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Abstract. Fuzzy Random Forests are well-known Machine Learning ensemble
methods. They combine the outputs of multiple Fuzzy Decision Trees to improve
the classification performance. Moreover, they can deal with data uncertainty and
imprecision thanks to the use of fuzzy logic. Although many classification tasks
are binary, in some situations we face the problem of classifying data into a set of
ordered categories. This is a particular case of multi-class classification where the
order between the classes is relevant, for example in medical diagnosis to detect the
severity of a disease. In this paper, we explain how a binary Fuzzy Random For-
est may be adapted to deal with ordinal classification. The work is focused on the
prediction stage, not on the construction of the fuzzy trees. When a new instance
arrives, the rules activation is done with the usual fuzzy operators, but the aggrega-
tion of the outputs given by the different rules and trees has been redefined. In par-
ticular, we present a procedure for managing the conflicting cases where different
classes are predicted with similar support. The support of the classes is calculated
using the OWA operator that permits to model the concept of majority agreement.

Keywords. Fuzzy Random Forest, Multi-class ordinal classification, Ensemble
classifiers, OWA operator

1. Introduction

A Fuzzy Random Forest (FRF) is an extension of Random Forests which makes use of
fuzzy logic. This addition allows them to manage uncertainty and imprecision of the
data. It is composed by a set of Fuzzy Decision Trees (FDT), which can be constructed
using several algorithms. This paper continues our previous work on the construction
and use of FRF for binary classification in health care. Our construction method is based
on Yuan and Shaw’s induction algorithm [1] with some extensions presented in [2]. The
algorithm has two parameters: α is the threshold indicating the minimum membership
degree considered during inference, and β is the minimum truth level required to gen-
erate a new rule. In the FRF model presented in [2], the classification has 2 steps. The
first step is at the FDT level, where the predictions of the rules are aggregated to decide
the output class given by the tree. The second step consists on aggregating the outputs of
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all the FDTs to make the final binary class assignment. Two parameters were introduced
in these steps (δ1 and δ2) to allow the assignment of the Unknown category when the
system is not sure about which of the two classes is the winner.

In ordinal multi-class decision problems we must assign a class to an instance from a
set of k ordered possibilities C = {Class0,Class1, ...,Classk−1}, where k > 2. Depending
on the problem, the order can be of increasing or decreasing preference, also called Gain
or Cost. For example, in medical diagnosis, the usual order goes from the best to the
worst medical conditions, so that Class0 has the healthy people and the greater the class
index, the worse is the disease level.

In this paper, we adapt the 2-step classification process of FRF for the case of or-
dinal multi-class decision problems. In Section 2 the first classification step is adapted.
Section 3 explains the modifications on the second classification step. Section 4 shown
experimental results. Finally, Section 5 gives the conclusions and future work.

2. Fusion in a Fuzzy Decision Tree

In a FDT we have a hierarchical structure with r branches from the root node to the
leaves. Each branch corresponds to a different fuzzy rule with one or more premises con-
sisting of linguistic variables defined on fuzzy sets. When rules are learned automatically
from examples, in the leave nodes we can store a rule support value for each possible
class.

When a new instance is classified, each rule provides a decision support value for
each of the available classes, obtained from the product of the rule premises activation
and the rule support for each class. Therefore, for each class Classi we obtain a tuple
with r decision support values, one for each rule: Di,1,Di,1, ...,Di,r.

To decide which is the final class assigned to the example, we must take into ac-
count the overall support received by each class. To merge the values provided by all
rules, in [3] we analysed several aggregation operators, and we proposed the use of the
Choquet fuzzy integral, with a fuzzy measure based on the distorted probability. Before
continuing, the support value is normalized using the truth level threshold β used for
constructing the rules. The maximum support allowed is 1. So, for the i-th class, we have
the support calculated using Eq. (1).

DN
i = min

(
1,

ChoquetIntegral(Di,1,Di,2, ...,Di,r)

β

)
(1)

In our previous work [2], a threshold value δ1 was introduced for binary classifica-
tion, to determine if the FDT had a clear consensus on determining the winner class. To
avoid mistakes, the label Unknown was introduced. When the difference between the two
decision support values is lower than δ1, we assume that the FDT is not sure and, hence,
the label Unknown is assigned. The use of δ1 is maintained in this proposal for multi-
class classification, but, because of the multiple classes, the method has been adapted. In
binary classification, δ1 was just compared with the difference of the support to the two
classes. To use this threshold to the case of multiple classes, we propose the following
strategy.
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We order decreasingly the set C∗ = {C ⋃
Unknown}, according to the normalized

decision support values DN
i . Let us consider that Ca is the category with the highest

decision support and Cb is the second most-supported category. The result of the analysis
of the j-th FDT is a tuple with the predicted class and its support (Pj,S j). The final
prediction associated with the FDT is chosen between these two categories, as described
by Eq. (2). One of the strengths of an ensemble is the diversity of models composing it.
An unknown prediction is preferred when the model has not a unique preferred class,
which is better than making an incorrect prediction. The next section explains how the
ensemble aggregates the predictions of the different trees to get the final decision.

(Pj,S j) =

{
(Unknown,0), if DN

a −DN
b < δ1

(Ca,DN
a ), otherwise

(2)

3. Fusion in a Fuzzy Random Forest

Once all the FDTs have made a prediction about the output class, all the predictions
on the ensemble are aggregated to decide the final class assignment and its support. An
ensemble formed by n FDTs has a set of n predicted classes, each with a support value:
(P1,S1),(P2,S2), ...,(Pn,Sn)

In the following subsections, we explain the proposal to aggregate all the predictions
of the ensemble on the multi-class case. Its main elements are a weighted voting, some
heuristics for the final class assignment and an OWA-based decision support score.

3.1. Weighted Voting

A voting process is used to find the consensus class from the ensemble of different FDTs.
Each FDT has a weight assigned to it, which represents its prediction quality. It is com-
puted using the out-of-bag examples on the training phase. A quality metric has to be
properly chosen to represent the overall quality of each FDT.

To aggregate all the predictions of a class through weighted voting, the weights of
the trees that predicted it are summed, Eq. (3). As a result, each of the classes obtains a
voting value vi, which is used to decide the final prediction of the ensemble, as explained
in the next subsection. Thus,

vi = ∑
j∈I

w j (3)

, where w j is the weight assigned to the j-th tree of the set I = {t | Pt =Classi}.
In the previous binary approach, we tested several metrics for weighting the trees.

An average accuracy balancing sensitivity (2/3) and specificity (1/3) was used [4]. This
balanced accuracy is specially useful in domains such as the medical one, in which a
good sensitivity is a priority in order to avoid false negatives.

For the case of multi-class problems, the most appropriate and usual quality mea-
sures are F1 (balancing precision and recall) and the Weighted Cohen’s Kappa κ . If we
take into account the order between the classes, then κ is the best performance index,
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because it allows to define different penalization for mistakes between classes depending
on the distance between them [5]. For this reason, we propose to use κ in the weighting
process of FRF on ordinal multi-class classification.

3.2. Final Class Assignment

In binary classification, the final class assignment is made similarly to the selection of
the class in a FDT, with the comparison of the support obtained by the two classes, in
this case, the votes. In [2] the constant parameter δ2 was introduced to detect the cases
where the difference in votes between the two classes is not significant. In that case,
when the difference in votes is lower than δ2, the Unknown category is returned by the
classification model to avoid mistakes. So, the final class A was obtained as follows:

A =

{
Unknown, if v0− v1 < δ2

Ca, otherwise (Class0/1 with higher support)
(4)

With multiple classes, we will take Ca and Cb again as the first and second most
voted classes respectively. In this paper, for the multi-class proposal, δ2 is preserved, but
it is defined as a function depending also on the difference between the two most voted
classes, according to their position in the ordered set of possible categories C. Let us
define Δvab as the normalized difference of votes between Ca and Cb, Eq. (5).

Δvab =
va− vb

∑i∈C∗ vi
(5)

With this normalization, the δ2 threshold is now defined in two parts, Eq. (6). A
first constant part d ∈ [0,0.5], which is the minimum difference in votes that permits
to distinguish the support of the classes and make a class assignment. In addition, the
separation between the classes in the ordered scale C is also relevant to define when a
difference in votes is important or not. It is not the same choosing between consecutive
classes than between extreme classes in C. For that reason, the second part of δ2 is given
by the square of the difference between the positions of the classes. The value is limited
to 0.5, for all the cases where the most voted class has more than half of the total votes.

Formally, let us define index : class → [0,k− 1] as the function that returns the
position of a given class in the ordered set C, and the distance between classes as
dist(Ca,Cb) = |index(Ca)− index(Cb)|. Then, the definition of δ2 is the following:

δ2 =

{
d, if Ca =Unk or Cb =Unk

min(0.5,d + dist(Ca,Cb)
2

100 ), otherwise
(6)

Using this new δ2 definition in Eq. (4) is a quite conservative approach that generates
many assignments to the Unknown category. To avoid that the classifier does not provide
an answer in too many cases, the following heuristics for assignments are proposed:
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• H1: When one of the two most voted classes is the Unknown category and the
difference in votes is small, then the model returns the class Cn �=Unknown. How-
ever, if the difference is large enough, then the model returns the most voted class.
It may be Unknown or the other one.

• H2: If the two classes are not unknown and the difference in votes is large enough,
the most voted class must be the output of the classification model.

• H3: In the cases where the two classes are not unknown and the number of votes
is similar, Δvab < δ2, two options are considered, depending on the distance of
the classes in the ordered set C. If there is a big distance between positions of the
classes in the ordered set C, the ensemble is considered not being certain about the
prediction, and the label Unknown is assigned. In the case of close classes in C,
the selected class is the one with a higher index in this ordered set. The distance
threshold is based on the number of classes k.

These heuristics are formalized in the following equation:

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cn, if (Ca =Unk or Cb =Unk) and Δvab < δ2

Ca, if (Ca =Unk or Cb =Unk) and Δvab ≥ δ2

Unk, if Ca �=Unk and Cb �=Unk and Δvab < δ2 and dist(Ca,Cb)≥ � k
2�

Cm, if Ca �=Unk and Cb �=Unk and Δvab < δ2 and dist(Ca,Cb)< � k
2�

Ca, if Ca �=Unk and Cb �=Unk and Δvab ≥ δ2

(7)

, where Cn �=Unknown,n ∈ {a,b}, and m = max(index(Ca), index(Cb)).
Notice that we assumed a minimization goal, where wrong classification to less

severe classes is not desired. If the goal is maximization, then m should be the minimum.

3.3. Final Decision Support

Together with the predicted class, A, the FRF calculates a decision support value of the
prediction. This support is obtained from the corresponding support values given by each
decision tree. An arithmetic average is usually used as aggregation operation. In this
work, we propose the Ordered Weighted Average (OWA) to perform the aggregation
[6]. OWA is a parameterized operator that permits to make a conjunctive or disjunctive
aggregation. The polarity of the operation is defined with a set of weights assigned to
the input values according to their position after their reordering. Having a set of support
values S j obtained with Eq. (2) for each tree, and having a weight for each position
wi, i = 1..n. The result F is obtained with Eq. (8), where Sσ(i) < Sσ(i+1).

In a FRF the number of trees, n, is usually large (i.e. hundreds), but only a subset
of the trees corresponds to the final class A. Given the randomness in the selection of
attributes, some of these trees may produce low support values. However, if a sufficient
number of trees, m <<< n, is highly supporting the selected class, the confidence about
this class should be high (disjuctive policy). The weighting vector, where ∑n

i=1 wi = 1,
has been defined with weights that decrease, Eq. (8).

F =
n

∑
i=1

wiSσ(i), where wi =
i

∑n
j=n−m j

, for i ∈ [n−m,n] , and wi = 0 otherwise (8)
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4. Experiments

4.1. Dataset

The experiments will be done with the diabetic retinopathy (DR) risk detection prob-
lem. In the last years, we developed the RETIPROGRAM system [7]. It is based on a
binary FRF classifier, which proved to give the best results for this problem [2]. The
model considers 9 different attributes (6 numerical and 3 categorical) to distinguish be-
tween the positive and the negative class. The numerical attributes were fuzzified with
the ophthalmologists expertise, defining appropriate linguistic labels [7].

To test the ordinal multi-class proposal, we used a dataset from a private regional
hospital. The dataset includes real data from 2084 diabetic patients. The ETDRS standard
classification is considered for the target DR attribute [8]. They are ordered from lowest
to highest degree of DR, C = {NoDR,Mild,Moderate,Severe}. The data has been split
in two different datasets, training (80%) and testing (20%). Table 1 shows the distribution
of the data among the target attribute classes, which has a large imbalance towards the
first class, NoDR.

Table 1. Diabetic retinopathy data distribution

Training Testing Total

NoDR 1394 (83.6%) 349 (83.7%) 1743
Mild 191 (11.5%) 48 (11.5%) 239

Moderate 58 (3.5%) 14 (3.4%) 72
Severe 24 (1.4%) 6 (1.4%) 30
Total 1667 417 2084

4.2. Study of the Weights of FDTs in the Voting Stage

From the different contributions presented in this paper for the case of ordinal multi-
class assignments with FRF, we start by testing the effect of using the κ index instead of
Accuracy to give a weight to each of the trees in Eq. (2). We compare 3 versions of the
FRF classification algorithm:

1. Base algorithm: it does not consider the category Unknown, so that we always
classify an instance to one of the output classes. Hence, δ1 = 0 and δ2 = 0.

2. Base-δ algorithm: it takes into account situations where two classes have similar
conditions and then the answer is unknown, to try to avoid mistakes.

3. New-δ algorithm: it corresponds to the new procedure explained in this paper.

We will denote as FN (False Negatives) to the examples where the model predicts
as a class lower than the real (i.e. underestimation or type-II error). Similarly, we call FP
(False Positives) when the predicted class is higher than the real one (i.e. overestimation
or type-I error). FNs are a kind of error non desirable in medical diagnosis, because the
system does not detect the real risk for the health of the person.

We have defined the Base version as the model to improve, as it makes too many
mistakes. The confusion matrix in Table 2 shows the results of the Base version. For ex-
ample, in Mild, from the total of 48 patients, we have 15 classified to NoDR (FN=31%).
Similarly, there is a 28% of FN in Moderate and 33% in Severe.
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Table 2. Base method confusion matrix

Real/Predicted NoDR Mild Moderate Severe

NoDR 278 30 21 20
Mild 15 13 8 12
Moderate 2 2 3 7
Severe 2 0 0 4

Table 3 compares the results of using Accuracy or κ as the quality metric in the
weighted voting. The 3 versions of the algorithm are compared on the Accuracy (Acc),
Accuracy including unknowns as errors (Acc Unk), and Kappa index. Thresholds used
are δ1 = 0.1 and δ2 = 0.25, which have proven through empirical testing to be the best
values. An in depth analysis of δ2 is shown in subsection 4.3.

Table 3. Comparison of two weighted voting quality metrics

Method/Weight
Accuracy Weight κ Weight

Acc Acc Unk Kappa Acc Acc Unk Kappa

Base 0.71 0.71 0.34 0.715 0.715 0.345
Base-δ 0.908 0.259 0.529 0.923 0.115 0.509
New-δ 0.702 0.6 0.312 0.734 0.561 0.318

Better quality values are obtained using κ as weights of the trees. The accuracy in-
dex increases in the 3 versions. Weighted Kappa index is maintained to a similar level.
Acc Unk metric decreases a bit, meaning the κ Weight produces more unknown predic-
tions than Accuracy Weight. To further analyse the weight selection in the voting stage,
Figure 1 shows the distribution of correct, incorrect and unknown predictions.

Figure 1. Distribution of correct, incorrect and unknown class assignments for different voting weights

The Base-δ algorithm does not perform appropriately. It has very few errors, but
there are too many unknown predictions. In contrast, the New-δ algorithm is able to re-
duce the incorrect predictions by introducing a moderate amount of unknowns. Compar-
ing Accuracy and κ in the New-δ algorithm, even tough κ has less correct predictions,
the amount of incorrect predictions is also smaller. We consider κ to have better results
because of its more conservative results on unclear cases. Moreover, it obtains a better
global accuracy.
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4.3. Study of δ2 for Class Assignment in Ordinal FRF

We studied the effect of using different d values to compute δ2 for the final class assign-
ment. Figure 2 shows the effect of d on the distribution of predictions among correct,
incorrect and unknown. As expected, the higher d, the lower the number of unknown
predictions. This is due mainly to decreasing the number of cases that enter to the sec-
ond condition in Eq. (7). Accordingly, correct and incorrect assignments increase as the
amount of unknowns decreases. We can see that the d parameter allows modelling the
trade-off between correct, incorrect and unknown predictions. For the DR risk assess-
ment problem, d = 0.25 was chosen for its balance of reducing incorrect predictions
while not increasing unknowns and reducing correct predictions in excess. In other do-
mains, δ2 can be adapted according to the problem being solved, and the implications of
miss-classifications.

Figure 2. Distribution of correct, incorrect and unknown class assignments for different d values

4.4. Study of the Heuristics for Class Assignment in Ordinal FRF

To study the effects of the proposed heuristics, the algorithm versions explained in 4.2
have been tested with two additional versions, Table 4. The additional versions differ in
heuristic H3, which considers cases with the two most voted classes not being Unknown
and a similar number of votes, Δvab < δ2. We eliminate the condition about the distance
of the classes in the ordered set C, instead, a predetermined label is assigned. New-δ -
Unk assigns Unknown, whereas New-δ -Max assigns the class with the higher index in
C.

The performance improvement can be more clearly seen in the distribution of cor-
rect, incorrect and unknown assignments in Figure 3. Comparing New-δ -Unk and New-
δ -Max with New-δ , we can conclude that by taking into account the distance between
the majority classes, we can balance the number of errors and unknown assignments.
Even though New-δ -Unk is the version with fewer errors, it is not the preferred version,
as it could lead to having too many predictions assigned to Unknown. In the case of
New-δ -Max, we can see on the FP the effect of classifying to the class with the higher
index when the FRF does not have a clear consensus towards one class. By merging
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Table 4. Comparison of different versions of the method

Accuracy Acc Unk Kappa

Base 0.715 0.715 0.345
Base-δ 0.923 0.115 0.509

New-δ -Unk 0.789 0.556 0.38
New-δ -Max 0.686 0.561 0.227

New-δ 0.734 0.561 0.318

both versions depending on the distance between classes, the amount of unknowns can
be balanced while prioritising the classes with higher indexes. This behaviour is desired
in ordinal cases such as the DR risk assessment, where a FN would have much worse
consequences than a FP.

Figure 3. Distribution of correct, incorrect and unknown assignments in different versions of the FRF

4.5. Study of OWA for Final Decision Support Averaging

To study the effect of a disjunctive OWA in the aggregation of the decision support, it has
been compared to an arithmetic average aggregation (AA), Table 5. Experiments have
been performed with n = 100 number of trees and m = n

3 as the minimum number of
trees supporting the selected class. The decision support values obtained from the test
dataset, which can range in [0,1], have been split in three intervals, to indicate three
levels of confidence on the answer given to the user. For each of them, the number of
correct predictions is counted. We consider we should not have a low decision support
in cases where a sufficient number of trees is sure about the prediction. This is the result
achieved by OWA. The number of predictions in the higher intervals is greater than using
an arithmetic average. As a consequence, the percentage of correct predictions in the
higher interval is also greater. With AA the user has more uncertain answers, which in
medicine are cases that require additional attention by the doctors, spending time and
resources. So, OWA operator is recommended.
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Table 5. Decision support values with AA and disjunctive OWA

Average OWA

[0, 0.5] (0.5, 0.75] (0.75, 1] [0, 0.5] (0.5, 0.75] (0.75, 1]

Total 44 205 70 5 113 201
# correct 37 149 48 5 80 149

% correct 84 % 73 % 69 % 100 % 71 % 74 %

5. Conclusions and future work

In this paper, we presented an adaptation of a binary FRF model for ordered multi-class
classification. We have focused on the 2 steps of the prediction stage, and we have re-
defined the procedure to manage conflicting cases. The different contributions presented
have been studied on a DR dataset. From the results we conclude that: κ index works
better than accuracy for weighting the trees; we can model the trade-off between predic-
tions and unknowns using δ2; the proposed heuristics balance the number of unknowns
while prioritising classes with higher indexes, which is desired in medical applications.
Finally, OWA gives an appropriate confidence value on the class assigned by the FRF.

As future work, we should test the proposed method with other datasets to confirm
the observations. Then, we plan to test the method with other aggregation operators, as
well as to study how it could make use of the dynamic updating method proposed in [4].
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[2] Saleh E, Błaszczyński J, Moreno A, Valls A, Romero-Aroca P, de la Riva-Fernández S, et al. Learning

ensemble classifiers for diabetic retinopathy assessment. Artif Intell Med. 2018;85:50–63.
[3] Saleh E, Valls A, Moreno A, Romero-Aroca P, Torra V, Bustince H. Learning Fuzzy Measures for

Aggregation in Fuzzy Rule-Based Models. In: Lecture Notes in Computer Science. Springer Verlag;
2018; p. 114–27.

[4] Pascual-Fontanilles J, Valls A, Moreno A, Romero-Aroca P. Iterative Update of a Random Forest
Classifier for Diabetic Retinopathy. Frontiers in Artificial Intelligence and Applications. 2021 Oct
14;339:207–16.

[5] De La Torre J, Puig D, Valls A. Weighted kappa loss function for multi-class classification of ordinal
data in deep learning. Pattern Recognition Letters. 2017;105:144–54.

[6] Yager RR. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking.
IEEE Trans Syst Man Cybern. 1988;18(1):183–90.

[7] Romero-Aroca P, Valls A, Moreno A, Sagarra-Alamo R, Basora-Gallisa J, Saleh E, et al. A Clinical
Decision Support System for Diabetic Retinopathy Screening: Creating a Clinical Support Application.
Telemedecine and e-Health. 2019 Jan 1;25(1):31–40.

[8] Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international
clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology.
2003;110(9):1677–82.

J. Pascual-Fontanilles et al. / Adapting a FRF for Ordinal Multi-Class Classification190


