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Abstract. Recently shape constrained classification has gained popularity in the
machine learning literature in order to exploit extra model information besides raw
data features. In this paper, we present a new Lattice Linear Discriminant Analysis
(Lattice-LDA) classifier, which allows to take shape constraints of data inputs, such
as monotonicity and convexity/concavity. Lattice-LDA constructs a nonparamet-
ric nonlinear discriminant hyperplane for classification, using an additive format
of 1-D lattice functions (piecewise linear functions). Moreover, the new classifier
features in taking complex shape constraints including combinations of shapes or
S-shape. We optimize the model parameters using the Adaptive Moment Estima-
tion (Adam) algorithm embedding stepwise projections which guarantee feasibility
of the shape constraints. Through simulation and real-world examples, we demon-
strate that the new classifier could accurately recover the nonlinear marginal effect
functions and improve classification accuracy when additional shape information
is present.

Keywords. Shape constrained classification, Lattice method, Linear Discriminant
Analysis, Monotonic inference

1. Introduction

In machine learning, classification is the problem to use an object’s features to identify
which group or class it belongs to. The classification problem has been discussed long in
history and can be traced to Fisher’s Linear Discriminant Analysis (LDA) [1]. In many
areas of applied science, for classification problems, it typically exhibits shape restricted
relationships, which may include monotonicity and unimodality, between input features
and the target. For instance, in business and econometrics area, generally the demand
functions are monotonically decreasing in prices, cost functions are monotonically in-
creasing and may be concave in input prices, and utility functions of risk averse agents
are concave. Conventional classifiers, such as standard LDA and logistic regression, is
not able to utilize this domain-specific knowledge to improve accuracy of model and may
also make it difficult to interpret. Considering various types of shape constraints informa-
tion, monotonicity is commonly seen and also widely used in practice. Traditional clas-
sifiers, which may not accommodate the aforementioned shape information, could yield
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data over-fitting issues, and make the results counter-intuitive. In recent years, researches
regarding classification problems with monotonicity have gained increasing attentions.
For instance, a thorough review of modern monotonic classifiers, which includes mono-
tonic tree methods, support vector machine (SVM), monotonic neural network (NN), etc.
are given in [2].

As a supervised learning tool, LDA has applications in classification and dimension-
ality reduction [3]. Since LDA was developed by Fisher in 1936, it was generalized to
handle various classification problems. Hastie et al. [4] applied optimal scoring to obtain
nonparametric versions of discriminant analysis. Later, Shao et al. [5] developed sparse
LDA framework, and Wang et al. [6] proposed a semi-supervised LDA for dimension
reduction and classifications. Robust LDA methodologies were developed to handle the
outliers and enhance the robustness to noise [7, 8]. More recently, LDA and several ex-
tensions were also applied in image recognitions [9, 10, 11]. To handle non-linearity,
Generalized Discriminant Analysis (GDA) using kernel function operator was proposed
in [12, 13, 14]. The underlying theory is analogous to the kernel transformation in SVM
as the GDA method maps the input features to high dimensional space. However, similar
to SVM, it does not allow domain-specific shape information, and may cause overfitting
issue. Thus, an improved methodology to incorporate monotonic or more generic shape
information is preferred in practical area.

Monotonic classification [2] has applications to many classifiers, k-Nearest Neigh-
bor (k-NN) [15], tree methods [16], SVM [17], and neural networks (NN) [18]. [19] de-
veloped the isotonic regression, which was one of the early examples of shape-restricted
inference. After that, in data analytics area, researches have developed various meth-
ods and algorithms to apply the monotonic constraints. For example, Ben-David et al.
[20] introduced Ordinal Learning Method (OLM), where the authors applied a mono-
tonic rule based object ordering procedure. Gutierrez et al. [21] proposed an ordinal clas-
sification/regression where target can take values from an ordered categories set. Kot-
lowski and Slowiński [22] also presented an analysis using a nonparametric ordinal clas-
sification which can accommodate monotonicity constraints. Moreover, in finance area,
Potharst and Feelders [23] provided a monotonically constrained tree method to model
house pricing problem.

Motivated by the flexibility of lattice approach, we introduce Lattice-LDA, a novel
extension of LDA using the lattice based discriminant hyperplane. The new classifier di-
rectly supports simple shape constraints such as monotonicity and convexity/concavity
for unimodal input. We also present examples which highlight the classifier’s ability to
process more complex shape constraints such as the S-shape. The key to our approach
is to develop a nonlinear discriminant hyperplane using an additive model of 1-D lattice
functions (which is essentially a piecewise linear function). Estimation of the lattice pa-
rameters uses the celebrated Adaptive Moment Estimation (Adam) Stochastic Gradient
Descent (SGD) algorithm which includes a sequential projection algorithm to map to
solution to shape constrained feasible regions.

The lattice based model is a nonparametric approach, where the lattice itself is fully
defined by the lattice grid and the values at the grid. The shape constraint can be con-
sidered as a model regularization to improve robustness of fit. Garcia and Gupta [24]
postulate the original lattice regression, including a range of applications [25]. Google
has recently published the TensorFlow Lattice (TFL) library [26] which is a lattice based
predictive model taking shape constrained features, in addition to the well known Ten-
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sorFlow library. Our Adam plus sequential projection algorithm is motivated by the the
same idea as in TFL.

We organize the paper as follows. We first introduce standard LDA theory in Section
2. Next, we describe the Lattice-LDA methodology in Section 3. More specifically, the
Adam optimization and projection algorithms are presented in Section 3.3. In Sections
4 and 5, we perform simulation and real data studies to demonstrate that, the Lattice-
LDA methodology could produce better classification results compared with the popular
classifiers, which include the standard LDA, SVM, and tree methods. Finally, in Section
6, we present the concluding remarks and discuss some future research directions.

2. Standard LDA

The standard Linear Discriminant Analysis (LDA) model was first proposed by Fisher
[1] to separate two classes of objects, and was generalized by Rao [27] to address multi-
class problems. A further discussion of the LDA theory can be found in the book [3] and
the Scikit-learn machine learning library [28]. In the following, we will introduce the
notions used and present the LDA algorithm.

Denote training data set as {(xl ,yl)}, l = 1,2, . . . ,N, where each object xl includes d
features: xl ∈R

d , and each label yl comes from an M-class set: yl ∈ {0,1,2, ...,M−1}. In
the conventional discriminant analysis, the density of input X of each class M is assumed
to follow a multivariate Gaussian distribution N(μμμm,ΣΣΣm). More specifically, in LDA, all
distributions share the same covariance matrix ΣΣΣm = ΣΣΣ, a homoscedasticity assumption;
whereas in the Quadratic Discriminant Analysis (QDA), the covariance matrix ΣΣΣm is
allowed to differ by class m. LDA applies the Bayesian inference to select the optimal
class label corresponding to the highest conditional probability

LDA(xxx) = argmax
m

p(y = m|X = xxx) (1)

After the variable transformation and simplification process, the solution of LDA
classifier is linked to the Gaussian distribution parameters

LDA(xxx) = argmax
m

xxxT ΣΣΣ−1μμμm−
1
2

μμμT
mΣΣΣ−1μμμm + log(πm) (2)

where πm is the prior probability.
For illustration purpose, we analyze Fisher’s linear discriminant analysis using a

two-class example yl ∈ {0,1}, which is a 2-D example from Scikit-learn [28]. Because
there are two features d = 2, the class separating boundary is essentially in a linear
line. Figure 1 (a) provides the scatter plot of the source data using blue and red dots,
representing the two classes. It also plots the corresponding contours of the conditional
distribution, and the linear discriminant line generated by LDA. As for Figure 1 (b), it
shows two density plots of the corresponding Gaussian conditional distributions. LDA
predicts the label corresponding to the larger of the two densities.

In LDA, the linear discriminant boundary is defined as a linear hyperplane xxxT βββ −
β0 = 0, where the optimal estimators are
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Figure 1. Illustration of LDA analysis (an example from the Scikit-learn): (a) Plots of the source data, contours
and LDA discriminant line (b) Two Gaussian conditional distributions corresponding to each class.

β̂ββ = ΣΣΣ−1(μμμ1−μμμ0) (3)

β̂ββ 0 =
1
2

βββ T (μμμ1 +μμμ0) (4)

In Fisher’s original definition, the coefficients βββ of the separating plane is in proportion
to the solution by minimizing the ratio S(βββ ). It is defined as the between classes variance,
divided by the within classes variance.

β̂ββ ∝ argmin
βββ

S(βββ ) :=
σ 2

between

σ2
within

=
(βββ T (μμμ1−μμμ0))

2

2wwwT ΣΣΣwww
(5)

As a result, the formula serves as a verification of the optimality of β̂ββ . If β̂ββ is optimal,
the gradient of the objective function should satisfy

∂S(βββ )
∂βββ

∣∣∣
β̂ββ
= 0 (6)

3. Lattice-LDA for shape constrained classification

The core component of Lattice-LDA methodology is the lattice based discriminant hy-
perplane. We construct the hyperplane using an additive model of the 1-D lattice func-
tions, instead of directly using a high dimensional lattice. The optimization algorithm
ensures that each of the 1-D function satisfies the corresponding shape constraint.

Recall that in LDA, we have a linear separating hyperplane

f (xxx) = xxxT βββ +β0 =
d

∑
i=1

xiβi +β0 = 0
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where d is the number of features. The idea of Lattice-LDA is to introduce a nonlinear
function f (·), which is defined as an additive form of 1-D nonlinear functions ri(xi) of
each feature xi

f (xxx) =
d

∑
i=1

ri(xi)+β0 (7)

Each function ri(xi) is subject to a different shape constraint and, as a result, the linear
combination function f (·) also marginally satisfies the shape constraints of feature xi.
Note that, from the marginal convexity or concavity, it is not necessary to imply if the
joint effect is convex or concave. In other words, we did not consider the shape informa-
tion regarding the interactions of features.

In this paper, we mainly study five types of shape constraints, including linear,
monotone increasing/decreasing, and convex/concave, as shown in Table 1. In Lattice-
LDA, the model is component-wise shape-restricted, which implies each feature xi satis-
fies one of the specific shape constraints. These five shapes are simple and fundamental
types of shapes, which can be readily expanded to more complex combinations of the
shapes such as convex increasing/decreasing or S-shape.

Table 1. Supported shape constraints

Shape # Shape type Shape label

1 Linear l
2 Monotone increasing in
3 Monotone decreasing de
4 Convex cvx
5 Concave ccv

In the following subsections, we first describe how to construct the 1-D function
ri(xi) in (7) by applying the lattice transformation, formulate the Lattice-LDA optimiza-
tion problem, and then solve it using the Adam SGD method.

3.1. Lattice transformation

The concept of lattice transformation is originally introduced in Lattice regression
[24, 25]. The lattice regression model essentially interpolates a parametric function on a
regular grid of knots. When the function values on the grid knots are defined, the func-
tion in the lattice cell is simply calculated via weighted average of the vertex values of
the cell. The lattice transformation maps the original data to a higher dimensional sparse
matrix of the weights. Instead of processing the source data, the transformed weight
matrix effectively becomes the new model input. Google’s TFL also adopts the lattice
transformation and the 1D lattice function as a fundamental model component.

The lattice transformation is designed in generic high dimensional problems, how-
ever, a high dimensional lattice of (x1,x2, . . . ,xd) is expensive to construct. To simplify
the approach, we apply a 1-D lattice transformation to each function ri(xi) in Equation
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(7).2 Suppose that there are Ki knots in the xi dimension, where the knots are defined as

X1,i ≤ X2,i ≤ . . .≤ XKi,i

X1,i and XKi,i represent to the minimum and maximum bounds of the domain of xi. The
location of the knots is customizable but is typically set as (equal spaced) quantiles of
the data and unchanged throughout the model estimation. As a result, each 1-D lattice of
xi is completely defined using Ki knot values or Ki parameters.

3.1.1. Piecewise linear approximation of r(x)

The 1-D lattice is essentially a piecewise linear function.3 Without loss of generality, we
drop the subscript i in this subsection, reducing the function form to r(x). In this section,
we will describe how to approximate the function r(x) using an interpolation of look-up
table values on the knots. Figure 2 provides an illustration of the piecewise linear, or 1-D
lattice approximation.

The pre-specified K knots X1,X2, . . . ,XK define K−1 buckets in the entire domain of
x. Suppose x is a data point in one bucket [Xk,Xk+1), it can be expressed as the weighted
average of the precedent and subsequent knots

x = wkXk +wk+1Xk+1

where the linear weights are simply computed as

wk =
Xk+1− x

Xk+1−Xk
and wk+1 = 1−wk

Let a parameter vector βββ be the knot values of the piecewise linear function, or
βk = r(Xk). The values of the parameter βββ regulate the shape of the piecewise linear
function. The function value of r(x) is therefore the weighted average of the knot values

r(x) = wkβk +wk+1βk+1

In order for the formula to be consistent across all buckets, we introduce a weight
vector φφφ(x) of length K for any given x, and include zero weights in the other buckets

φφφ(x) = (0,0, . . . ,wk,wk+1,0, . . . ,0) (8)

such that

x = φφφ(x)T (X1,X2, . . . ,XK)

and define the piecewise function r(x) of the entire domain as

r(x) = φφφ(x)T βββ (9)
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Figure 2. Piecewise linear function construction of r(x) (equivalent to one-dimensional lattice)

The weight vector φφφ(x) is the lattice transformation or mapping function.
Note that the vector β defines the look-up table values on each knots r(Xi) = βi. To

make function r(x) satisfy domain-knowledge shape constraints is essentially achieved
by altering the values of β . For example, for a monotone increasing piecewise linear
function r(x), βββ needs to be monotone increasing:

βk ≤ βk+1,k = 1,2, . . . ,K−1

The values in βββ can be altered in a similar way such that the vector meets the more
complex shape restrictions, including convex or concave shapes. Using the knot values
βββ to control the shape of the function is a feature of the lattice transformation.

3.2. The new Lattice-LDA model

We have formulated each shape-restricted 1-D lattice as ri(xi) = φφφ i(xi)
T βββ (i) , where βββ (i)

are the vectors of knot values defined in Section 3.1.1 (subscript i has been dropped).
Without loss of generality, we assume that the first d1 indexes are linear type shapes,
which do not require to a piecewise linear formulation

ri(xi) = xiβ (i) , or φ(xi) = xi, i = 1,2, . . . ,d1

The remaining terms ri(xi), i = d1+1, . . . ,d are shape constrained piecewise linear func-
tions. Therefore, when merging all components together, it results the nonlinear hyper-
plane defined by

0 = f (xxx,βββ ,β0) = φφφ(xxx)T βββ +β0, s.t. gi(βββ (i))≥ 0, i = d1 +1, . . . ,d, (10)

where φφφ(xxx) concatenates all components of φφφ i(xi), i = 1,2, . . . ,d. gi(·) ≥ 0 is a concep-
tual form of constraint that requires each knot value vector βββ (i) to satisfy the correspond-
ing shape constraints.

2We may also introduce a shape restricted terms using 2-D lattice to explicitly capture the pairwise interac-
tions of features. However, the approach is significantly more challenging than just stacking the 1-D lattices,
which remains as a future research topic.

3In TensorFlow Lattice, the piecewise linear function is referred as a calibrator.

G. Deng et al. / Lattice Linear Discriminant Analysis for Shape Constrained Classification86



After applying the lattice transformation on input xxx to φφφ(xxx), which is a matrix of
weights, the original input with d dimensions is transformed to a much larger dimension:
d1 +∑d

i=d1+1 Ki number of covariates. Given the hyperplane defined by {xxx | f (xxx,βββ ,β0) =

0}, the lattice LDA’s objective function is the variance ratio function S(βββ ), the same as
the standard LDA. Lattice-LDA requires additional shape constraints gi(βββ (i)) ≥ 0, i =
d1 +1, . . . ,d.

The optimization problem setup of the new shape-constrained lattice LDA is there-
fore formulated as a new constrained optimization problem

β̂ββ ∝ argmin
βββ

S(βββ ) (11)

subject to: gi(βββ (i))≥ 0, i = d1 +1, . . . ,d

3.3. Adam SGD method with stepwise projection

In this subsection, we apply the celebrated Adam SGD method [29] with stepwise pro-
jection to solve the Lattice-LDA optimization problem (11). The constraints gi(βββ (i))≥ 0
are shape constraints specifying the shape of each individual feature. As mentioned be-
fore, the Adam method plus projection is also motivated by the algorithm implemented
in TFL [26].

Adam is a SGD optimizer that combines features of its two predecessors: AdaGrad
and RMSProp. It is a popular optimizer applied in various machine learning tools. Denote
the loss function as L(βββ ). At the tth iteration, the standard gradient descent algorithm
updates the iterate

βββ t+1 = βββ t −α∇L(βββ t)

where α is the learning rate and ∇L(βββ t) is the gradient of the loss function. Due to the
randomness of the gradient estimation, instead of directly using the gradient, the Adam
optimizer updates the first and second moments mt and vt using the following moving
average approach:

mt+1 ← b1mt +(1−b1)∇L(βββ t)

vt+1 ← b2vt +(1−b2)(∇L(βββ t))
2

where b1 and b2 are exponential decaying rates. The bias-corrected first and second mo-
ments are then estimated as follows:

m̂t+1 = mt+1/(1−bt+1
1 )

v̂t+1 = vt+1/(1−bt+1
2 )
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Figure 3. Projection of a non-monotone solution as a monotone increasing solution

Finally, iterate βββ t+1 is updated using a dynamic learning rate

βββ t+1 = βββ t −α
m̂t+1√
v̂t+1 + ε

where ε is a stability control parameter.
In order to satisfy the constraint gi(βββ (i))≥ 0, we adopt the a shape projection algo-

rithm at each iteration. The new iterate update step is expressed as follows

βββ t+1 = proj
(

βββ t −α
m̂t+1√
v̂t+1 + ε

)
, s.t. gi(βββ (i))≥ 0 (12)

There are two basic types of projection algorithms for the monotone shapes and
convex/concave shapes:

• Monotone increasing or decreasing types
Figure 3 illustrates an example of the projection of an increasing type. To trans-
form a shape constraint into a monotone increasing shape, consider a given vec-
tor βββ = (β1,β2, . . . ,βK) and simply compute the step difference between the val-
ues Δβk = βk+1− βk,k = 1,2, . . . ,K− 1. Then, convert the difference values to
nonnegative (or nonpositive) and recalculate the vector based on the first value,
β̂ββ = proj(βββ ) where

β̂k = β1 +
k−1

∑
i=1

min/max(Δβi,0)

“max” should be applied in monotone increasing types and “min” in monotone
decreasing types.

• Convex or concave types
The algorithm that projects a vector as convex (or concave) is based on Dyk-
stra’s alternating projections algorithm. In addition to the knot value difference
Δβk, define the step difference of the knot locations as ΔXk = Xk+1 − Xk,k =
1,2, . . . ,K−1. The new β̂ is alternatively updated in a set of two steps

Δβ̂k = min/max
(

Δβk,
ΔXk(ΔXk +ΔXk+1)

Δβk +Δβk+1

)
,k = 1,3, . . .

G. Deng et al. / Lattice Linear Discriminant Analysis for Shape Constrained Classification88



Δβ̂k = max/min
(

Δβk,
ΔXk+1(ΔXk +ΔXk+1)

Δβk +Δβk+1

)
,k = 2,4, . . .

Use “min and max” for the convex type and “max and min” for the concave type.
That way, the project value becomes β̂ββ = proj(βββ ) which is calculated using the
following formula

β̂k = β1 +
k−1

∑
i=1

Δβ̂k

Note that several rounds of value updates are required when applying Dykstra’s
alternating projection algorithm. As pointed out by the authors in TFL [26], Dyk-
stra’s algorithm would give proper projection with respect to L2 norm but ap-
proaches it from “wrong” side, so it would need to do approximate projections
which project strictly into feasible space. To move towards the feasible region
defined by the constraints, the default number of projection times of Dykstra’s
alternative algorithm is set to 8.
From our experience, we observe that around 10 rounds of the Dykstra’s updates
would provide good approximations with respect to the convex or concave shape
constraints. In the optimization process, we set a large value (50) as the maximum
number of rounds of updates in the following simulation and real data analysis.

4. Simulation studies

In this section, we will assess the performance of the Lattice-LDA classifier using three
simulation examples. Our main interest is to examine the model’s ability to recover un-
derlying marginal effect functions and the model goodness of fit. For illustration pur-
poses, the target attribute y comprises two labels {−1,1}. The marginal effect functions,
or the responses of y to each input variable x, are subject to shape constraints. The Lattice-
LDA classifier is implemented in MATLAB version R2019b, on a 2.70-GHz Intel Core
i7-10850H CPU with 32-GB RAM running Windows 10.

Table 2 summarizes the simulation settings and hyperparameters for Lattice-LDA
model in the three examples. We use 19 equally-spaced percentiles, which are the 0.05 to
0.95 percentiles, plus the minimum and maximum points to be knot set for each feature.

Table 2. Simulation settings for examples 1-3

# n x distribution r(x) Shape type Shape label

1 5,000 x1 ∼ Unif(0, 1) NA linear l
x2 ∼ Unif(0, 1) NA concave ccv

2 50,000 x1 ∼ Unif(-0.5, 0.5) x3
1 S-shape ccv, cvx

3 50,000 x1 ∼ Unif(-0.5, 0.5) 2x2
1 convex cvx

x2 ∼ Unif(0, 1) exp(x2)−1 convex cvx
x3 ∼ Unif(0, 1) log(x3)/4+2 concave ccv
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1. A convex increasing function.
The first experiment is a 2-D example in a box domain. Both x1 and x2 are sam-
pled from the standard uniform distribution in (0,1). We then separate the data
into two groups by a convex increasing curve, as shown in Figure 4 (a). Even the
underlying curve is “convex increasing”, we only specify shape constraints in the
model as x1 = “l” (linear), and x2 = “ccv” (concave), and the setting meets our
purpose. Figure 4 (a) also plots the reconstructed piecewise linear discriminant
curve, a convex piecewise linear function. As observed, the approximation of the
underlying nonparametric curve is precise in the interval (0.2, 0.8), where the
samples are dense, but less accurate the edges of the x domain.

2. A concave to convex S-shape
The second example is a 1-D example with x1 generated from a uniform distribu-
tion in (−0.5,0.5). y is from a binomial distribution with the probability p to be
an S-shape function p = r1(x1) = x3

1. We also normalize the value p so that the
range is (0,1). In order to handle the S-shape function, we break x1 into two addi-
tive components, where the x1,pos = max(x1,0), and x1,neg = min(x1,0) such that
the probability p can be expressed as p = r1(x1) = r1,pos(x1,pos)+ r1,neg(x1,neg).
Both the new functions r1,pos and r1,neg are modeled in Lattice-LDA, and the
specified shapes for the x1,neg and x1,neg are “ccv” (concave) and “cvx” (convex).
Figure 4 (b) shows the combined piecewise linear approximation result, where
two curve components are scaled and concatenated. It can be observed that
Lattice-LDA is able to approximate the actual functional form r1(x1) = x3

1 pre-
cisely.

3. An additive model
In the third experiment, we generate a 3-D example, with x1,x2,x3 from the uni-
form distributions in Table 2. The probability p to generate the binary response y
is defined by an additive model p = ∑3

j=1 r j(x j), where the underlying functions
r1(x1) = 2x2

1, r2(x2) = exp(x2)− 1, and r3(x3) = log(x3)/4+ 2. Similar to the
previous experiment, we also standardize the vector pi so that the range is (0,
1). The specified shapes for x1,x2,x3 according to the underlying functions are
“cvx” (convex), “cvx” (convex) and “ccv” (concave).
Figure 5 presents the reconstructed piecewise linear functions for the three fea-
tures. Again, we scale the model fitted curve for each feature to have the same
range as the actual functions. Based on the results, it shows Lattice-LDA approx-
imates the two convex functions well. For the concave function r3(x3), the ap-
proximation is slightly less accurate when in the interval x3 < 0.1, this is due to
the fact that the knots are spare in that data range.

In the three examples, Lattice-LDA can recover the underlying parametric or non-
parametric functions with high accuracy, yielding better classification than conventional
linear classifier. It is noted that increasing the sample size or using more dense selection
of knots would improve the goodness of model fit, but it would also require the opti-
mization process to take a longer time (and more iterations), which may cause overfitting
in the data. Based on our experience, 10 to 20 knots are sufficient for the Lattice-LDA
method to maintain the classification accuracy.
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Figure 5. Piecewise linear spline approximation r̂i(xi) vs. actual ri(xi) for Example 3 (a) r1(x1) = 2x2
1; (b)

r2(x2) = exp(x2)−1; (c) r3(x3) = log(x3)/4+2;

5. Real world data analysis

In the following, we compare Lattice-LDA with a set of classifiers using several real ex-
amples. We will compare Lattice-LDA regarding predicting accuracy with the following
classifiers: standard LDA, SVM (with Gaussian kernel), Classification tree, Classifica-
tion tree by applying Adaptive Boosting [30], and PM-SVM [31]. We are also interested
in recovering approximation functions of each feature, which could help better under-
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stand the underlying relationship between outputs and features. Note that in the exam-
ples, the PM-SVM method was applied with a Randomised Conjunctive (CJ1) algorithm
to generate the constraint set [17]. We sourced the data from the UCI Machine Learning
Repository [32]. Summarized statistics of the data that we used are given in Table 3. Note
that entries with missing values were not included in the analysis.

Table 3. Description of data sets used in experiments.

Data set # Obs # Features # Original Classes Source

Pima 768 8 2 UCI
Wisc Breast Cancer (WBC) 683 9 2 UCI

We have applied 10-fold cross-validations on each dataset. In each run, it randomly
selects 90% data as training sample, remaining 10% data are used as test sample. For a
fair comparison, we used the same training/test and CV partitions for each of the classi-
fiers. To measure the model performance, we used average accuracy, which equals one
minus the mean value of mis-classification rate. The mis-classification rate is calculated
using a 0/1 loss function in the cross validations. We reported the model outputs, includ-
ing the average accuracy and the standard deviation, in Table 4. Note that for the tree
method with Adaptive Boosting, we implemented 100 learning cycles for each training
set.

From Table 4, Lattice-LDA has better performance than all the other classifica-
tion methods regarding the average accuracy results. In addition, we have observed that
Lattice-LDA not only gives higher accuracy than standard LDA and SVM (including
PM-SVM), but also more precise than the tree methods, which are known as typical
nonlinear classifiers.

Table 4. Classification performance based on average accuracy and standard deviation of 0/1 loss.

Data set Lattice-LDA LDA
SVM
(Gaussian)

Tree
Tree
(AdaBoost)

PM-SVM

Pima 0.7748 0.7721 0.6707 0.7058 0.7566 0.7748
± 0.0488 ± 0.0369 ± 0.0579 ± 0.0460 ± 0.0488 ± 0.0428

WBC 0.9693 0.9590 0.9664 0.9267 0.9605 0.9605
± 0.0262 ±0.0299 ± 0.0257 ± 0.0354 ± 0.0217 ± 0.0256

Figure 6 shows the bar charts of all eight features in the Pima (Pima Indians Dia-
betes) example. We have assigned 1 (orange) to the decision attribute “class = test posi-
tive”, and -1 (blue) to “class = test positive”. Overall, about 35% of the patients are tested
positive to diabetes. We break each feature into 10 equal width buckets, and the bucket
numbers shown in the figure present the right end point of the bucket.

Figure 7 presents the marginal shape approximation functions ri(xi) in the Pima data
based on the proposed Lattice-LDA. As one can see, Pregnancies, BMI have convex
shapes, Glucose, Skin Thickness and Diabetes Predigree Function have linear increasing
shapes, and Blood Pressure and Insulin have linear decreasing shapes, which are con-
sistent with the trend in the bar charts. One interesting feature is Age, which exhibits a
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Figure 6. Bar plot of each feature in the Pima example: Orange: “test positive” (1), Blue: “test negative” (-1).
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Figure 7. Plot of each marginal approximation function r̂i(xi) in the Pima example

concave shape, this is due to the fact that majority of the data have age 70 or less, and
the Lattice-LDA methodology is affected more by outliers in the dataset.

For the second example, Figure 8 shows the bar charts of all nine features in the
Wisconsin Breast Cancer (WBC) results. We assigned 1 (orange) to the decision attribute
“class = malignant”, and -1 (blue) to “class = benign”. Overall, around 35% of the at-
tributes are 1.

Figure 9 shows the marginal shape approximation functions ri(xi) in the WBC ex-
ample using Lattice-LDA. According to the results, all features reflect a monotone in-
creasing or convex shapes, which is consistent with the trend in the bar charts. More
specifically, Clump Thickness has a convex shape, whereas Cell Shape Uniformity, Bland
Chromatin and Normal Nucleoli reflect increasing shapes. As for the rest of the features,
they all consist of linear increasing shapes.
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Figure 9. Plot of each marginal approximation function r̂i(xi) in the WBC example

From the real data analysis, one may also concern the model interpretability, which
is another advantage of the Lattice-LDA method. Lattice-LDA model accommodates
nonlinear relationship among inputs features, thus, evaluating the monotonicity and con-
vexity/concavity of the features is intuitive, performed simply by checking the fitted
marginal effect function ri(xi). According to the results in the WBC example as shown
in Figure 9, the Cell Shape Uniformity feature not only shows an increasing trend, but
also produces a steeper effect when the value is between three and four than the less
than three region, and shows more flattened effect when the value is greater than four. In
addition, by using more knots, one can fit the shape constrained features more precisely.
However, it requires more computational resources when the knots are increasing, and it
may also yield an overfitting to data. Based on our analysis, 10 to 20 knots are sufficient
for the Lattice-LDA method to maintain the classification accuracy.

Overall, from both the simulation and real data analysis, it supports the idea that, one
can improve predicting accuracy by incorporating prior knowledge of shape information
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into the classifiers. It could also help to give better interpretability on input features.

6. Conclusion

In this research, we have introduced a novel Lattice-LDA classifier that captures the
shape-restricted constraints of input features. It provides an intuitive way to formulate
and interpret classification problems. We have applied the 1-D lattice transformation to
each input feature, and approximated the marginal function by piecewise linear func-
tions with given set of knots. Solving the shape restricted Lattice-LDA model utilizes
the popular Adam SGD and customizable projection algorithms to map to solution to be
feasible.

The benefit of using shape information of inputs is evidenced in the classification ac-
curacy. Setting proper shape constraint is an effective regularization approach to correct-
ing model bias and generating robust predictions. For the sake of the analysis, we have
presented simulation and real-world examples to evaluate the Lattice-LDA performance.
Based on the results, the shape constraints regularize the model response, preventing the
model from overfitting. The marginal function also helps interpret the responses of each
feature.

Finally, all the shape information is built into Lattice-LDA throughout the input
dimensions. Lattice-LDA does not consider any interaction effects or enforce joint shape
constraints of the features. Adding higher dimensional lattice to the model remains a
future research direction. There are other model enhancement yet to be researched - one
direction is to introduce additional smoothing regularization control of the lattice.
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