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Abstract. Data-Driven Predictive Quality solutions are of utmost importance for 

Industry 4.0 in general and for high added value and complex manufacturing 
systems in particular. A unique Friction Stir Welding process is performed for the 

manufacturing of the new Ariane 6 aerospace launchers. This work presents a novel 

feature engineering approach that correlates Friction Stir Welding process data and 
quality inspection data to build a Machine Learning-based predictive quality 

solution. This solution predicts the presence of welding defects, empowering end-

user's quality assurance and reducing quality inspection time and associated costs. 
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1. Introduction 

For product quality assurance, solutions that build upon data analytics, Machine 

Learning (ML) and Artificial intelligence (AI) can provide major benefits, empowering 

end-users’ decision making that can lead to better products and optimized production 

lines. H2020 SESAME [1] project aims to bring innovative Industry 4.0 and Data-Driven 

solutions to the aerospace industry, focusing on reducing the costs of the new Ariane 

launcher production through data science models for quality prediction, predictive 

maintenance, and supply chain agility. The aerospace manufacturing industry its highly 

challenging due to their strict quality requirements and the low production volume. 

The use case introduced here studies the Friction Stir Welding (FSW) [2] process on 

the Ariane 6 Pre-Final Assembly Line. The proposed model, consisting in a set of data 

analytics and AI/ML-based tools, digests a large amount of welding process data to 

provide the expert with valuable quality insights that can lead to better and more cost and 

time-efficient quality control procedures. Following the preliminary study introduced in 

Camps, et al. [3], this work presents a feature engineering layer as well as the modelling 

of a binary classifier for the prediction of the presence of the welding defect is presented. 
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2. Data Fusion & Feature Engineering Layer 

For each welding test, the evolution along the 360º (cylindrical tank) of 53 process 

parameters, including temperature, force, position, and current variables of different 

FSW subsystems and sensors are acquired together with the FSW station configuration 

set-up. The sampling frequency of the process parameters varies from one to another 

(ranging from 0.7 Hz to 330 Hz), resulting in an inconstant timestamping. To obtain a 

uniform and constant sampling frequency, a resampling methodology based on linear 

interpolation is implemented.  

Once the cylindrical tanks are welded, strategic perpendicular cuts are done to assess 

the quality of the welding, which is directly related to the penetration of the welding pin 

into the interface between two welded parts. Even though the process data is acquired 

for several tests, due to the destructive and expensive nature of the quality inspection, it 

is performed only in 6 welded tanks and in a few positions of each of those welded tanks. 

Hence the importance of data-driven solutions that can estimate their values without 

destructing the welded part. To increment the quality label granularity, linear 

interpolation is applied.  

To get uniform inputs to feed the predictive quality algorithm, a correspondence 

between process data (timestamped) and quality inspection (space stamped) needs to be 

implemented. The data is segmented in the same spatial length windows and a set of 9 

features are computed for each window of each parameter: the minimum value, the 

maximum value, the mean value, the standard deviation, the maximum value of the first-

order derivative and the first two Power Spectral Density (PSD) computed with Welch’s 

method [4] and their amplitudes. Thus, each window is characterized by 477 new features. 

To accelerate the computation of the model and to reduce the high correlation observed 

among some of the features, the Principal Component Analysis (PCA) [5] dimensionality 

reduction algorithm is applied. Additionally, the two configuration parameters (pin 

diameter and length) and the Crown variable are added to the input set without the PCA 

transformation. The input data (process features & configuration parameters) is 

normalized with the Standard Scaler, which transforms the data to a standard normal 

distribution with a mean of 0 and a standard deviation of 1 [6]. 

The process data initially acquired based on the timestamp, and the quality data, based 

on the position of the quality inspection, are now both referenced to window position, 

implementing a time-spatial correlation.  

3. Model and Hyperparameter Tuning 

The proposed predictive quality model is based on a binary classifier algorithm which 

estimates the quality of the segment, defined as the presence of a defect or not. To explore 

different strategies and select the best one, different model training strategies determined 

by the size of the windows or segments, the algorithm and the hyperparameters 

associated are considered. The exploration focuses in four different windows sizes: 1, 2, 

4 and 6 degrees; and six different ML classifiers: Support Vector Machine (SVM) [7], 

K-Nearest Neighbours (KNN) [8], Decision Trees (DT) [9], Logistic Regression (LR) 

[10], Naïve Bayes (NB) [11], Bag decision trees (BDT) [9]. For the hyperparameter 

tuning of each model, an exhaustive grid-search method is implemented, generating 

candidates from a grid of hyperparameter values specified to evaluate their impact on the 

model performance.  
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As there are only 6 tests or files available to train, which are quite different due to 

the FSW configuration, the training is done by saving one file for the test and using the 

remaining 5 files to train the model, following a Leave-One-Out strategy [12]. 

Furthermore, 10 subsets are generated from each training dataset choosing randomly half 

of the population, thus implementing a dual cross-validation strategy. The best model is 

chosen by computing the mean of the accuracy metric for each combination of window, 

algorithm and hyperparameters across all iterations.  

4. Results and validation 

In this section, the results obtained in the dual cross-validation strategy are presented. 

Figure 1 shows the accuracy of some of the models generated, for the training in dark 

blue and test in light blue. Each of the plots in Figure 1 exhibits the results for a given 

window size and the best hyperparameters for each algorithm. A significant difference 

is observed between the train and test datasets, especially for 1-degree windows, 

implying models susceptible to overfitting in this configuration. The best performance is 

found in the 6-degrees moving window (0.72 for the test), with the smallest difference 

between train and test accuracy (around 0.28). Therefore, we can ensure that the models 

with 6-degree windows are more robust and reliable. 

 

Figure 1. Classifier comparison of accuracy error by the window size.  

It can be seen that LR outperforms the rest of the models, tuned with the 

hyperparameters, C=1, penalty=none, proving an accuracy error of 0.72. It is important 

to note also that LR shows a constant performance throughout all the cross-validation 

folds and hyperparameter combinations, and consequently presents a more reliable 

generalization. On the other hand, the KNN classifier shows a strong dependency on the 

train and test files selected, indicating that it is prone to overfitting.  

Finally, the cross-validation confusion matrix for the LR model is presented in Table 

1. The model performs better for the absence of defect due to the class imbalance. 

Table 1. Cumulative cross-validation confusion matrix for quality prediction.  Counts and percentage 

Predicted 
Good 4646 1649  

Predicted Good 81% 39% 

Bad 1110 2595  Bad 19% 61% 

   Good Bad  
 

Good Bad 
  Real  Real 

5. Conclusions 

The model introduced focuses on predictive quality solutions for the FSW stations of the 

Ariane Pre-Final Assembly Line. The design proposed, developed, and benchmarked 
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builds upon a data processing and feature engineering layer. It establishes the spatial-

time correlation, based on a moving window that determines the relation between process 

parameters timestamps and quality inspection position in degrees.  

To predict the presence of the defect, a strategy based on model competition and 

benchmarking for different ML classifiers is presented. Employing two-step cross-

validation, the performance of the different algorithms, hyperparameters and moving 

window sizes is evaluated. Larger moving windows obtain more balanced results 

between train and test data, therefore a compromise solution of 6-degree windows is 

selected. The presence of defects can be predicted with over 70% of accuracy with a LR 

model. There is an important decrease in the performance of test data compared to train 

data. Large differences may indicate that the model is still not completely able to 

generalize and perform under new welding conditions, indicating that models suffer from 

overfitting (what is learned in the training phase does not match new unseen data). This 

is due to two main reasons: limited available data together with different configurations 

of the FSW station in each dataset.  

Overall, these results, although preliminary given the small dataset, show the 

potential of the predictive quality module carried out within the SESAME project for 

complex manufacturing systems in the aerospace industry which is particularly 

challenging due to the low production cadence and extreme quality requirements. 

Furthermore, it can provide very valuable insights to process experts to focus their 

attention on specific welding sections that need to be inspected for quality assurance. 
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