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Abstract. In financial planning problems, the determination of the best investment 
is one of the interesting optimization models. In the proposed work, an investment 
problem (IP) is introduced in vague environment. The vagueness in return parameter 
is characterized by normalized heptagonal fuzzy number (HFN). One of the suitable 
interval approximations, namely, an inexact rough interval of a normalized HFN is 
utilized. Afterward, the inexact rough interval investment problem is considered. A 
dynamic programming (DP) approach is developed, which is applied for optimizing 
the fuzzy investment problem. The ideology of ‘‘rough interval number’’ is 
suggested in the mathematical modeling framework of the proposed problem to 
show the rough data as an inexact rough interval of piecewise quadratic fuzzy 
numbers. Afterward, the DP approach is applied to solve and compute a rough 
interval solution. Finally, a numerical example is yielded for the utility of the 
approach to apply on real-world problem for the decision-maker. The obtained 
results consist of the total optimal return with inexact rough intervals on a $ 10 
million investments is as follows: $ [[1.69, 2.08]: [1.75, 1.91]] millions. 

Keywords. Dynamic programming; Inexact interval; Investment; Normalized 
heptagonal fuzzy numbers; Optimization; Uncertainty 

1. Introduction 

The optimization of investment problems (IPs) has been widely applied in practice such 
as project management. Normally, some problems concerned with a decision-maker 
(DM) and planners are as follows:  

� Whether the project would be finished before a given deadline? and  
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� How we should invest capital?  
provided that qualities of the project may not be under the normal level. Since the cost is 
one of the most important factors the DM is concerned, the IP appears to hold the balance 
in real project management. An IP under uncertainty has been widely studied in the 
literature [1, 2]. Several of the central issues that face sovereign wealth funds were 
studied [3], and it has proved that the fixed costs are modeled proportionally to capital 
stock [4]. In group decision-making, the process of three-way decisions was presented 
with an interval-valued fuzzy decisions by theoretic rough sets [5]. 
     In mathematical optimization, linear programming (LP) has a vital role. An 
LP approach was highlighted as an application to approximate the DP model 
[6]. Thereafter, a DP approach was suggested for the optimization of 
workforce planning decisions in the industry [7]. A dynamic programming 
(DP) model for scheduling with cancellations was introduced with an 
application to chemotherapy appointment booking [8]. In the last few decades, 
several researchers studied the heterogeneity of investment strategies, and 
consequently return, across different types of institutional investors. There has 
been comparatively less empirical analysis of agency problems at severing 
funds largely due to the non-availability of data [9]. A DP approach was 
proposed to determine the optimum train speed profiles under the restrictions 
of speed and passage points [10-11]. The DP was adopted to the evaluation 
when all investments in the set have multiple possible values. In addition, the 
rate of return changes with the change in the amount invested [12-13]. Using 
the lexicographic order, the neutrosophic complex programming was studied 
and obtained the optimal solution [14-15]. In literature, two types of fixed 
costs were studied: The first assumes a lump-sum cost that has to be paid to set 
up a project and the second assumes fixed costs per unit time that are 
independent of the level of investment, and are incurred at each point in time 
for non-zero investment [16]. 
    In literature, the research article [17] evaluated the amount of investment in 
a decision support model. They adopted the uncertainties using the intervals 
and probabilities. The work in [18] introduced the enhancement of capacitated 
transportation model under fuzzy sense. The work in [19] studied the IP model 
with chaos return. In addition, the work in [20] investigated a solution method 
to optimize the fuzzy portfolio selection model. The heptagonal fuzzy numbers 
(HFNs) were studied by [21-22] to solve the critical path problem as well as 
the vendor selection problem. In 2020, The work referenced in [23] presented 
an overview of the interval and fuzzy portfolio selection problems. They 
formulated the portfolio selection problem as a bi-criteria optimization model. 
The work in [24] proposed the inexact rough interval fuzzy LP approach with 
an application to agricultural irrigation systems. Recently, several methods 
have been developed using intervals as well as fuzzy set theory. For instance, 
the work in [25] elaborated the investment opportunities using the interval-
valued fuzzy approach. In their work, they attempted to decrease the 
estimation error due to any uncertainty. The research in [26] presented the 
HFNs using value and ambiguity index.  
    In this paper, the main objective is to study an inexact rough interval 
investment problem. As far as the contribution of this paper concerned, a DP 
approach is adopted to evaluate the developed model. The process of 
optimization is illustrated by an example.   
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    The remainder portion of this article is organized as follows: In Section 2, 
some preliminary concepts are elaborated. In Section 3, the model statement is 
introduced. In Section 4, a numerical example is given. The results and 
discussion are presented in Section 5. In the end, Section 6 concludes the 
work. 

2. Preliminaries 

Definition 1. [26] A fuzzy set  defined on the set of reals  is said to be a 

fuzzy number when its membership function: , have the 

following properties: 
1)  is an upper semi-continuous function; 

2)   

3)  is normal, i.e.,  for which   

4)  is referred as the support of . In 

addition, the closure, designated by , is compact set. 

Definition 2. [26] A fuzzy number  is a heptagonal 

fuzzy number (HFN), for , provided that 
membership function is given by:  

     

Definition 3. [26] Let  and 

. Then, the arithmetic operators are presented as 
follows:  

Addition:  

                       

Subtraction:  

                        

Scalar multiplication:  

Definition 4. [26] A rough interval approximation, represented by , for the 

HFN  is referred by an interval including the 
prescribed value of lower as well as upper bounds, provided the distribution 
details of  are given: 

                                    ,                                         (1)        
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In this definition, 

, are the respective upper as well as lower approximation intervals 

of . For , the rough interval of  is equal to 

. 

Definition 5. [24] Given  and  are 

two rough intervals, provided that  and . Then, the algebraic 

operators  are presented by:  

                                            (2) 

                                            (3) 

                                            (4) 

                                              (5) 

Also,   

, and ,  

  are 

the crisp values, which denote the respective lower as well as upper bounds for 

and . Then, we have 

   (2)'                                                          

   (3)'                                                          

   (4)'                                                                                                             

     

(5)'                                                                                                                

Definition 6.  [24]  Let  and  be the order 

relations are as follows 

(a)                              (6) 

(b)                                                            (7) 

3. Problem formulation 

3.1. Justification for taking HFNs 

The use of HFN in mathematical modelling is comparatively more complicated than the 
other fuzzy numbers like compared the Triangular or Trapezoidal Fuzzy numbers. 
However, HFN provides an extra possibility to denote the imperfect knowledge that 
leads to model some of the real-life models in a more adequate way. HFN gives the 
flexibility to the DM to make the decision using two different heights of HFN. In addition, 
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the HFN denotes the information in a detailed way, and also the vagueness might be 
handled in more realistically.   

3.2. Model development 

Consider that investor has at his disposal $ N millions to invest in L possible 
production programs I, II, …, L. The expectation of profit for some time 
period p is unknown. Nevertheless, they are to be estimated and provided as an 
inexact rough interval number. The main objective is to allocate the 
investment in the available  assets in seeking a way to get the maximum of 
the total expectation of return, for a fixed level of risk. Naturally, the investor 
cannot exceed his / her available wealth $ N million. We now define the 
following notations: 

 : Profit function for investing in I, 

  : Profit function for investing in II 

                                     
  : Profit function for investing in L, 

 : Optimal profit, when amount  is invested simultaneously in I as well 

as II, 
 : Optimal profit, when amount   is invested simultaneously in I, II, 

and III,  
     

: Optimal profit, where  is invested in I, II, III and L together. 

Moreover, we recall the following symbols:  

�� yx min ( ), yx ; �� yx max ( ), yx ; and �� yx sum ( ), yx . 

In the case of using DP approach, at least one criterion must be implemented 
to yield the best possible outcome. The initial criterion used here for 
comparison of two HFNs following the corresponding crisp value. In other 
words, we can write 

 

                 ,                                                              (8) 

where    and .  

The second criterion based on maximal level of presumption is implemented 
when required as follows: 

                                                                               (9) 
The third criterion, the divergence criterion is implemented when required as 
follows: 

(Total divergence .         (10) 
The total divergence is compensative evaluation of risk. In this case, the 
expected loss is equivalent to the expected pay off.   

4. Numerical example 

Consider an investor has at his disposal $ 10 million to invest purpose in the 
production programs designated by I, II, III and IV. For the three years, the 
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mean profits are not known. However, it is observed that they are estimated 
and given in exact rough intervals as shown in Table 2. First of all, we 
compute  as follows: 

(a)   (11)                    

(b)  

          (12)                                                               

(c)  =  (13)                                                 
Comparing the intervals in (a), (b), and (c), we obtain that the optimal value of 
profit or the best policy is determined using the investment amount of $ 1 
million I, and $1 million in II with the total profit (or optimum policy) being 
$[[0.45, 0.56] : [0.47, 0.54]] millions. We evaluate the optimal profits in 

investments in I and II for different values of  as: 

                                                            (14) 

We compute , the optimal return on investments in I, II, and III for different 

numerical data for  by the expression: 

                                                       (15) 

The results of these computations are given in Table 5. Now, let us compute 
, the optimal return on the investments in I, II, III and IV for different 

values of  by: 

                                                 (16) 

The computational results are given in the following Tables 1-5. 

Table 1. Normalized HFN return on an investment for a period of three years 

Inves- 
tment 

Profit investment in I Profit investment in II Profit investment in III Profit investment in IV 

0   0     0 0 0 

1 (0.22, 0.25, 0.26, 0.28, 

0.29, 0.30, 0.42) 

(0.15, 0.20, 0.21, 0.25, 0.25, 

0.26, 0.28) 

(0.10, 0.12, 0.125, 0.13, 

0.14, 0.16, 0.17) 

(0.16 , 0.19, 0.195, 0.20, 

0.22, 0.24, 0.25) 

2 (0.38, 0.40, 0.425, 0.41, 

0.45, 0.48, 0.52) 

(0.31, 0.33, 0.34, 0.35, 0.40, 

0.43, 0.45) 

(0.20, 0.21, 0.22, 0.23, 

0.25, 0. 26, 0.28) 

(0.33, 0.35, 0.36, 0.37, 

0.39, 0.42, 0.48) 

3  (0.55, 0.58, 0.59, 0.60, 

0. 65, 0.71, 0.73) 

(0.45, 0.48, 0.50, 0.55, 0.56, 

0. 60)  

(0.40, 0.43, 0.44, 0.45, 

0.47, 0.52, 0.55) 

(0.30, 0.35, 0.36, 0.37, 

0.46, 0.48, 0.50) 

4 (0.65, 0.70, 0.725, 0.71, 

0.80, 0.85, 0.90) 

(0.45, 0.50, 0.52, 0.55, 0.60, 

0.67, 0.70) 

 (0.40, 0.45, 0.46, 0.47, 

0.50, 0.51, 0.52) 

(0.38, 0.40, 0.42, 0.44, 

0.50, 0.52, 0.53) 

5 (0.75, 0. 81, 0. 83, 0.84, 

0.85, 1.01, 1.03) 

(0.58, 0.60, 0.61, 0.65, 0.75, 

0. 76, 0.80) 

(0.50, 0.53, 0.54, 0.55, 

0.65, 0.66, 0.70) 

(0.50, 0.51, 0.52, 0.525, 

0.53, 0.58, 0.60)  

6 (0.90, 0.95, 0.97, 0.98, 

1.05, 1.11, 1.15) 

 (0.65, 0.70, 0.72, 0.73, 0.85, 

0.90, 0.95) 

(0.65, 0.70, 0.71, 0.72, 

0.73, 0. 74, 0.77) 

(0.50, 0.55, 0.56, 0.565, 

0.57, 0.58, 0.60) 

7 (0.90, 0.95, 1.06, 1.07, 

1.11, 1.16, 1.2) 

 (0.80, 0.83, 0.84, 0.85, 0.87, 

0.90, .95) 

(0.73, 0.76, 0. 77, 0.79, 

0.81, 0.83, 0.85) 

(0.50, 0.56, 0.57, 0.575, 

0.58, 0.59, 0.60) 

8 (1.00, 1.10, 1.22, 1.25, 

1.27 1.30, 1.35),  

(0.80, 0.85, 0.86, 0.87, 0.89, 

0.90, 1.0) 

 (0.80, 0.89, 0.92, 0.93, 

0.94, 0.95, 0.98) 

 (0.53, 0.85, 0. 59, 0.595, 

0.60, 0.61, 0.63) 
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9 (1.11, 1.124, 1.30, 1.33, 

1.35, 1.42, 1.45) 

 (0.85, 0.88, 0.89, 0.90, 0.91, 

0.93, 0.94) 

 (0.90, 0.95, 0.96, 0.98, 

1.00, 1.02, 1.05) 

 (0.55, 0.58, 0.59, 0. 595, 

0.60, 0.61, 0.63) 

10 (1.15, 1.35, 1.39, 1.40, 

1.47, 1.50, 1.55) 

 (0.85, 0.90, 0.91, 0.92, 0.93, 

0.94, 1.00) 

 (0.95, 0.98, 1.00, 1.03, 

1.05, 1.08, 2.00) 

 (0.55, 0.59, 0.60, 0.61, 

0.63, 0.64, 0.65) 

 

Table 2. An inexact rough interval returns on an investment for a period of three years 

Invest
ment 

Profit investment in I Profit investment in II Profit investment in III Profit investment in IV 

  0 0 0 0 0 

1 [[0.25, 0.30] : [0.26, 0.29]] [[0.20, 0.26] : [0.21, 0.25]] [[0.12, 0.16] : [0.13, 0.14]] [[0.19, 0.24] : [0.20, 0.22]] 

2 [[0.40, 0.48] : [0.41, 0.45]] [[0.33, 0.43] : [0.35, 0.40]] [[0.21, 0.26] : [0.22, 0.25]] [[0.35, 0.42] : [0.36, 0.39]] 

3 [[0.58, 0.71] : [0.59, 0.65]] [[0.48, 0.60] : [0.50, 0.56]] [[0.43, 0.52] : [0.45, 0.47]] [[0.35, 0.48] : [0.36, 0.46]] 

4 [[0.70, 0.85] : [0.71, 0.80]] [[0.50, 0.67] : [0.55, 0.60]] [[0.45, 0.51] : [0.46, 0.50]] [[0.40, 0.52] : [0.42, 0.50]] 

5 [[0.81, 1.01] : [0.83, 0.85]] [[0.60, 0.76] : [0.96, 0.75]] [[0.53, 0.66] : [0.54, 0.65]] [[0.51, 0.58] : [0.52, 0.53]] 

6 [[0.95, 1.11] : [0.97, 1.05]] [[0.70, 0.90] : [0.72, 0.85]] [[0.70, 0.74] : [0.71, 0.73]] [[0.55, 0.58] : [0.56, 0.57]] 

7 [[0.95, 1.16] : [1.06, 1.11]] [[0.83, 0.90] : [0.84, 0.87]] [[0.76, 0.83] : [0.77, 0.81]] [[0.56, 0.59] : [0.57, 0.58]] 

8 [[1.10, 1.30] : [1.22, 1.27]] [[0.85, 0.90] : [0.86, 0.89]] [[0.89, 0.95] : [0.92, 0.94]] [[0.58, 0.61] : [0.59, 0.60]] 

9 [[1.24, 1.42] : [1.30, 1.35]] [[0.88, 0.93] : [0.89, 0.91]] [[0.95, 1.02] : [0.96, 1.00]] [[0.58, 0.61] : [0.59, 0.60]] 

10 [[1.35, 1.50] : [1.39, 1.47]] [[0.90, 0.94] : [0.91, 0.93]] [[0.98, 1.08] : [1.00, 1.05]] [[0.59, 0.64] : [0.60, 0.63]] 

 

Table 3. Optimal policy using an inexact rough interval with investments in I & II 

    Best policy for I 
including II 

0 0 0 0 (0, 0)                  

1 [[0.25, 0.30] : [0.26, 0.29]] [[0.20, 0.26] : [0.21, 0.25]] [[0.25, 0.30] : [0.26, 0.29]] (1, 0)                  

2 [[0.40, 0.48] : [0.41, 0.45]] [[0.33, 0.43] : [0.35, 0.40]] [[0.45, 0.56] : [0.47, 0.54]] (1, 1)               

3 [[0.58, 0.71] : [0.59, 0.65]] [[0.48, 0.60] : [0.50, 0.56]] [[0.60, 0.74] : [0.62, 0.70]] (2, 1)                 

4 [[0.70, 0.85] : [0.71, 0.80]] [[0.50, 0.67] : [0.55, 0.60]] [[0.78, 0.97] : [0.80, 0.90]] (3, 1)                  

5 [[0.81, 1.01] : [0.83, 0.85]] [[0.60, 0.76] : [0.69, 0.75]] [[0.91, 1.10] : [0.94, 1.05]] (3, 2)                  

6 [[0.95, 1.11] : [0.97, 1.05]] [[0.70, 0.90] : [0.72, 0.85]] [[1.06, 1.31] : [1.09, 1.21]] (3, 3)                  

7 [[0.95, 1.16] : [1.06, 1.11]] [[0.83, 0.90] : [0.84, 0.87]] [[1.18, 1.45] : [1.21, 1.36]] (4, 3)                  

8 [[1.10, 1.30] : [1.22, 1.27]] [[0.85, 0.90] : [0.86, 0.89]] [[1.29, 1.61] : [1.33, 1.41]] (5, 3)                  

9 [[1.24, 1.42] : [1.30, 1.35]] [[0.88, 0.93] : [0.89, 0.91]] [[1.43, 1.71] : [1.47, 1.61]] (6, 3)                  

10 [[1.35, 1.50] : [1.37, 1.47]] [[0.90, 0.94] : [0.91, 0.93]] [[1.45, 1.78] : [1.47, 1.65]] (6, 4)                 
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Table 4. Optimal policy by an inexact rough interval with investments in I, II and III 

    Best policy 
for I & II 

0 0 0 0 (0, 0, 0) 

1 [[0.25, 0.30] : [0.26, 0.29]]        [[0.12, 0.16] : [0.13, 0.14]] [[0.25, 0.30] : [0.26, 0.29]] (1, 0, 0) 

2 [[0.45, 0.56] : [0.47, 0.54]]        [[0.21, 0.26] : [0.22, 0.25]] [[0.45, 0.56] : [0.47, 0.54]] (1, 1, 0) 

3 [[0.60, 0.74] : [0.62, 0.70]]        [[0.43, 0.52] : [0.45, 0.47]] [[0.60, 0.74] : [0.62, 0.70]] (2, 1, 0) 

4 [[0.78, 0.97] : [0.80, 0.90]]        [[0.45, 0.51] : [0.46, 0.50]] [[0.78, 0.97] : [0.80, 0.90]] (3, 1, 0) 

5 [[0.91, 1.10] : [0.94, 1.05]]        [[0.53, 0.66] : [0.54, 0.65]] [[0.91, 1.10] : [0.94, 1.05]] (3, 2, 0) 

6 [[1.06, 1.31] : [1.09, 1.21]] [[0.70, 0.74] : [0.71, 0.73]] [[1.03, 1.26] : [1.07, 1.17]] (2, 1, 3) 

7 [[1.18, 1.45] : [1.21, 1.36]] [[0.76, 0.83] : [0.77, 0.81]] [[1.21, 1.49] : [1.25, 1.37]] (3, 1, 3) 

8 [[1.29, 1.61] : [1.33, 1.41]] [[0.89, 0.95] : [0.90, 0.94]] [[1.34, 1.66] : [1.39, 1.52]] (3, 2, 3) 

9 [[1.43, 1.71] : [1.47, 1.61]] [[0.95, 1.02] : [0.96, 1.00]] [[1.49, 1.83] : [1.54, 1.68]] (3, 3, 3) 

10 [[1.45, 1.78] : [1.47, 1.65]] [[0.98, 1.08] : [1.00, 1.05]] [[1.61, 1.97] : [1.66, 1.83]] (4, 3, 3) 

 

Table 5. Optimal policy using an inexact rough interval with investments in I, II and III 

    Best policy for 
I including II 

0 0 0 0 (0, 0, 0, 0) 

1 [[0.25, 0.30] : [0.26, 0.29]] [[0.19, 0.24] : [0.20, 0.22]] [[0.25, 0.30] : [0.26, 0.29]]    (1, 0, 0, 0) 

2 [[0.45, 0.56] : [0.47, 0.54]] [[0.35, 0.42] : [0.36, 0.39]] [[0.45, 0.56] : [0.47, 0.54]]    (1, 1, 0, 0) 

3 [[0.60, 0.74] : [0.62, 0.70]] [[0.35, 0.48] : [0.36, 0.46]] [[0.64, 0.80] : [0.67, 0.76]]    (1, 1, 0, 1) 

4 [[0.78, 0.97] : [0.80, 0.90]] [[0.40, 0.52] : [0.42, 0.50]] [[0.79, 0.98] : [0.82, 0.92]]    (2, 1, 0, 1) 

5 [[0.91, 1.10] : [0.94, 1.05]] [[0.51, 0.54] : [0.52, 0.53]] [[0.97, 1.21] : [1.00, 1.12]]    (3, 1, 0, 1) 

6 [[1.03, 1.26] : [1.07, 1.17]] [[0.55, 0.58] : [0.56, 0.57]] [[1.13, 1.39] : [1.16, 1.29]]    (3, 1, 0, 2) 

7 [[1.21, 1.49] : [1.25, 1.37]] [[0.56, 0.59] : [0.57, 0.58]] [[1.26, 1.56] : [1.30, 1.44]]    (3, 2, 0, 2) 

8 [[1.34, 1.66] : [1.39, 1.52]] [[0.58, 0.61] : [0.59, 0.60]] [1.40, 1.73] : [1.45, 1.59]]      (3, 1, 3, 1) 

9 [[1.49, 1.83] : [1.54, 1.68]] [[0.58, 0.61] : [0.59, 0.60]] [[1.56, 1.91] : [1.61, 1.76]]    (3, 1, 3, 2) 

10 [[1.61, 1.97] : [1.66, 1.83]] [[0.59, 0.64] : [0.60, 0.63]]  [[1.69, 2.08] : [1.75, 1.91]]    (3, 2, 3, 2) 

 

5. Results and discussion 

In this Section, we present the results and discussion. The optimal investment 
amount of $ 10 million based on the comparative study presented in Table 4. It 
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is observed that the amount $ 3 million in I including an inexact rough interval 
best possible return can be expressed as follows:  

$ [[0.85, 0.71]: [0.59, 0.65]] millions,  
$ 2 million in II with an inexact rough interval optimal value of return 
 $ [[0.33, 0.34]: [0.35, 0.40]] millions, 
$ 3 million in III with an inexact rough interval optimal value of return 
 $ [[0.43, 0.52]: [0.45, 0.47]] millions, 
$ 2 million in IV with an inexact rough interval optimal value of return 
 $ [[0.35, 0.42]: [0.36, 0.39], 

Thus, the total optimal return with inexact rough intervals on an amount of 
$ 10 million investments is as follows: $ [[1.69, 2.08]: [1.75, 1.91]] millions. 

6. Concluding remarks 

In the present study, an IP with inexact rough intervals has been introduced. A 
DP approach has been applied to obtain an inexact rough interval optimal 
return. In existing approaches, the DM faces a problem including ambiguity in 
the data of the problem, where the proposed approach resolves this issue by 
handling the data with roughness. These are the main advantages of the 
suggested approach. The entire process of optimization has illustrated by a 
numerical example. The researchers well applied the DP in the investment 
managements and found the good result to the optimal return to the investor 
when they invest the money in institution or small business. At last, we say 
that the approach is good and give the idea to investor to invest the money to 
the small business. The use of R statistics for solving the investment problem 
in vague environment is a good choice and it is a very solid tool. Also, the use 
of DP is very successful. There are many future research directions. The 
suggested process has can be extended to other types of investment problems 
by introducing time, discounting, special constraints, etc. Some directions of 
further research include stochastic parameters, intuitionistic fuzzy sets, fuzzy 
random variable, etc. 
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