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Abstract. Spatial sub-frequent co-location patterns reveal the rich spatial relation-

ship of spatial features and instances, which are widely used in real applications 

such as environmental protection, urban computing, public transportation, and so on. 

Existing sub-frequent pattern mining methods cannot distinguish patterns whose 

row instance spatial distributions are significantly different. Additionally, patterns 

whose row instances are tightly located in a local area can further reveal the partic-

ularity of the local area such as special environments and functions. Therefore, this 

paper proposes mining Local Tight Spatial Sub-frequent Co-location Patterns 

(LTSCPs). First, a relevancy index is presented to measure the local tightness be-

tween sub-frequent pattern row instances by analyzing mutual participation in-

stances between row instances. The concept of LTSCPs is then proposed followed 

by an algorithm for mining these LTSCPs. Finally, a large number of experiments 

are carried out on synthetic and real datasets. The results show that the algorithm for 

mining LTSCPs is efficient and LTSCPs are practical. 

Keywords. Spatial data mining, sub-prevalent co-location pattern, local tight spatial 

sub-frequent co-location patterns, relevancy index. 

1. Introduction 

Spatial co-location patterns are an important type of spatial pattern which are widely 

used in many fields. For example, botanists mined co-location patterns in plant data and 

found that 80% of the semi-humid evergreen broad-leaved forest grow orchids [1]. A 

traditional co-location pattern uses the clique instance model, requiring two instances in 

the pattern to form a clique, which ignores other important non-clique spatial relation-

ships. Therefore, sub-frequent co-location patterns are proposed to find richer spatial re-

lationships [2-3]. 

However, locally tight row instances in space not only help to understand deeply the 

spatial relationship of features and instances, but also help to identify special environ-

ments or functions of the local spatial area. Figure 1 shows an example of a spatial data 

set with six spatial features. Table 1 shows that when the participation index threshold is 

0.3, the pattern {A, B, C} and pattern {D, E, F} are both sub-frequent patterns. But as 

can be seen from Figure 1, the row instances of the pattern {A, B, C} are closely distrib-

uted in the local area shown by the dotted circle, while the row instances of the pattern 

{D, E, F} are loosely distributed throughout the spatial region, which are two distinct 

sub-frequent patterns. Moreover, the pattern of closely distributed row instances {A, B, 

C} can further reveal the characteristics of this local area; for example, the local area 
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may be a tourist service center. However, existing sub-frequent pattern mining algo-

rithms cannot distinguish these two patterns with significantly different distributions of 

row instances. 

 
Figure 1. An example of a spatial dataset. 

 

Thus, the following contributions are made by this paper. First, by analyzing the 

mutually participating instances in the row instances of the pattern, the correlation degree 

can be defined to measure the degree of local compactness of the pattern row instances. 

The concept of a local tight sub-prevalent co-location pattern is then proposed. Second, 

an efficient algorithm is developed, named the local tight sub-prevalent co-location pat-

tern mining algorithm. Third, the efficiency of the proposed algorithm is evaluated and 

the practicability of local tight sub-frequent co-location patterns is verified. 

2. Related Work 

The traditional co-location pattern based on the clique instances model was first proposed 

by Huang et al. Then, a join-based pattern mining algorithm was proposed [4]. In order 

to address the problem of low efficiency caused by too many connection operations, the 

partial join algorithm [5] and the join-less algorithm [6] were proposed successively. In 

addition, an algorithm for mining maximum frequent co-location patterns and closed fre-

quent co-location patterns was proposed [7]. Exploring the upward inclusion property of 

negative co-location patterns, a minimal negative co-location pattern was proposed [8]. 

A method for mining b-prevalent co-location patterns based on graph databases was 

explored [9]. The authors then developed the star instance model and sub-frequent co-

location patterns, in addition, validated two efficient mining algorithms, namely PTBA 

and PBA [2]. Based on sub-frequent patterns, an effective mining algorithm was pro-

posed [10]. Considering that the location of spatial instances changes with time, an ef-

fective spatio-temporal sub-frequent pattern mining algorithm was proposed [11]. 

Researchers have carried out many related studies on spatial instance distributions 

and table instance distributions. An efficient local region pattern mining method based 

on user-specified local regions was proposed [12]. Considering the wideness of a spatial 

instance distribution, pattern mining with a wide spatial instance distribution using in-

formation entropy as the measure of interest was proposed [13]. Also, a uniform distri-

bution pattern mining method was proposed [14] based on the division of spatial regions. 

Different from the above studies, by considering the spatial relationship between the 

row instances of a pattern, this paper studies sub-frequent co-location patterns and min-

ing algorithms with row instances that are tightly located in a local area. 
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3. Basic Concepts and Definition 

Table 1. Star row instance, SPR and SPI of pattern {A, B, C} and {D, E, F} 

Pattern Feature 

Star partici-

pation in-

stance 

Star row in-

stance 
SPR SPI 

pattern {A,B,C} 

A 
A.1 

A.2 

{A.1#,B.1,C.1} 

{A.2#,B.2.C.3} 
2/4 

1/3 B B.1 

{B.1#,A.1,C.2} 

{B.1#,A.1,C.3} 

{B.1#,A.3,C.2} 

{B.1#,A.3,C.3} 

1/3 

C 
C.2 

C.3 

{C.2#,A.4,B.1} 

{C.3#,A.2,B.1} 
2/3 

pattern {D,E,F} 

D 
D.3 

D.5 

{D.3#,E.3,F.3} 

{D.5#,E.5,F.5} 
1/3 

1/3 E 
E.1 

E.2 

{E.1#,D.1,F.1} 

{E.2#,D.2,F.2} 
1/3 

F 
F.4 

F.6 

{F.4#,D.4,E.4} 

{F.6#,D.6,E.6} 
1/3 

 

Spatial features are various spatial entities, such as restaurant A and travel agency B in 

Figure 1. Spatial instances are specific instances of spatial features at a certain spatial 

location, such as restaurant A.1 and travel agency B.1 in Figure 1. In a spatial data set, 

let F be a set of n features . Let S be a set of instances of F,
 

)1( � �iS i n  is the instance set of spatial features fi. Given a distance threshold d, if

( , ) �j kdis i i d , instance  satisfies a spatial proximity relationship R, such as the in-

stances connected by solid lines in Figure 1. The star neighborhoods instance of instance 

ij is the set consisting of ij and the other spatial instances located within distance d from 
ij, that is, ( ) { | dis( , ) }� �j k j kSNsI i i i i d , the instances ij and ik satisfy R. The star partici-

pation instance ( )iSPIns f ,c is the set consisting of instances of whose star neighbor-

hood instances contain all features in pattern c. Each minimal subset of the star neighbor 

instances whose features cover all features of pattern c is called a star row instance of 

pattern c. The star participation ratio is the fraction of instances of fi that occur in the star 

participation instance of  in pattern c, that is .The star 

participation index of c is the minimum star participation ratio among all features fi in c, 

that is 
i i( ) min{ ( ,c) | }� �SPI c SPR f f c . 

       Given a sub-prevalence threshold min_sprev, if the star participation index of pattern 

c is no less than min_sprev, that is, SPI(c) min_sprev, then the pattern c is a sub-prev-

alent co-location pattern. 
Definition 1 Neighborhoods Instance (NsI): NsI(ij, c) is a set of instances of other fea-

tures except feature  in pattern c in the star neighborhood instance set ( )jSNsI i  of in-

stance . NsI is defined as: 

) }( { ( )� � �j k j ik k kNsI i ,c = i | i SNsI i , f c, f f                                (1) 

As shown in Figure 1, NsI(B.1, {A, B, C}) = {A.1, A.3, C.2, C.3}. 

Definition 2 Center Number (CN): CN(ij, c) is the product of the number of instances of 

each feature that belong to pattern c in the set of neighborhood instances  of . 
CN is defined as: 
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,
( , ) | ( , ) |�

� �
�� kk k j

j f jf c f f
CN i c NsI i c                                  (2) 

 is the projection operation of the instance set on the features. 

As shown in Figure 1, CN (B.1, {A, B, C}) =| {A.1, A.3} | * | {C.2, C.3} |=2*2=4. 
Definition 3 Relevancy Number (RN): RN(ij, c) is the sum of the center number of and 

the center number of each star participation instance in the neighborhood instance of . 
RN is defined as: 

� 	 � 	 � 	
� 	 � 	

+
� �



k j k k

j j k
i NsI i ,c ,i SPIns f ,c

RN i ,c = CN i ,c CN i ,c                                  (3) 

As shown in Figure 1, RN(B.1, {A, B, C}) = CN(B.1, {A, B, C}) + CN(A.1, {A, B, 

C}) +CN(C.2, {A, B, C}) + CN(C.3, {A, B, C}) = 4 + 1 + 1 + 1 = 7. 

Definition 4 Relevancy Ratio (ReR): ReR(ij, c) is the ratio of the relevancy number of  

to the sum of the CN of all star participation instances of pattern c. ReR is defined as: 

c

                                 (4) 

 

As shown in Figure 1, ReR(B.1, {A, B, C}) = 7 / (1 + 1 + 4 + 1 + 1) = 7/8.  

Definition 5 Relevancy Index (ReI): ReI(c) is the maximum relevancy rate of all star 

participation instances in pattern c. ReI is defined as: 

 

( ) max{ ( ) | ( , ), },� � �j j j jReI c ReR i i SPIn c fc s f c                              (5) 

 

In Figure 1, ReR(A.1,{A,B,C}) = 5/8, ReR(A.2,{A,B,C}) = 2/8, ReR(B.1,{A,B,C}) = 

7/8, ReR(C.2,{A,B,C}) = 5/8, ReR(C.3,{A,B,C}) = 6/8, thus, ReI({A,B,C}) = 7/8. 
Definition 6 Local Tight Sub-prevalent Co-location Pattern (LTSCP): An LTSCP is a 

sub-prevalent co-location pattern whose ReI(c) min_rei, min_rei is a relevance 

threshold. 

As shown in Figure 1, if min_rei is 0.7, the sub-frequent co-location pattern {A, B, 

C} is a local tight sub-frequent co-location pattern. 

4. Mining Algorithm 

Since a sub-frequent co-location pattern satisfies anti-monotonicity [5-6], the pattern 

search space can be reduced. On the basis of sub-frequent pattern mining, this paper 

further calculates the local compactness of the pattern, and proposes a local tight sub-

frequent co-location pattern mining algorithm (LTSCP algorithm). The specific process 

is shown in Algorithm 1. 

 

Algorithm 1. LTSCP algorithm 

Input. (a) spatial feature set F; (b) spatial instance set S; (c) neighbor relationship R; (d) min-

imum sub-prevalence threshold min_sprev; (e) minimum relevancy threshold min-rei 
Output. A set of local tight sub-prevalent co-locations 
Variables. (a) SNsI: star neighborhood instances; (b) k: co-location size; (c) Pk: set of k size 

sub-prevalent co-locations; (d) LTk: set of k size local tight sub-prevalent co-locations; (e) 

LT: set of local tight sub-prevalent co-locations 

Method. 
1) SNsI = Gen_Star_Neighs(F, S, R) // generate SNsI 
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2) k=2, P1=F 

3) while (Pk-1 is not empty) 

4)      PK = Gen_k_SCP(Pk-1,SN,min_sprev) //generate Pk 

5)      LTK = Gen_k_LTSCP(Pk, SN, min_rei) //generate size-k LTSCP 

6)                 for each p Pk 

7)                          calculate the relevance ratio of pattern p  

8)                           if ≥ min_rei 
9)                                   LTk p // join LTk 

10)     LT LTk  // join LT 

11) k=k+1 

12) end while 

Step 1 generates the star neighborhood instance set according to the spatial feature 

set, the spatial instance set, and the neighbor relationship. In step 2, each feature   F 

is considered as the size-1 prevalent co-location for the start of the iteration. Step 4 adopts 

the join-based method to generate size-k candidate sub-frequent patterns by connecting 

the size-(k-1) sub-frequent patterns. It then calculates the star participation instance set 

and participation index of the size-k candidate sub-frequent patterns and obtains the size-

k sub-frequent patterns. Steps 5-12 calculate the relevancy index of the size-k local tight 

candidate patterns and obtains the size-k local tight sub-frequent patterns. 

Time complexity. The time complexity of generating a star neighborhood instance set 

is O(m2). In the generation of the size-k sub-frequent patterns, first, |Pk-1| size-(k-1) sub-

frequent patterns are connected to generate |Ck| size-k candidate sub-frequent patterns, 

and then, according to the star neighborhood instance set of each instance, calculate the 

|Ck| star participation instance set and participation index of size-k candidate sub-frequent 

patterns; the time complexity for this is O (|PK-1|2+|Ck|). In the generation of size-k local 

tight sub-frequent patterns, according to the star neighborhood instances of km instances, 

the relevancy index of |Pk| size-k local tight candidate patterns is calculated, and its time 

complexity is O( |C | . Usually, |Pk|<|Ck|, so the time complexity 

of the LTSCP algorithm is O( ). 

5. Experimental results 

5.1. Experimental settings 

Compared algorithm. In order to evaluate the LTSCP algorithm, an algorithm based on 

the join-based approach [4] is used to mine sub-frequent co-location patterns, denoted 

JBSCP. All algorithms are implemented in Python and run on a PC with an Intel Core i7 

CPU, 8 GB RAM, Windows 10, and PyCharm 2017. 

Data sets. This paper randomly generates three synthetic datasets named Synthetic data 

1~3 (S_1, S_2, S_3). In order to analyze the mined patterns, this paper selects two real 

datasets: Plant-data from the "Three Parallel Rivers Region", as shown in Figure 2, with 

a banded distribution, and Beijing-POI, shown in Figure 3, with a clustered distribution. 

Information about these datasets is shown in Table 2. The default settings of parameters 

are shown in Table 3. 
Table 2. Data sets 

Dataset  Number of features Number of instances Spatial scope 

Synthetic data Synthetic data 1 10 10000 500×500 
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Synthetic data 2 10 10000 1000×1000 

Synthetic data 3 25 20000 1000×1000 

Real data 
Plant-data 

Beijing-POI 

31 

16 

335 

23025 

8000×13000 

22000×14000 

Table 3. Default values of the experimental parameters of the LTSCP algorithm 

Dataset d min_sprev min_rei 

Synthetic data 

Synthetic data 1  18 0.2 0.1 

Synthetic data 2  18 0.2 0.1 

Synthetic data 3  18 0.2 0.1 

Real data 
Plant-data  

Beijing-POI 

6000 

50 

0.3 

0.2 

0.7 

0.4 

Figure 2. Distribution of the Plant-data dataset.                       Figure 3. Distribution of the Beijing-POI da-

taset. 

5.2. Influence of different parameters on the efficiency of the LTSCP algorithm 

Effect of Distance Threshold d. Figure 4 shows that, for all datasets, the running time 

gradually increases as d increases, and as the dataset size increases, so does the running 

time. Synthetic data 1 has a denser distribution than Synthetic data 2; the effect of d is 

larger, so the running time is also relatively longer. Since Synthetic data 3 has the largest 

amount of data, with any parameter setting, the runtime is the longest. 

Effect of min_sprev. Figure 5 shows that the distribution of Synthetic data 1 is denser 

than that of Synthetic data 2, so more local sub-frequent patterns are generated. Therefore, 

the runtime for Synthetic data 1 is much higher than for Synthetic data 2. Synthetic data 

3 has the largest amount of data, so the impact of the threshold min_sprev is also the 

largest. 

Effect of min_rei. Figure 6 shows that with the change of min_rei, the runtime of the 

algorithm is basically unchanged. The runtime of the algorithm does not fluctuate greatly 

with the change of min_rei because the relevancy index does not satisfy anti-monotonic-

ity, that is, no matter how min_rei is set, the relevancy index needs to be calculated for 

the sub-frequent patterns mined to determine whether it belongs to local tight sub-fre-

quent patterns. 

Comparison of Algorithm Efficiency. Figure 7 shows that, for the three synthetic da-

tasets, the runtimes of the two algorithms are not much different, because the time com-

plexities of the two algorithms are of the same order of magnitude. Therefore, while 

ensuring relatively high efficiency, the LTSCP algorithm further discovers local tight 

patterns that cannot be found by the JBSCP algorithm. 
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Figure 4. Runtime for different d.                 Figure 5. Runtime for different min_sprev. 
 

 
Figure 6. Runtime for different min_rei.      Figure 7. Runtime for three synthetic datasets: LTSCP, JBSCP. 

5.3.  Analyzing patterns mined by LTSCP 

Pattern comparison for the Plant-data dataset. Figure 8(a) shows that the number of 

LTSCPs is much lower than the number of sub-frequent patterns, because LTSCPs are a 

subset of sub-frequent patterns, which are sub-frequent patterns of local compactness 

among row instances. Figure 8(b) shows that as min_sprev increases, the number of sub-

frequent patterns satisfying the threshold decreases, and the number of LTSCPs also de-

creases. Likewise, the number of LTSCPs is much lower than the number of sub-frequent 

patterns. 

Pattern comparison for the Beijing-POI dataset. Figure 9(a) shows that when d is 

between 30 and 40, the number of LTSCPs does not change. This is because although 

the sub-frequent patterns increase, they do not reach the local compactness required by 

the relevancy index, so the LTSCPs remain invariant. Figure 9(b) shows that with the 

increase of min_sprev, the number of sub-frequent patterns decreases, and the number of 

LTSCPs also decreases, but the proportion of LTSCPs in sub-frequent patterns increase. 

This is because row instances with high participation sub-frequent patterns are more 

likely to be locally dense. 

Figure 8. Number of patterns with varying d or min_sprev of LTSCPs for the Plant-data dataset. 

min_sprev

min_sprev

(b)

min_rei

d

d
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Figure 9. Number of patterns with different d or min_sprev of LTSCP for the Beijing-POI dataset. 

5.4. Case studies 

A case study on the Plant-data dataset. The top five LTSCPs are shown in Table 4. In 

the pattern {Glycyrrhiza yunnanensis, Anisodus acutangulus, Berneuxia thibetica}, all 

three characteristics are medicinal plant characteristics. It shows that the local area where 

the pattern is located is suitable for the growth of medicinal plants, and this local area 

can provide a research environment for pharmacists. 

A case study on the Beijing-POI dataset. The top three LTSCPs are shown in Table 5. 

The pattern in the result {Chinese food, coffee house, hotel, guest house, parking lot, 

clothing store} indicates that features of the pattern appear in a local area. The area where 

the local tight pattern is discovered is a leisure and entertainment center. LTSCPs may 

have high practicability for applications such as the planning and relocation of a city 

center and commercial location selection. 

Table 4. Mining results of LTSCPs for the Plant-data dataset. 

LTSCP Location of LTSCP ReI 
Picea brachytyla Glycyrrhiza yunnanensis Glycyrrhiza yunnanensis 1 1.0 

Glycyrrhiza yunnanensis Anisodus acutangulus Berneuxia 

thibetica 

Berneuxia thibetica 5 0.78 

Abies georgei Orr Hemsleya lijiangensis Trillium tschonoskii 

Maxim 

Hemsleya lijiangensis 2 0.77 

Megacarpaea delavayi Franchet Cephalotaxus lanceolata 

 

Megacarpaea delavayi 

Franchet 3 

0.75 

Picea brachytyla Hemsleya lijiangensis Hemsleya lijiangensis 4 0.75 

Table 5. Mining results of LTSCPs for the Beijing-POI dataset. 

LTSCP Location of LTSCP ReI 

Chinese food, coffee house, hotel, guest house, parking lot, clothing store hotel 1869 0.56 

Cafes, hotels, guest houses, parking lots, clothing stores hotel 1869 0.45 

Chinese food, coffee house, hotel, guest house, clothing store hotel 1869 0.42 

min_sprev
(b)

d
(a)
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6. Conclusion and future work 

In this paper, on the basis of sub-frequent pattern mining, the distribution characteristics 

of the row instances are analyzed. LTSCPs and an associated mining algorithm are pro-

posed to reveal the special functions of local areas. The efficiency of the LTSCP mining 

algorithm is evaluated through experiments, and the practicability of LTSCPs is verified. 

In future research work, we can consider the time-varying location of spatial instances 

and integrate the temporal dimension into LTSCP mining, which will help us to further 

understand the spatiotemporal relationship between spatial instances. 
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