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Abstract. With the development of fifth-generation mobile communication 
technology, a huge volume of mobile data have been generated which enable a wide 
range of location-based services. As a result, user location prediction has attracted 
attention from researchers. However, existing methods have low accuracy due to the 
sparsity of user check-ins. In order to address this issue, we propose a method for 
user location prediction based on similar living patterns. We first obtain a vector 
representation of each user’s living habits to cluster users with similar living patterns. 
Then, embedded vectors of POI category and POI location are learned. Finally, we 
construct activity prediction model and location prediction model for each user 
cluster by using Gate Recurrent Unit (GRU). The experimental results for real user 
check-ins show that the proposed method outperforms the baseline methods in most 
cases. 

Keywords. location prediction, living patterns, user check-ins, representation 
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1. Introduction 

There is an inextricable relationship between activities and geographical locations in 
people’s daily routines, and a person’s general life style and regularity can be discovered 
from their location history [1]. With the popularization of location technology and 
personal mobile devices, large-scale semantic-rich trajectories of individuals check-ins 
on social networking sites are being recorded and accumulated at an unprecedented speed. 
Understanding the implied living patterns in these user check-ins can not only contribute 
to insights into their own lifestyles, but also provide support for POI recommendation, 
location prediction and other applications. This facilitates the provision of personalized 
and intelligent services to users and further promotes the development of location-based 
services network (LBSN). Additionally, this identifies the social roles of users and 
provides assistance to urban planners and decision makers. Even so, there have been few 
studies dedicated to living patterns recognition via semantic-rich trajectory data [2]. 

Existing studies show that user mobility has high-order space-time correlation and 
significant multi-level periodicity [3], which are also the challenges in location 
prediction. For instance, there is often multi-level periodicity that governs human 
mobility in the temporal aspect, involving daily routines, weekend leisure, and even other 
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personal periodic activities [4]. The current location is often the same as the same 
location yesterday or one week ago. In the spatial aspect, two distant places may also 
attract users to visit because of similar functions. 

Traditional user location prediction methods, such as those based on frequent 
patterns and Markov chains (MC), cannot effectively model high-order, multi-level 
spatial- temporal correlations, nor can they well solve the long-term dependencies of user 
movement trajectory. Because of the ability to capture complex and nonlinear temporal 
and spatial relationships, recurrent neural networks (RNNs) are extensively used in 
natural language processing [5], location prediction and other tasks, and achieve better 
results than traditional methods. However, there are some problems such as gradient 
disappearance, gradient explosion and historical information loss when dealing with long 
sequences. Long Short-Term Memory (LSTM) and GRU solve the above problems by 
introducing a gating mechanism to select or forget data features. They improve prediction 
accuracy and are widely used in location prediction. 

In addition, an inherent challenge in location prediction is the sparsity of check-ins. 
Different from GPS data, user check-ins are sparse; some users have fewer POI types in 
check-in sequences and less context information that can be used in historical trajectories, 
making it difficult to train a movement model for each individual. 

To tackle the aforementioned challenges, we propose a user location prediction 
method based on similar living patterns. Specifically, we first extract semantic 
information from all the check-ins, and cluster users with similar living patterns to 
alleviate the sparsity of check-ins. Then we use the clusters to train different activity 
prediction models and location prediction models, one for each cluster. Finally, by 
leveraging on GRUs for modeling the historical trajectory features, we concatenate 
trajectory features with similar life patterns and nearby locations and representations of 
recent mobility to predict a user’s next location.  Our main contributions are summarized 
as follows: 

1．We cluster the users with similar living pattern, that is, engaging in similar 
behaviors at similar times, through the semantics information in user check-ins. 

2．We incorporate the temporal information into POI types and POI locations 
embedding as the inputs of activity prediction and location prediction. 

3．The experimental results for two public datasets validate that our model 
outperforms the baselines for both activity prediction and location prediction. 

2. Related work 

Location prediction, as one of the crucial tasks in LBSN, much research has been 
conducted in this area. In this section, we briefly introduce these research works from 
two perspectives: 

Similar User Clustering Perspective. In order to alleviate the sparsity of user check-
ins, many location prediction models based on social networks cluster similar users 
through different measurement criteria and then combine other trajectory information to 
predict the locations. [6] proposed a von Mises-Fisher mixture clustering for user 
grouping so as to learn a reliable and fine-grained model for groups of users sharing 
mobility similarity. [7] proposed a group-level mobility modeling method, which 
alternated between user grouping and mobility and characterized group-level movement 
patterns modeling, clustering users with similar movement behaviors. [8] proposed a 
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location prediction algorithm combining semantic trajectory and location trajectory, 
which mined similar users according to semantic trajectory. 

Although the above methods have improved the prediction accuracy or optimized 
the temporal and spatial complexity, there are still some problems, such as high time 
complexity, low efficiency and so on.  

RNN-based Location Prediction Perspective. Compared with MC-based methods, 
RNN-based methods can capture long-term migration dependencies being able to 
process large-scale mobility data, which has been extensively used in location prediction. 
Earlier works directly utilizes RNNs to model human mobility.[9] proposed the ST-RNN 
model, which used the transfer probability matrix of positions at different time intervals 
in the user’s historical spatial-temporal trajectory to model the local spatial-temporal 
sequence information and predict the user’s location at a specific time. At present, 
numerous RNN-based methods aiming to improve location prediction from different 
perspectives have been proposed. [10] proposed ST-LSTM model, which combined 
spatial-temporal influence into LSTM model to alleviate the problem of data sparsity.  
[11] utilized bidirectional LSTM and convolutional neural network (CNN) to capture 
local and global features of user check-ins for location prediction. Moreover, some 
studies combine RNN with attention mechanisms for location prediction [3][12]. 

The above methods only consider the spatial-temporal factors of user trajectories or 
ignore the influence of semantic information on location prediction results, and they fail 
to provide insights as to why people move from one location to another.  

3. Location Prediction Based on Similar Living Patterns 

3.1. Problem description 

Definition 1. (Check-In point) The check-in point can be denoted as a quadruple ��� =

(�, �,�,�), indicating that user � visits the POI type � located in grid location � at the 

timestamp �. 
Definition 2. (Check-in trace)  Check-in trace ��� denotes a trajectory containing 

all check-in points generated by user � with chronological order in the light of timestamp, 

represented as a sequence  ��� = {���
� , ���

� , . . . , ���
� }，where �� < �� <. . . ��. 

Problem statement: Given the users’ check-in trajectories �� =
	���� ,���� , … ,����
 and given the historical trajectory sequence � of user � before 

time ��, our goal is to train a model to predict the next activity intention � and grid 

location � for user � at time  ��. 

3.2. Similar User Clustering 

Due to the inherent characteristics of sparsity, periodicity and heterogeneity  of check-in 

points, as in [13], we dynamically divided each user’s daily check-in track into � time 

slices T� < T� < ⋯ < T��� < T�, then convert the unequal user check-in track CT to an 

equal length time slice track ST = {s��
	 , s��

	 , . . . , s��
	 }  by setting  a time influence 

threshold, where s��
	 = {c
�

	|c
�
	 ∈ CT, t� ∈ T�}. 

In ST, s��
	  record all POI category visited by  u in the time slice �. To some extent, 

the most frequently visited POI type reflects the living habits of �, that is, the POI that 
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the user is accustomed to the POI type � during the time period. For instance, some users 

are used to going to the supermarket on weekends between 9 a.m. and 11 a.m. 
Definition 3. (Users’ living pattern) The most frequently POI type a user visits in 

each time slice is selected as his typical habit during that time slice. The sequence   

formed living habits of user � in m time slices is called his living pattern, in the format 

of  LP	 = {p��
	 , p��

	 , . . . , p��
	 }. 

In order to better capture the POI category and temporal information contained in 
the user’s living patterns, and better measure the similarity between users based on the 
user’s living patterns, this paper adopts a representation learning method based on Global 
Vectors for Word Representation(GloVe) [14] to embed the user’s life pattern into the 
same vector space. This can extract more semantic information from user check-ins than 
the word2vec model. Algorithm 1 describes the process of similar user clustering. 
 

Algorithm 1: Clustering of users based on similar living patternss

Input: CT 

Output: Cluster_dataset 

1. Initialize Cluster_dataset=Φ 

2. For each check-in trajectory in CT do 
3.          Extract POI categories according to time slice length and time influence 

threshold 
4.          Use GloVe to train the POI categories to get the corresponding vectors 
5.          Cluster and tag user living habits 
6.          Add tags to ST 
7.          Cluster users using Kmeans++ algorithm and add clustering labels 
8.          Add user check-ins with tags to Cluster_dataset 
9. End for 

10. Return Cluster_dataset 

3.3. POI Category and POI Location Embedding Incorporating Temporal Information 

Considering the choice of the next activity or location for user has a strong correlation 
with the current activity type, current location, and current time. For instance, a user who 
chooses a place for lunch at noon on weekdays is inclined to choose a similar restaurant 
nearest to their workplace than a distant one they often go to on weekends. Therefore, 
we incorporate temporal information into POI category embedding and POI location 
embedding. 

Inspired by [13], [15], we propose a model named the POI Type to Vector (PT2V) 
model incorporating time information based on Glove and hierarchical softmax strategy. 

According to the length of the different time slice length ������� and time influence 

span threshold ����������, the check-in traces of each group of users are allocated to m 

time slice(� = ⌈24ℎours/�������⌉ ), and the POI type dictionary and co-occurrence 

matrix are constructed based on GloVe. Then, the Huffman tree is constructed according 
to the visited frequency of POI types in each time slice, and the root node of each 
Huffman tree is set as the corresponding time slice node. Finally, all time slice nodes are 
connected to build a multi-branches tree, namely, the Temporal-POI type tree. 

A user’s choice of the next location is largely related to the current time and location, 
in addition to being influenced by the activity intention. It is therefore crucial to mine the 
location sequence transfer pattern between user check-ins. The Continuous Bag-Of-
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Words (CBOW) model can better approximate the embedding vectors of contextually 
similar locations in the potential space. Hence, the POI Location to Vector (PL2Vec) 
model incorporating temporal information is proposed based on CBOW, which 
combines clusters of the same class. The Temporal-POI location tree is similar to the 
Temporal-POI type tree, except that the leaf nodes of the Temporal-POI location tree 
correspond to the rasterized user check-ins geographical sequences.  

Thus, given a check-in context visited by user � at time �, the probability of user � 

visiting the next activity type or the next location can then be calculated by the proposed 
Temporal-POI category tree or Temporal-POI location tree. Taking activity prediction 

as an example, maximizing the posterior probability of POI category �� to be predicted 

leads to a POI category embedding incorporating temporal information, as shown in 
Eq.(1). 

  Θ = argmax
�

∏ �(�,��|�(�,��))                                   (�,�	)∈�
 (1)   

Where  Θ = {Z, M, Ψ} is the parameter sets of the model, Z is the embedding vectors 

set of Temporal-POI type tree, M is the parameter set of the root node, Ψ is the parameter 

set of the internal node of all Huffman trees, �(�,��|�(�,��)) can be computed by the 

hierarchical softmax. All parameters can be trained and learned by stochastic Gradient 
Descent . 

3.4. User Activity Prediction and Location Prediction Based on GRU 

Location prediction is divided into two tasks: activity prediction by using the POI type 
embedding vector and location prediction by using the POI location embedding vector. 
In order to obtain more contextual information about the location to be predicted, the 
current trajectory and several historical trajectories are jointly used as the current 
trajectory, and the proposed POI embedding method is used to obtain the current 
trajectory embedding vector incorporating temporal information and input to the GRU 
network. The output hidden vector is then fed into a fully connected layer to predict the 
user’s next locations. 

4. Experiments 

In this section, we conduct experiments on two real-world datasets to compare the 
performance of the proposed methods against several baselines. 

4.1. Experimental Setup 

Datasets. This paper evaluates the proposed model on the FourSquare New York City 
(NYC) and Tokyo City (TKY)  datasets [16], which record from April 2012 to February 
2013. The dataset statistics are described in Table 1.  
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Table 1.  Data Statistics 

Dataset Users Check-ins Locations POI types Locations per user POI types per user 

NYC 1083 227178 38333 251 84.05 40.28 
TKY 2293 573126 61858 247 92.44 32.36 

 
We apply the method of [17] to raster the location geographic information in the 

user check-ins, which merges user check-ins within a certain geographical range into the 
same grid and set the grid size as 200 meters . Additionally, we remove check-ins during 
holidays in the datasets and partition them by weekend and weekday. 

Metrics. Following previous work [15, 18], we choose macro-F1 and Acc@K 

(Acc@K=∑ I�p ∈ V�	,
� ��	,
,�,��∈� N⁄ ) to evaluate the performance of our method, where 

macro-F1 is the harmonic mean of  macro-P (����� − � = (∑ (�� 
 /�� + ��))/�) 

and macro-R (����� − � = (∑ (�� 
 /�� + ��))/�); N is the total number of test 

set samples, K = [1, 5, 10, 20] and �(∙) is an indicator function.      

Parameter settings. We set the embedding vector size to 128, the batch size to 30, 

the window size is 2, the hidden layer size to 256, and the initial learning rate of both the 
stochastic gradient descent algorithm and the Adam optimization algorithm to 0.001. 

4.2. Experimental Results and Analysis 

4.2.1. Location Prediction 

We evaluate the impact of the user clustering on our location prediction model (PL2Vec) 
on the Foursquare NYC and Foursquare TKY datasets. Specifically, we adopt the none-
clustering approach on RNN, Seq2seq and HSTLSTM [10]. We adopt user clustering 
approach on LSTM, DeepMove [4] and our method. 
 

Table 2. Location prediction performance comparisons for NYC and TKY datasets 

Dataset Metrics macro-F1 Acc@1 Acc@5 Acc@10 Acc@20 

NYC 

RNN 0.0258 0.1461 0.2889 0.3751 0.4946  
Seq2Seq 0.0294 0.1343 0.2763 0.3642 0.4844  
HSTLSTM 0.0265 0.1434 0.3046 0.3966 0.5071  
LSTM 0.0482 0.1973 0.3489 0.4522 0.5759  
DeepMove 0.0527 0.2080 0.3941 0.4931 0.6123  
PL2Vec 0.0572 0.2004 0.3597 0.4553 0.5910  

TKY 

RNN 0.0200 0.2669 0.4475 0.5498 0.6669  
Seq2Seq 0.0322 0.2630 0.4418 0.5413 0.6621  
HSTLSTM 0.0295 0.2510 0.4233 0.5178 0.6351  
LSTM 0.0415 0.2638 0.4567 0.5625 0.6940  
DeepMove 0.0508 0.2726 0.4877 0.5971 0.7152  
PL2Vec 0.0499 0.2660 0.4654 0.5708 0.7001  

 
As can be seen from Table 2, our approach outperforms the none-clustering 

approaches in terms of the macro-Recall, macro-f1, and Acc@K. Moreover, Compared 
with DeepMove, one of the state-of-the-art location prediction models slightly better than 
our model in terms of macro-F1 and Acc@K. This demonstrates that the similar living 
pattern user clustering strategy is effective in improving the proposed prediction model. 
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4.2.2 Activity Prediction 

We compare the PT2vec model with 5 baselines in the task of predicting the activity. (1) 
skip-gram and CBOW: variants of the Word2Vec model. (2) POI2Vec [15]: considering 
the influence of spatial relations between geographical locations and constructing an 
embedding model based on CBOW. (3) Geo-Teaser [19]: incorporating the effects of 
temporal influence into the location embedding based on skip-gram. (4) TALE [13]: 
training the time-aware location embedding model based on CBOW and designing a 
novel temporal tree incorporating temporal information for hierarchical softmax 
calculation. 

Table 3 shows the performance of the user activity prediction model for each type 
of cluster under different POI type embedding methods. 

 

Table 3. Performance comparison with different methods for activity prediction 

Dataset Metrics macro-F1 Acc@1 Acc@5 Acc@10 Acc@20 

NYC 

Skip-gram 0.0263 0.1175 0.2755 0.3764 0.5039  
CBOW 0.0281 0.1229 0.2764 0.3832 0.5110  
Geo-Teaser 0.0268 0.1202 0.2750 0.3744 0.5141  
POI2Vec 0.0288 0.1207 0.2795 0.3911 0.5166  
TALE 0.0294 0.1212 0.2804 0.3839 0.5142  
PT2Vec 0.0303 0.1506 0.3252 0.4374 0.5635  

TKY 

Skip-gram 0.0282 0.2584 0.4559 0.5643 0.6832  

CBOW 0.0313  0.2570  0.4512  0.5518  0.6718  

Geo-Teaser 0.0320 0.2587 0.4547 0.5604 0.6839  
POI2Vec 0.0322 0.2598 0.4551 0.5631 0.6823  
TALE 0.0344 0.2589 0.4630 0.5707 0.6855  
PT2Vec 0.0362 0.2683 0.4715 0.5937 0.7234  

 
As shown in Table 3, PT2Vec performs the best among all the methods. Taking the 

TKY dataset as an example, PT2Vec improves 19.72% in macro-F1 and 4.88%, 4.45%, 
5.27%, and 5.46% in Acc@K, respectively, compared to TALE. This shows that GloVe-
based methods can extract more information about living patterns than word2vec-based 
methods to improve activity prediction. 

4.3. Effects of Parameters 

The length of time slice l
��!"#�$! and time influence threshold i
%&!"%'#( will affect the 

quality of the POI embedding, and further affect activity prediction and location 

prediction. Therefore, we evaluate the effects of ������� and ����������. 

Taking location prediction as an example, Figure 1 and Figure 2 show the 

experimental results for the hyper parameter tuning of  l
��!"#�$!  and i
%&!"%'#( . The 

macro-R and macro-F1 obtained by the location prediction model are given with 
different time slice length and time influence threshold for NYC and TKY, where the 
solid line represents macro-F1 and the dotted line is for macro-R. From left to right, each 
subgraph represents the time influence threshold value: 10, 20, 30, 40, 50, and 60. 
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Figure 1. Effects of time slice length and time influence threshold on NYC 

 

Figure 2. Effects of time slice length and time influence threshold on TKY 

 

As can be seen from Figure 1 and Figure 2, when the length of time slice is 240 and 

the time influence threshold is 60, the value of macro-F1 and macro-R are relatively 

optimal. 

5. Conclusion 

In this paper, we propose a location prediction method based on the user similar living 

patterns. We learn these patterns through the semantics information in check-ins and 

cluster the users with the similar living patterns instead of geographically neighboring 

locations. This alleviates the sparsity of check-in data and enriches the user’s historical 

trajectory characteristics. Additionally, we construct an activity prediction and a   

location prediction for each cluster. The experimental results for real data sets show     

that our method can improve the prediction performance compared to previous 

approaches. 
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