard, unified structural format, i.e., different 

devices log records in different formats. In order to use log records from a dataset to 

cluster them using K-means clustering algorithm and to train the Naïve Bayes model, we 

transform logs from multiple sources into a unified form. 

To pre-process the log data, we only keep the message part of each log record, and 

remove all numbers, special characters, and punctuations. This process is necessary 

because log parsers are not efficient and can cause semantic misunderstanding, which 

lead to inaccurate results; so, it is more effective to use raw logs directly to create 

meaningful representation of textual data. The cleaning of logs involves 4 regex steps: i. 
removing tabs and line breaks; ii. removing punctuation and digits; iii. removing words 

with less than three characters; iv.  transforming logs into lowercase.  
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3.2. Conversion of log events into numerical representation 

3.2.1. Natural language processing 

Models in machine learning only understand numerical values, therefore, textual data 

must be converted into numerical data. The process of converting text data to numerical 

vectors is called vectorisation, which can be used to build various machine learning 

models. The words which have similar meanings will be assigned to a vector closer to 

each other to reduce the dimensionality of the vector space. This is very important 

because meaningful representation of log data will allow us to provide meaningful 

clusters. 

3.2.2. Term Frequency Inverse Document Frequency (TF-IDF) vectoriser 

TF-IDF is used to convert text into meaningful numerical representation by converting 

text to feature vectors, which are used as input to the K-means clustering. For each log 

record a vector is created, where each value in the vector corresponds to each word in 

the log record. TF-IDF algorithm allows us to represent each log record in the dataset as 

a vector. In this way, relevant log records will have similar vectors, therefore they can 

be clustered into similar type of groups.  

3.3. Meaningful clusters and labelling of records using automated rules 

After pre-processing and vectorisation, TF-IDF vectors are used with the K-means 

algorithm to create clusters, where the Elbow method is used to find the optimal number 

of clusters. Given the insights from the clustering, we use domain knowledge to help 

write automation rules; so, each rule from the list of rules will specify and label each 

single individual log record to create a labelled dataset. 

3.4. Feature extraction using bag of words and TF-IDF 

The aim of this step is to transform data into feature vectors, which are used as an input 

to the classification model. Feature extraction is an important step because the quality of 

the features will help improve the model performance. Bag of Words and TF-IDF models 

are used for feature extraction as they are useful techniques to extract features from the 

data. Bag of Words model is a representation of text that counts unique occurrences of 

words in a dataset by creating a vocabulary of words; whereas TF-IDF denotes how 

important a word is in a record in the dataset. A higher TF-IDF score means that a word 

is more important, whereas a low score indicates it is less importance. 

Term frequency (TF) is a measure of how frequently a word appears in the log event. 

To calculate this, the vocabulary created using Bag of Words model is used. Term 

frequency is calculated using the following formula: 

TF(w,d) = (number of times word ‘w’ appears in the log event) / (total number of 
words in the log event ‘d’) 

Inverse Document Frequency (IDF) is a measure to find how important a word is in 

the dataset, which is calculated as follows: 

IDF(w) = log (number of log records / number of log records with word ‘w’) 

TF-IDF score for each word is calculated as: 
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TF-IDF(w, d) = TF(w, d) x IDF(w) 

For example, if we consider a log record containing 100 words wherein the word ‘fatal’ 

appears 5 times, the term frequency (TF) for the word ‘fatal’ is (5 / 100) = 0.05. If we 

assume that there are one million log records and the word ‘fatal’ appears in 1,000 log 

records, then the inverse document frequency (IDF) is calculated as log (1,000,000 / 

1,000) = 3. Since the TF-IDF score is the product of these two statistics, we get 0.05 x 3 

= 0.15.  

Using Bag of Words and TF-IDF models, we convert feature vectors into vectors of 

TF-IDF scores with most important contextual words having higher values. 

3.5. Classification   

After the pre-processing step, log events are converted into vectors, features are 

generated, which are then passed to a Naive Bayes classifier to train a classification 

model. Naive Bayes classifier is a supervised machine learning algorithm based on 

‘Bayes’ Theorem which defines the probability of occurrence of an event related to any 

condition.  

Using this classification model, pre-processed log records will be modelled as an 

unordered collection of words from one of two probability distributions: one representing 

anomalous log events and the other one representing normal log events. For example, 

there will be two bags of words, one is filled with words found in anomalous log records 

and the other one is filled with words from normal log events. This means that anomalous 

bag of words will contain anomalous-related words while normal bag of words will 

contain more words that are related to normal log events. To classify log events, the 

Bayesian filter assumes that the log record is from one of the bags and uses Bayesian 

probability to determine which bag the log record is in. After the model is trained it can 

calculate the probability to classify logs as anomalous or normal. 

The probability of log record being anomalous is calculated using the formula: 

 

 

 

where: 

P(A|W) is the probability that a log record is anomalous ‘A’ given the word ‘W’ is in it. 

P(A) is the overall probability that any given message is anomalous ‘A’. 

P(W|A) is the probability that the word ‘W’ appears in a log record given that the log 

record is anomalous ‘A’. 

P(N) is the overall probability that any given log record is normal ‘N’. 

P(W|N) is the probability that the word ‘W’ appears in a log record given that the log 

record is normal ‘N’. 

4. Experimental results 

4.1. Dataset 

To demonstrate the effectiveness of our methodology, we have used a public log dataset, 

BGL(BlueGene/L) [14], collected from a BlueGene/L supercomputer system with 
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4,747,963 log events, manually labelled as normal or anomalous by Lawrence Livermore 

National Labs (LLNL). We have split the dataset into train (80%) and test (20%) datasets. 

The train dataset contains 3,798,370 log events, of which 278,586 are anomalies. The 

test dataset contains 949,593 log events, of which 69,874 are anomalies. The K-means 

clustering algorithm is applied to the train dataset in order to find a meaningful set of 

clusters. Domain knowledge together with the insights from the clustering are then used 

to create automation rules that help generate a labelled dataset. We use this labelled 

dataset to construct a classification model.  

4.2. Pre-processing 

In this step, data is processed to only keep textual data. Figure 2 shows an example of an 

unprocessed log record and Figure 3 shows an example of a processed log record, where 

only the textual data is kept. This step ensures that we keep all the information that can 

be used to identify anomalous or normal log events. At the same time, it reduces the size 

of logs, which allows the model construction to be done more efficiently.  

 

 

Figure 2. Example of unprocessed log record. 

 

 

Figure 3. Example of pre-processed log record. 

4.3. Clustering 

After the pre-processing step, TF-IDF vectorisation has been used to convert the log 

events into numerical vectors. The numerical vectors have then been used with the Elbow 

method to find the optimal number of clusters.  

 

  

Figure 4. Elbow method for k=10. Figure 5. Elbow method for k=15. 

Figures 4 and 5 represent two Elbow method results. Figure 4 shows the result of 

running the K-means clustering for a range of 1 to 10 clusters and Figure 5 shows the 

result of running the K-means clustering for a range of 1 to 15 clusters. Based on these 

figures, we can say there are two obvious choices, 2 or 4, for optimal number of clusters. 

We have decided to choose 4 as it provides more granularity than 2. The other clusters 

are not good candidates. For example, based on Figure 4 we can say that 7 can be a weak 

candidate; however, it disappears in Figure 5. 
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The K-means clustering results based on k=4 are presented in Table 1. We can see 

that all anomalous samples are part of the same cluster (Cluster 3). However, this cluster 

contains a mixture of normal and anomalous events. 

Table 1. Clustering results. 

Cluster Total log events in cluster Anomalous log events in cluster 

1 1,365,476 0 

2 350,687 0 
3 1,631,279 278,586 

4 450,928 0 

Total No. of Records 3,798,370 278,586 

4.4. Automated rules  

Since we are using a public dataset, we do not have any domain knowledge about how 

the data is labelled, but based on the log data analysis, we have been able to write some 

rules to label records as anomolous or normal. However, to create more sophisticated or 

complicated rules we need more in-depth understanding/investigation of these 

anomalous data to ensure that the dataset is accuretly labelled. This automation process 

has been created using the rules: 

 
begin 
clusters = kmeansPrediction 
rulesForAnomalousLogs = [‘socket link has been severed’, 
‘data tlb error interrupt’, ‘data storage interrupt’] 
for logRecord in clusters 

logRecordStatus = ‘normal’ 
for text in rulesForAnomalousLogs 

if text in logRecord 
logRecordStatus = ‘anomalous’ 

end 
 

Using this algorithm, we can incorporte domain knowledge to automatically label 

datasets; hence we are able to check log events against these rules to label records as 

anomalous or normal. After applying these rules, we have created a labelled dataset 

containing 3,798,370 records in total, of which 212,458 are anomalous. 

4.5. Feature extraction 

To extract features from this data, we have first used the Bag of Words model, followed 

by the TF-IDF algorithm to convert words into numerical vectors. Using these models, 

2,873 words have been extracted as features from a total of 38,705,984 words.  

The feature words extracted signify the important words which describe the dataset.  

These words provide the contextual information and are best used to characterise all log 

records in the dataset. 

4.6. Anomaly detection 

To create a classification model, we have used Multinomial Naive Bayes. After the 

model was trained, 20% data from the original log dataset has been used for validation. 
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Table 2. Classification results.  

 Precision Recall F1-Score Support 
0 1.00 0.76 0.87 69874 

1 0.98 1.00 0.99 879719 

 
Accuracy   0.98 949593 

Macro Avg 0.99 0.88 0.93 949593 

Weighted Avg 0.98 0.98 0.98 949593 

 

In Table 2, we present our results. Here, ‘support’ denotes the number of occurrences 

of the given group in the dataset. As can be seen in the table, 69,874 log events are 

anomalous and 879,719 are non-anomalous. The classification model can accurately 

predict 87% of anomalous log events as anomalies and 99% of non-anomalous log events 

as non-anomalies with a total accuracy of 98%. 
Since we create a labelled dataset using some rules generated based on domain 

knowledge (required to understand the underlying structure of the logs), we only need to 

label records that are anomalous, which reduces the number of false alerts, as shown in 

the Table 2.  

Furthermore, our approach does not require log parsers because we use raw logs and 

only keep textual information. Hence, using this approach we can avoid log parser related 

errors, and can achieve a better performance. Moreover, this allows using different types 

of logs from different sources without making any changes in our approach as we do not 

need to create any templates for different types of logs. 

The high accuracy rate achieved shows that we have created an effective automated 

anomaly detection model. Our approach offers a practical solution to predict anomaly 

detection using unlabelled log data without any manual labelling, which is a very tedious 

and challenging task. Also, since our machine learning models work very fast, this 

approach can effectively be implemented in time critical environments. 

However, our approach has some limitation. Since we keep all textual information 

that can be used to label log records as normal or anomaly, we do not have any data-

related parameters, which can lead to infeasible solutions. On the other hand, the 

clustering results are very important because automation-based rules will be defined 

using the insights from the clustering results, therefore, it is important to accurately pre-

process data using steps provided in Section 3.1. 

5. Discussion 

Today monitoring and logging operational status of IT systems is a ubiquitous task, 

leading to continuous generation and stream of events. These log events are invaluable 

and the ability to effectively maintain the performance of an IT system heavily relies on 

careful analysis of these logs. However, as mentioned above, the absence of labelled 

records, sheer rate of log events and lack of a unified structure altogether make it almost 

impossible for even enterprise companies to manually analyse and act on log data. 

Therefore, utilising ML algorithms, our approach here provides a practical solution to 

automatically deal with log data and help identify anomalous events with high accuracy, 

enabling much smaller teams to consume and manage logs in a timely fashion.  

On the other hand, there is no one-size-fits-all solution and when it comes to 

performance data, logs have little, if any, to offer to help. While static threshold alerting 

and logging might be in place, e.g., based on a percentage of interface bandwidth, it 
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would be ill-suited for detection of seasonal anomalies. The common practice, therefore, 

involves using historical time series data to learn seasonal patterns and construct forecast 

models; stream of observations is then compared against these baseline forecasts to 

detect anomalies [15]. Time series, however, have their challenges, one of which being 

the fact that they usually require a lot of low granular past data, making them 

computationally expensive. Therefore, depending on the use cases, either or a 

combination of these complementary solutions can be considered to achieve the best 

performing and cost-effective solution for detecting and proactively acting on anomalous 

events. 

6. Conclusion 

In this paper, we have presented an automated anomaly detection model combining 

unsupervised and supervised machine learning with domain knowledge. The method is 

composed of the following stages: parsing and analysing logs to create meaningful 

clusters, creating a labelled dataset using automation rules based on the domain 

knowledge, and creating an effective classification model to detect anomalous log events.  

Our framework, after generating a labelled dataset, uses supervised machine 

learning models to extract useful features using Bag of Words and TF-IDF algorithms to 

create an effective anomaly detection model for log events. Although, this approach 

could require different set of rules for different systems, as different type of domain 

expertise is needed to create contextual automation rules, it offers an effective anomaly 

detection model that can be used to significantly reduce the number of alerts. 

Automated detection of anomalous log events still faces three main challenges. First, 

there is no concrete way of distinguishing anomalous log events. Secondly, every 

software-production environment is different, therefore, identification of anomalous log 

events requires a different type of domain expertise. Thirdly, the automated analysis 

process should be speedy enough to allow early detection of anomalies and reduce 

downtime and improve business operational function.  

Our future work will focus on addressing these challenges. We will also consider 

integrating anomaly detection methods based on time series data in conjunction with log 

files to improve the efficiency of anomaly detection. Finally, we will apply our approach 

to use cases requiring high volume of real-time data traffic such as autonomous vehicles 

[16], smart manufacturing [17], and ubiquitous systems [18,19] and as well as scientific 

software systems [20, 21]. 
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