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Abstract. Breast cancer must be detected early to reduce the mortality rate. Ul-
trasound images can make it easier for the clinician to diagnose cases of dense
breasts. This study presents a deep vision transformer-based approach for predict-
ing breast cancer malignancy scores from ultrasound images. In particular, various
state-of-the-art deep vision transformers such as BEiT, CaiT, Swin, XCiT, and Vis-
Former are adapted and trained to extract robust radiomics to classify breast tumors
in ultrasound images as benign or malignant. The best-performing model is used to
predict the malignancy score of each input ultrasound image. Experimental results
revealed that the proposed approach achieves promising results for the detection of
malignant tumors of the breast on ultrasound images.
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1. Introduction

Mammography is the most commonly used imaging technique to detect the early stages
of breast cancer. Breast ultrasonography, however, substitutes mammography in the case
of dense breasts as it can not penetrate through the tissue. In pregnant women, breast
ultrasound is a viable alternative to mammography to prevent the use of radiation that
can harm the fetus [1]. Computer-aided diagnostic (CAD) solutions help clinicians free
themselves from processing multiple breast images of a patient, thereby improving the
quality of clinical diagnostics [2,3,4]. The leading steps of a CAD system for classifying
breast tumors with ultrasound images include region of interest (ROI) detection, tumor
segmentation, feature extraction and selection, and machine learning-based classification
model development.
Nevertheless, the accuracy of such CAD systems may be restricted due to the low signal-
to-noise ratio (SNR) and the presence of artifacts such as speckle noise and shadows in
the breast ultrasound images. Inadequate contact between the probe and the skin surface
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Figure 1. General description of breast tumor detection with breast ultrasound (BUS). Green and red dotted
circles highlight the benign and malignant breast tumors respectively.

can cause a shadowing effect. These artifacts infer a clinical diagnosis, as it is difficult
for a sonographer accurately acquire the appropriate breast tumor information.
Figure 1 shows a general description of breast tumor detection with breast ultrasound
(BUS). Transducers with piezoelectric elements (128 or 192) generate sound waves re-
flected by the breast tissue to produce echoes. The ultrasound examiner or user must
place the transducer correctly on the skin surface at the appropriate pressure to avoid the
imaging artifact shadowing effects. The early layers of breast tissue contain subcutaneous
fat and later depth approach to the lesion region. When an ultrasound scan is performed,
the resulting B-mode image is examined by sonographers to see if the detected tumors
are benign or malignant. Breast tumor is commonly recognized as a hypoechoic region
than white breast tissue or light gray fat. The boundaries of most benign breast tumors
are well defined and are round or oval in shape. In contrast, malignant tumor boundaries
are often irregular and poorly defined, with lobules.
In the last two decades, many CAD systems have been proposed for breast cancer diag-
nosis. For instance, Shia et al. [5] used a deep residual network model to extract texture
features of breast ultrasound images and then trained a support vector machine (SVM)
to classify breast tumors as benign or malignant. The authors used an ultrasound dataset
containing 302 benign and 241 malignant cases. The recommended method yielded a
sensitivity score of 94.34% and a specificity score of 93.22%. In [6], Mishra et al. pro-
posed a machine learning-based radiomics method classifying breast tumors with ultra-
sound. The authors extracted several hand-crafted features from the ultrasound images
and later used recursive feature elimination to select the best set of those features. They
also used synthetic minority oversampling techniques to address the problem of class
imbalances. The employed texture features were Hu-moments based shape features, tu-
mor shape features (area, convex area, eccentricity, solidity, EquivDiameter, extent, ma-
jor axis length, minor axis length, orientation, and perimeter), histogram oriented gra-
dients (HOG), and 13 grey-level co-occurrence matrix (GLCM). The authors employed
an ultrasound dataset that included 437 benign, 210 malignant, and 133 normal cases in
their experiments. They obtained results for accuracy and area under the curve (AUC) of
97.4% and 97%, respectively.
Zhuang et al. [7] applied the fuzzy enhancement, bilateral filtering, and image morphol-
ogy operations on breast ultrasound images and the corresponding masks (binary im-
age contains the segmented tumor). The authors concatenated various combinations of
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the original and processed images, with each combination comprising three images (i.e.,
RGB channel fusion). The fused images were fed into pre-trained CNN models in order
to extract feature vectors, which were subsequently merged using the adaptive spatial
feature fusion approach. Finally, an artificial neural network (ANN) was used for the
final classification. A dataset of 1328 breast ultrasound images was utilized to train and
test this approach, which yielded an accuracy of 95.48%. Cui et al. [8] proposed two en-
hanced combined-tumoral region modules to gradually enhance the combined-tumoral
features. Besides, the authors proposed a three-stream module for extracting and com-
bining intratumoral, peritumoral, and combined tumor area features. The author used the
channel attention module to adaptively combine the features of the three regions. The
proposed method achieved a precision of 94.50% using the UDIAT dataset. Yu et al. [9]
extracted discriminative regions from the input ultrasound images: the inner region, the
marginal zone, and the posterior echo region of the lesion image. Then, they used an
Inception-V3 pre-trained CNN model to extract texture features from the three regions
and the whole image, followed by a principal components analysis (PCA) to reduce the
dimensionality of the extracted features and an ensemble learning classifier for classify-
ing the input image as benign or malignant. With a dataset of 479 cases, they achieved
an accuracy of 85%.
Recently, several transformer-based methods have advanced exponentially for medical
imaging tasks. Transformers have proven their capability to capture long-range depen-
dencies and learn better relevant feature representations to be an alternative to convolu-
tional neural networks. In the ultrasound domain, only limited research has been con-
ducted to measure the effectiveness of transformer methods for classifying breast tu-
mors in challenging conditions. This paper presents a deep learning-based radiomics ap-
proach for detecting breast tumor malignancy.Various self-attention based deep vision
transformer architectures are adapted and trained to extract robust radiomics to classify
breast cancers as benign or malignant, and predict the malignancy score of each input ul-
trasound image. Based on the transfer learning theory, the pretrained vision transformer
network and parameters can be applied to this study’s target breast ultrasound dataset
by fine-tuning the selected vision transformer networks. Furthermore, we investigate
the feasibility of incorporating the malignancy scores of the top-performing transformer
model to enhance detection accuracy.
The rest of this paper is organized as follows. Section 2 details the proposed methodol-
ogy. Section 3 contains experimental results and discussions.. We conclude our finding
and suggest some future lines of research in Section 4.

2. Methodology

2.1. Breast cancer malignancy score prediction

Figure 2 presents the proposed radiomics approach for detecting breast tumor malig-
nancy. A set of deep vision transformers are used to extract robust radiomics and classify
breast tumors as benign or malignant. Various data augmentation techniques are used
to increase the number of ultrasound images for training. The best model is identified
based on different evaluation metrics. The extracted radiomics are used to compute the
malignancy scores of breast cancer from the input ultrasound image.

M.A. Hassanien et al. / Transformer-Based Radiomics300



Load Pre-Trained 
BEiT 

Load Pre-Trained 
CaiT

Load Pre-Trained 
Swin

Load Pre-Trained 
XCiT 

Load Pre-Trained 
VisFormer 

Fine-Tuning

BEiT Radiomics

CaiT Radiomics

Swin Radiomics

XCiT Radiomics

VisFormer RadiomicsV

Malignancy Score 0 1

Best Model SelectionBUS Image

Figure 2. The pipeline of the proposed approach for breast tumor malignancy prediction in breast ultrasound
images.

2.2. Input ultrasound images

The ultrasound images were taken from the UDIAT Diagnostic Centre of Sabadell
(Spain) [10], [11]. It has a total of 163 breast ultrasound images extracted from 263 pa-
tients using a Siemens ACUSON Sequoia C512 system. It comprises two classes be-
nign and malignant which have 110 and 53 breast ultrasound images, respectively. The
annotation for each image of the lesion area was available.

2.3. Data augmentation

We applied several data augmentation techniques such as horizontal and vertical flipping
with the probability of 0.5, scaling with 0.5, contrast limited adaptive histogram equal-
ization (CLAHE), and rotation of 30 degrees which provides additional feature variabil-
ity to the network. It is worth noting that all the trained transformer-based networks used
the same data augmentation techniques.

2.4. Constructing transformer-based radiomics

In this study, five deep transformer models have been employed, namely, BEiT [12],
CaiT [13], Swin [14], XCiT [15], and Visformer [16], for extracting deep learning-based
radiomics for breast cancer malignancy prediction. Below, we briefly explain the archi-
tecture of each network.

• BEiT [12] is a self-supervised vision representation model from Image Trans-
formers. In BEiT’s pre-training, each Image has two views: image patches (16x16
pixels) and visual tokens (i.e., discrete tokens). Tokenization of the source image
into visual tokens occurs first. The backbone Transformer is then fed with some
randomly masked image patches. The pre-training goal is to use the corrupted im-
age patches to recover the original visual tokens. BEiT’s model parameters are
fine-tuned on downstream tasks by appending task layers to the pre-trained en-
coder after it has been pre-trained. The implementation of the BEiT transformer is
available at https://github.com/microsoft/unilm/tree/master/beit.
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• CaiT [13] stands for class attention in image transformers. It is a way of enhancing
the training of more profound architecture compared to other image transformer
approaches. A LayerScale technique is employed in CaiT, where a learnable di-
agonal matrix is attached to the output of each residual block, in which some ele-
ments are initialized with values close to zero. The training dynamic is enhanced
by attaching this basic layer after each residual block, allowing for the training
of deeper image transformers. As a result, models whose performance does not
saturate early with increased depth are produced. The implementation of the CaiT
transformer is available at https://github.com/facebookresearch/deit.

• The Swin transformer [14] is a general-purpose transformer backbone that creates
hierarchical feature maps with linear computing complexity concerning image
size. Swin transformer creates a hierarchical representation by fusing neighbor-
ing patches (i.e., shifting windowing) in deeper transformer layers, starting with
small patches. The shifted windowing approach enhances efficiency by limiting
self-attention calculation to non-overlapping local windows while enabling cross-
window connectivity. The hierarchical architecture of the Swin transformer facili-
tates the modeling of different scales. The implementation of the Swin transformer
is available at https://github.com/microsoft/Swin-Transformer.

• XCiT (cross-covariance image transformer) [15] coalesces convolutional archi-
tecture scalability with classical transformer accuracy. It comprises a transposed
variant of self-attention that interacts using the cross-covariance matrix between
keys and queries rather than tokens. The resulting cross-covariance attention is
linear in terms of token complexity and can swiftly analyze high-resolution im-
ages. Regardless of the number of tokens, XCiT attends to a predetermined num-
ber of channels. As a result, XCiT is far more resistant to variations in im-
age resolution during testing and hence better suited to processing variable-size
images The implementation of XCiT is available at https://github.com/

facebookresearch/xcit.
• VisFormer (vision-friendly transformer) [16] improves visual identification by

switching from a transformer-based model to a convolution-based one. VisFormer
uses a gradual transition technique to bridge the gap between transformer-based
and convolution-based models, revealing the features of the designs in both. It dis-
sected the gap between these models and devised an eight-step transition process
to connect DeiT-S and ResNet-50. The implementation of VisFormer is available
at https://github.com/danczs/Visformer.

2.5. Implementation details

We resized the original BUS image resolution to the 224×224 pixels and calculated the
mean and standard deviation to normalize the dataset. An Adam optimizer was used with
an initial learning rate of 0.0001 and selected the default value of β1 and β2 to 0.9 and
0.999, respectively. All the transformer-based networks were trained at 40 epochs with
the mini-batch of four samples and saved the best checkpoint of highest classification
accuracy on validation to evaluate the performance on the independent test set. We used
the cross-entropy loss function to minimize the error during network training. It should be
noted that all the networks utilized the same hyperparameter setting to train and evaluate
the classification performance. We divided the dataset into the three subsets of training,
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validation, and test with ratios of 70%, 10%, and 20%, respectively. We trained and
evaluated all the transformer-based models on PyTorch with NVIDIA GeForce GTX
1070Ti GPU of 8GB RAM.

2.6. Evaluation metrics

In this study, the performance of the proposed approach has been assessed using different
evaluation metrics, namely accuracy, precision, recall, and F1-score. These metrics can
be defined as follows:

Accuracy = (T P+T N)/(T P+T N +FP+FN) (1)

Precision = T P/(T P+FP) (2)

Recall = T P/(T P+FN) (3)

F1− score = T P/(T P+0.5(FP+FN)) (4)

where TP represents the number of malignant cases correctly classified as malignant;
TN represents the number of benign cases correctly classified as benign; FP represents
the number of benign cases incorrectly classified as malignant, and FN represents the
number of malignant cases incorrectly classified as benign.

3. Experimental Results and Discussion

Table 1 presents the breast ultrasound classification results of the deep radiomics for the
five state-of-the-art transformer-based deep learning methods. It includes the BEiT [12],
CaiT [13], Swin [14], XCiT [15], and VisFormer [16]. Figure 3, and 4 demonstrate the
confusion matrix of each methods on both the test and validation sets. The test set con-
tains a total of 22 and 11 samples for benign (0) and malignant (1) classes, respectively. In
the test set, Swin and XCiT showed comparable performance and achieved an accuracy
of 87.88%. The Swin transformer offers the benefits of a small BUS patch and exponen-
tially increases its size by fusing to maintain scale-invariant properties. This mechanism
helps capture lesions of various sizes in BUS images and provides robust feature repre-
sentation to distinguish between benign and malignant tissue patterns. XCiT, on the other
hand, provides an efficient self-attention mechanism for BUS features, acting through
functional channels instead of tokens, improving classification performance. Both the
Swin and XCiT models achieved a precision rate, recall, and F1 score of over 85%. How-
ever, due to the increased complexity (i.e., 300M parameter), BEiT has achieved an ac-
curacy of 66.66% less accurately than existing methods. It failed to learn the pattern of
benign and malignant classes that require more train samples to effectively achieve bet-
ter results. CaiT provided the second-highest result, 6% lower than the Swin and XCiT
methods. In addition, VisFormer has reached an accuracy of 75.76%.

We calculated each method’s computational complexity by measuring the trainable
parameters. As one can see, the BEiT method achieved the highest number of parameters
(300 million) than existing methods that require additional breast lesion ultrasound sam-
ples to improve the classification performance. In turn, Swin, XCiT, VisFormer, and CaiT
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Table 1. State-of-the-art Transformer based models comparison on BUS dataset. The best results are high-
lighted in bold.

Methods
Evaluation Metrics

Accuracy Precision Recall F1-Score Parameters (M)

BEiT-Radiomics 66.66 100.00 66.66 80.00 300
CaiT-Radiomics 81.82 81.82 90.00 85.71 46.5
XCiT-Radiomics 87.88 86.36 95.00 90.48 188.16
VisFormer-Radiomics 75.76 95.46 75.00 84.00 39.45
Swin-Radiomics 87.88 90.91 90.91 90.91 195

Figure 3. Confusion matrix on test set.

Figure 4. Confusion matrix on val set.

utilized the 194M, 188M, 39M, and 46M trainable parameters respectively. Conclusively,
we have found that Swin transformer efficiently extract the radiomics features from BUS
ultrasound and achieved state-of-the-art results compared to recently published works.

a (Testing) b (Validation)

Figure 5. ROC curves and AUC values of the radiomics of test, and validation.

Figure 5 shows the receiver operating characteristics (ROC) curves and AUC values
of all the examined models. We computed the ROC curve for both evaluated testing and
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validation sets. On the validation samples, the Swin transformer has achieved the highest
AUC score of 0.98%. However, CaiT and XCiT obtained identical results of 0.96%.
The BEiT has only yielded the AUC value of 0.76% which was the lowest of all the
transformer-based compared methods. However, on the testing set, the Swin transformer
and XCiT have obtained the equal highest AUC score of 0.93% than other existing deep
models. At the same time, CaiT obtained the AUC values of 0.92%. The VisFormer
yielded the lowest AUC score of 0.84% compared to other methods, while BEiT only
attained the 0.86%.

Benign Malignant

(a) (b)

Figure 6. Illustration of Gradcam visualization generated with Swin transformer for two examples of breast
ultrasound images. The higher the intensity of the red color, the more attention the model pays to the area of
interest.

Figure 6 shows the Gradcam visualization of the best results obtained by the Swin
transformer on an ultrasound image of the breast tissues. The core idea was to investigate
how the model filters capture the targeted lesion region underlying several noises pre-
sented in ultrasound. We found that the model precisely captured the hypoechoic lesion
areas by paying more attention to the dense structure of the model. The two different
examples presented from benign and malignant classes have different textural patterns
and imaging characteristics. For the benign cases, the lesion presented in ultrasound has
increased neighboring artifacts that are surrounded by shadows and speckle noises. Due
to the great feature representation of the Swin transformer, it is noticeable that it can
efficiently highlight the relevant lesion features (red) and ignores the noisy background
regions (blue). However, it shows similar characteristics for malignant samples were cor-
rectly identified the breast lesion pixels and focused less on neighboring artifacts.

Figure 7. Convergence of each transformer-based methods.

We also investigated the convergence of individually trained deep models such as BEiT,
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CaiT, Swin, XCiT and VisFormer. Figure 7 shows the loss convergence of all five exist-
ing methods. We observed that all the methods has trained well and training error were
minimized at epoch 40.
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Figure 8. Illustration of malignancy scores (benign and malignant classes) achieved by the highest scores
achieved by Swin Transformer. Three examples from each class, score are pasted on the image. High scores
above 0.5 correspond to malignant otherwise benign.

Figure 8 shows the malignancy score examples from the test set obtained through the
Swin transformer network. From the visual inspection, both benign and malignant class
samples show distinct textural patterns. Malignant tumors have an ambiguous bound-
ary, while benign-class tumors contain smooth structures with hypoechoic regions. The
scores above 0.5 are malignant. The three malignant examples achieved very high scores
of more than 0.99. In turn, the benign class samples obtained the lowest malignancy
score. With efficient feature representation, the Swin transformer precisely classified the
presented six samples into their classes.

4. Conclusions

A deep vision transformer-based strategy for predicting breast cancer malignancy scores
from ultrasound pictures was proposed in this research. BEiT, CaiT, Swin, XCiT, and
VisFormer are among the deep vision transformers that have been adopted and trained to
extract robust radiomics for categorizing benign and malignant breast cancers in ultra-
sound pictures. For each input ultrasound image, the highest-performing model is used
to forecast the malignancy score. The experimental results demonstrated that the Swin-
based radiomics yielded the best classification results. Both the Swin and XCiT models
achieved a precision rate, recall, and F1-score of over 90%. The future work will include
analyzing other deep learning methods and investigating the use of different multi-model
aggregation techniques for enhancing the classification results.
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