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Abstract. Visualization is claimed as one of the essential “V’s” of Big Data since
it allows presenting the data in a human-friendly way and is, therefore, a stepping-
stone for the Big Data mining process. Visual analytics, in turn, ensures knowledge
discovery out of the data through cognitive graphics and filtering capabilities. But to
be efficient, visualization and analytics tools have to consider other Big Data “V’s”
by handling the large data volumes, keeping up with the data growth and changing
velocity, and adapting to the variety of the data representation formats. We propose
using ontology engineering methods to create a visual analytics platform controlled
by an ontological knowledge base that describes supported data types, input for-
mats, data filters, visual objects, and visualization algorithms, as well as available
communication protocols and computing nodes, the platform modules can run on.
This allows introducing new functions and distributed computation scenarios to the
platform on the fly just by extending the underlying domain ontologies without
changing the source code of the platform’s core. The analytics flow inside this plat-
form is described by task ontologies enabling semantic data mining process. As a
result, seamless integration with different data sources is achieved, including plain
files, databases, and even third-party soft- and hardware solvers. We demonstrate
the viability of the approach proposed by solving several data mining and fuzzy
classification problems, including the assessment of the citizens’ regional identity
according to the mental maps they draw and the reconstruction of ontogenesis of
extinct synapsid Titanophoneus potens Efremov, 1938.
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1. Introduction

One of the most significant challenges driving the Big Data initiatives is the data vari-
ety [1]. While other essential characteristics like volume and velocity can often be tackled
by just increasing the computing power, handling the variety requires smart approaches
to integrating different data sources, converting data formats, normalizing values, de-
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feating corresponding uncertainties, etc. One of the possible ways to overcome the issue
of variety lies in leveraging ontology engineering methods within the Big Data mining
process. Being the formal models of domain-specific knowledge, ontologies can bridge
the semantic gap between the actual data, the data mining (DM) tools, and the results of
applying these tools [2]. Withal, the task ontologies provide a formalism to specify the
DM flow by preserving the semantics of operations involved [2].

Besides volume, velocity, and variety, visualization is also recognized to be highly
related to Big Data, because it is an essential part of the Big Data mining process. In this
regard, ontologies can facilitate the assembling of individual visualization methods and
tools into full-fledged visual analytics instruments [3].

Although ontologies are widely used in the Big Data mining process, still there
is a lack of high-level self-service tools available for domain experts without requiring
programming skills. To bridge this gap, we propose a unified architecture of an ontology-
driven microservice-based client-server visual analytics platform and use it to implement
a multi-purpose platform SciVi (https://scivi.tools/) capable of semantic DM.
SciVi provides a high-level graphical user interface to declare DM and visual analytics
pipelines in terms of data flows. The set of data processing operators for these pipelines
is automatically generated by SciVi according to the ontological descriptions to meet the
specifics of tasks being solved. Thanks to the declarative nature of SciVi extensibility,
this platform is suitable not only for data analysts/scientists but also for researchers who
develop or evaluate new DM algorithms.

In the present work, we discuss the SciVi platform architecture and demonstrate the
viability of this platform by solving DM tasks from two very different application do-
mains: Digital Humanities and Paleontology. The proposed DM pipelines involve fuzzy
classification and visual analytics methods, which require adaptation and fine-tuning. To
gain efficiency in this fine-tuning, we introduced new debug capabilities to the SciVi
platform allowing us to monitor the intermediate results of the data processing pipeline.

2. Related Work

The concept of semantic DM was first introduced in 2009 [4] and 2010 [5] as an alloy
of DM process and Semantic Web technologies to bring the machine-understandable
meaning to the handled data. Since then, a lot of projects have adopted semantic DM
to gain efficiency, context awareness, and flexibility of DM algorithms as reviewed by
D. Dou et al. [2] and C. Sirichanya et al. [6]. P. K. Sinha et al. provided a systematic
review of the most significant DM ontologies [7]. G. Amaral et al. summarized multiple
benefits of ontologies to DM [8]. All the mentioned fundamental works and elaborate
reviews form a consensus about high relevance, high demand, and wide prospects of
semantic DM.

Another promising and demanded application of the principles declared by the Se-
mantic Web is ontology-driven software development [9] that is a way to create adapt-
able software using ontology engineering methods and means. With the spreading of the
microservice architectural style (MSA), research works arise devoted to the marriage of
microservices and ontologies. For example, A. Versteden et al. “have shown that combin-
ing microservices with Semantic Technologies offers clean separation of concerns with
nicely decoupled microservices” [10], ensuring “the services are talking about the same
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content in the same way” [11]. G. Morais et al. provided the “first ontological formaliza-
tion of MSA principles and anti-patterns concepts” [12]. A. Singer et al. proposed using
lightweight ontologies within a system of microservices to represent descriptive infor-
mation for “combining data from disparate sources and gathering new information” [13].

Aligning with the above works, we contribute to the semantic DM development by
proposing the DM platforms’ microservice-based architecture, in which both the DM
pipeline and its underlying data processing operators are described by ontologies. Like in
the state-of-the-art DM software like KNIME, Weka, RapidMiner, and Orange [14], we
utilize data flow diagrams (DFDs) to visually represent DM pipelines enabling the users
to compose them based on the data flow programming principles [15] within a high-level
graphical user interface.

3. Multi-Purpose Ontology-Driven Data Flow Programming Platform

To achieve high flexibility and extensibility, SciVi adopts ontology-driven microservice
architecture. The internal SciVi workflow is shown in Fig. 1.
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Figure 1. Internal SciVi workflow (arrows depict automatic transformations).

Each microservice is a software module denoted as an operator that is responsible
for manipulating, visualizing, or analyzing the data. Each operator Op is formally speci-
fied by ontology adhering to the model Op = {I, S, 0, @}, where I is a set of typed inputs,
S is a set of typed parameters (settings), O is a set of typed outputs, and P is a set of
implementations. Each operators’ implementation ¢ € & is tied to a particular comput-
ing resource, for example, to the thin client (in this case, the implementation is usually
in JavaScript), to the server (usually in Python or in binary form), or to the specific com-
puting device (usually in C/C++). Operators’ ontologies are gathered into sets according
to relevance to specific classes of tasks being solved by SciVi.

At startup, the user chooses the task class and the Ontology Merger module com-
bines all the related operators’ ontologies into the solid Domain Ontology that specifies,
what functionality SciVi provides for solving the tasks of the chosen class. Traversing
this ontology, Reasoner instructs GUI Generator to generate a graphical user interface
(GUI) for each operator and Operator Linker to prepare an executable module for each
operator’s implementation. After that, the operators’ palette is provided to the user and
the user composes a DFD defining the desired data processing pipeline. In fact, this step
involves visual programming within SciVi, but it does not require any hard skills from
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the user. From their point of view, it is only a matter of chaining the high-level data
processing stages and tuning these stages via the available settings using the GUI gen-
erated by SciVi. All the work related to type checking, type conversion, and operators’
communication is fully automated by SciVi.

Once the DFD is done, the DFD to Ontology Converter transforms it into the set of
Task Ontologies, which specify the particular operations to be performed by particular
computing resources SciVi can reach in the active network [16]. The specified operations
are derived from the DFD and, if needed, automatically supplemented by communica-
tion actions to transmit data between the involved computing nodes. The reasoner tra-
verses the Task Ontologies to spawn so-called Executors. They are software containers
for each involved computing node to run the chain of appropriate operators within. Each
Executor generates a specific result, for example, Interactive Visualization to graphically
depict the processed data, Middleware to communicate with third-party software or hard-
ware systems, or Firmware to configure devices within the ecosystem of the Internet of
Things [17].

It is worth stressing that the SciVi platform has no default built-in DM functions. In-
stead, it provides bus mechanisms to seamlessly chain microservices (operators), which
are easily added, extended, or modified just by extending the underlying ontologies with
new knowledge. Thanks to this, SciVi tackles the Big Data variety issue by providing
tools to adapt to multifarious data sources from different application domains. At the
same time, SciVi enables materializing Schneiderman’s Mantra of visual analytics [18]
by maintaining operators for the overviewing, zooming, and filtering the data, as well as
for querying the data details.

When a new microservice (operator) is added to SciVi, it sometimes requires testing
and debugging. In this work, we introduce the special debug operators to SciVi, which
allow inspecting the data being transmitted through the DFD. The user can link these
operators to output sockets of other operators within the DFD and during the pipeline
execution, “watches” appear on screen just like in integrated development environments.
These “watches” are automatically updated to keep track of the transmitted values.

4. Use Case 1: Fuzzy Classification of Mental Maps

A mental map is a summarized spatial experience of a human that can tell a lot about
their regional identity. When analyzed from a group of people, mental maps are a rich
data source to study regional state, public mood, etc. within Digital Humanities research.
In our previous work [19], we proposed a modification of the weighted fuzzy pattern
matching algorithm (WFPM) [20] to reveal the regional identity of mental maps. In the
present work, we improved this modified algorithm by taking into account a bigger data
set of maps, which are drawn by informants all over Russia using our digital map editor
Creative Maps Studio (https://creativemaps.studio/).
The following modifications and novel features are introduced:

1. The disjunctive form of WFPM was changed to the conjunctive form because it
reduces the chance of false positives in our case.

2. It was noticed that some objects on the maps are depicted by the informants in ap-
proximately the same way, regardless of which region they are from. Therefore, a
reduction factor is used for such objects to decrease their weight in classification.
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3. It was found that informants often depict objects of their residence region in a
distinctive (more verbose and precise) way so that these objects have a non-zero
membership function only for this region. Therefore, the weight of corresponding
objects is adaptively increased to stress their significance for classification.

The implementation of our WFPM version can be found in the SciVi open source
repository: https://github.com/scivi-tools/scivi.web/tree/master/1lib/
wfpm/. Along with the code, all the essential formulas and explanations are provided.
We evaluated this algorithm using 205 maps drawn by the informants from 7 known
residence regions. 185 of them were used as patterns (training set), and 20 as a test
set. The average precision of classification is 92%, which is fairly good. However, the
precision is non-uniform across regions: the best precision hits 100%, the worst one is
80%. The factors affecting it are to be revealed during future work. For now, one of the
obvious factors is geographical distance: the maps from regions, which are located near
to each other, are less distinguishable than the ones from the regions located far apart.
This demonstrates the spatial experience locality and seems to be logical.

The visualization of the WFPM-based classification results is shown in Fig. 2. The
regions outlined on the geographical map correspond to the patterns assembled. Those fill
colors depict the membership degrees of the selected map (see the slider in the bottom)
according to the given color scale. For each classified map, this visualization helps the
analyst to guess where the map’s author resides. For example, the map with ID “110-
171-1” was most likely drawn by a person from Bashkortostan (the region filled red).

101711 @

Figure 2. Matching the mental map against patterns (interactive view within SciVi is available online
https://scivi.semograph.com/?preset=mmapsClass. json&start=true).

5. Use Case 2: Reconstruction of Titanophoneus Ontogenesis

The study of extinct animals’ life cycle is a big problem in paleontology due to the lack
of data, especially when ages like the Permian period are considered. Nevertheless, there
are sometimes fossils available, representing different ontogenetic stages of the same or
the related species. Having two or more of such fossils, one can try to model the entire
ontogenetic process.
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In our previous work, we reconstructed skull 3D models of young and adult 7i-
tanophoneus potens Efremov, 1938 individuals based on real fossils. Then we used SciVi
to create a cyber-physical exhibit for a paleontological museum [21]. This exhibit demon-
strates the ontogenesis of the Titanophoneus as a linear morphing from young to adult.
In this work, we set up an experiment based on visual analytics, under which we extrap-
olate the ontogenesis beyond the known fiducial stages. The results are shown in Fig. 3.
The variable ¢ stands for interpolation/extrapolation factor: for 7 € [0; 1], interpolation
from young (¢ = 0) to adult (r = 1) individuals is rendered, and beyond this segment
extrapolation takes place.
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Figure 3. Extrapolating the Titanophoneus ontogenesis (interactive view within SciVi is available online
https://scivi.semograph.com/paleo?preset=titanophone.json&start=true).

As seen in the figure, the model of “elderly” Titanophoneus (t = 2) looks pretty
natural. Moreover, it resembles another synapsid from the same family (Anteosauridae),
Anteosaurus magnificus Watson, 1921. This resemblance is weak evidence that the linear
extrapolation is correct and Titanophoneus potens and Anteosaurus magnificus may have
similar growth curves. In contrast, the model of “juvenal” Titanophoneus (t = —1) col-
lapses. This phenomenon indicates that the growth curve of Titranophoneus is non-linear
in the juvenile segment.

6. Conclusion

In this paper, we discuss the architecture and implementation of an ontology-driven
microservice-based visual analytics platform SciVi that is suitable for solving differ-
ent DM tasks from various application domains. To enable debugging of individual mi-
croservices and the entire pipeline, we introduce special operators that help to monitor
the intermediate data flowing through the pipeline.

We demonstrate the viability of SciVi by solving the task of mental maps fuzzy clas-
sification revealing the regional identity of informants who have drawn the mental maps
and the task of Titanophoneus potens ontogenesis reconstruction revealing non-linear
nature of its aging changes. These are just two among multiple SciVi use cases, but the
others are beyond this papers’ scope due to the volume limitations. Currently, the SciVi
platform is about to grow in four major directions: fostering the tools of advanced visual
analytics (VASciVi Workbench), enabling experiments in virtual reality (VRSciVi Work-
bench), enabling brain-to-computer interfaces (NeuroSciVi Workbench), and supporting
ontology-driven Edge Computing (EdgeSciVi Workbench). Each workbench reuses the
main principles of SciVi and brings its own array of microservices, which act as operators
joined into sets covering particular task classes.
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