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Abstract. Memes evolve and mutate through their diffusion in social media. They
have the potential to propagate ideas and, by extension, products. Many studies
have focused on memes, but none so far, to our knowledge, on the users that post
them, their relationships, and the reach of their influence. In this article, we define
a meme influence graph together with suitable metrics to visualize and quantify
influence between users who post memes, and we also describe a process to im-
plement our definitions using a new approach to meme detection based on text-to-
image area ratio and contrast. After applying our method to a set of users of the
social media platform Instagram, we conclude that our metrics add information to
already existing user characteristics.

Keywords. Memes, clustering, social media, social network, influence, culture,
DBSCAN, CNN, graph

1. Introduction

A meme is usually defined as “an idea, behavior, phrase or usage that spreads within a
culture” [1]. In the digital era, memes have adapted to new technologies and have become
a phenomenon in contemporary web culture [2]. As a combination of humor, text, and a
symbol, emoticons became one of the first types of Internet memes.

Even though Internet memes can exist as text, emojis, videos, or gifs, a common
format is that of an image with superimposed text that conveys some type of merged
message in an epigrammatic style. In the earlier days of the Internet, images with super-
imposed text began to propagate via e-mail and message boards. Later, social networks
emerged, allowing memes to viralize [3]. Image memes have become an integral part of
Internet culture. With the help of users they are born and reproduced, often mutated in
the process. They are also used to spread political messages and ideologies. Compared
to textual memes, image memes can condense their content and require less attention to
be understood. Therefore, they are likely to be more effective [4].

Many studies have been carried out around memes, mainly focusing on their evolu-
tion [5], predicting their virality [4, 6], modeling their spread with mathematical models
[7, 8], or devising algorithms for detecting them [3, 9]. But few, if any, have dug deeper
behind the creators of memes.

1Corresponding Author: Carles Onielfa, Universitat de Barcelona, Gran Via de les Corts Catalanes 585,
08007 Barcelona, Spain; carlesonielfa@gmail.com.

This work has been partially supported by MICIN/AEI under projects PID2019-105093GB-100 and
PID2020-117971GB-C22, and by ICREA under the ICREA Academia programme.



72 C. Onielfa et al. / Influence in Social Networks Through Visual Analysis of Image Memes

Regarding human achievement, viral success is closely related to merit [10]. There-
fore, it is natural that memes that were once uploaded anonymously are now being up-
loaded by users that are proud of their creations and sign their memes with their water-
mark. Some users who post popular memes have achieved massive followings, and this
grants them enormous influence and reach. However, that would be true of any user on
a social network with a big number of followers. What makes meme creators unique is
that they not only have the power to reach their followers, but two factors greatly expand
their scope. First, memes are meant to be spread and shared; hence, followers of meme
creators, if they enjoy a meme, are likely to share it with their friends [11]. Second —and
most importantly— from an original meme, other creators can mutate and alter the orig-
inal to make their own, retaining core aspects of the meme such as the underlying image.
If there was an idea or product within it, as the meme and its mutations viralize and are
shared, the idea or product goes viral with it, achieving exposure orders of magnitude
greater than the original reach of the creator of the meme.

In this study, we take over the task of providing tools to gain insight into creators and
the relationship between them through a visual analysis of the content of their memes.
Specifically, we provide a definition of a graph for visualizing relationships between
users who post memes on social networks, together with metrics that evaluate and rank
users (Section 3) and a process for experimentally building the corresponding graph
(Section 4). We undertake the detection of image memes using a new approach, namely
the extraction of features using a convolutional neural network (CNN) and the clustering
of memes by their underlying images. As an example, we apply our definitions to a set of
Spanish users of Instagram who publish memes, and comment on the results (Section 5).

We conclude that, thanks to our ranking, we are able to determine the users with the
biggest potential for publishing viral memes, and that some of these would be overlooked
by using standard metrics for determining influence.

2. Related Work

Recent studies in network analysis have analyzed how culture and behavior are spread via
social network ties, yet without focusing on the phenomenon that revolutionized culture
spread in social networks, namely memes. Likewise, studies in computer vision have
analyzed image memes and have attempted to detect memes or cluster them together,
without taking a look at the users who post them. This study bridges the gap.

User Influence in Social Networks. Many studies have reported that behaviors or prefer-
ences of people can spread via social ties in social networks, mainly getting their knowl-
edge through surveys [12, 13, 14]. However, to our knowledge, only [15] has derived the
users’ characteristics from what the users post online. In [15] a CNN was used to classify
the images that a user posted online. Then, the categories of the images of the users were
compared among friends and random users to find that socially tied individuals are more
likely to post images showing similar cultural lifestyles.

Meme Detection and Clustering. There have been studies that use memes and phrases
extracted from news and blogs to track and study the dynamics of the news cycle [16]
and research into clustering text-based memes on Twitter [17]. More in line with our
study, the research in [18] was able to cluster image streams using perceptual image
hashes (pHash). They identify memetic clusters using meme annotation from sites such
as “Know Your Meme”. One recent approach to meme detection is the Memesequencer
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model developed in [9]. However, research in [9] is limited to memes that have iden-
tifiable templates, previously documented on sites like Memegenerator or Quickmeme.
Another approach to meme detection is the Meme-Hunter model from [3], which uses
multi-modal deep learning. Their model combines image features, text features, and fa-
cial detection. However, they only consider memes as pictures with superimposed text in
impact font or text placed in white space over a picture.

In comparison with these works, our approach to meme detection fits a much broader
definition of meme and is more in line with the ever-changing landscape of memes, as it
does not require the template to be previously cataloged.

3. Formalization of the Problem

In this section, we detail concepts about memes and formalize the context of our problem.

Definition 1. A meme is a virally transmitted image embellished with text, usually shar-
ing pointed commentary on cultural symbols, social ideas, or current events.

This definition of meme could be expanded to contain videos, text or simply cultural
references. However, within this study we only consider image memes.

Examples of memes can be seen in Fig. 1. Given a meme, we refer to its meme
format as the underlying image of the composition. A meme format can often be used
to create more than one meme by adding or changing the existing embellishments. An
example of a meme format is shown in Fig. 2.
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Figure 2. A meme format,

Figure 1. Three memes. .
known as “Galaxy Brain”.

For any meme format, there exists a meme that used it first. Given a set of users U
and a meme format F, the pioneer of F within U is the user u € U who published the
oldest meme with the format F'. If the set of users is the set Uy, of all users on all social
media platforms, then we refer to the pioneer as an absolute pioneer.

Definition 2. Given a set of users U = {u,...,u,}, not necessarily belonging to the
same social network platform, we define the meme influence graph of U as a directed
weighted graph (U, E,w) with the following properties:

1. A pair (u;,u;) with i, j € {0,...,n} and i # j is in the set E of edges if the user
u; has posted a meme whose format was pioneered by u;.

2. w(u;,u;) is the number of memes posted by u; whose format was pioneered by u;.

A meme influence graph M = (U, E,w) is called maximal if U = Uy, that is, if every
user in every social media platform is in the set U.
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Definition 3. Let (U,E,w) be a meme influence graph for users U = {u, ...,u,}.

1. The out-degree of a user u; is the number of outgoing edges (u;,u;) € E from u;,
that is, the number of other users who have used a meme format pioneered by u;.

2. The in-degree of u; is the number of incoming edges (u;,u;) € E to u;, counting
how many other users have pioneered meme formats that u; has used.

3. The weighted out-degree of a user u; is the sum Y ;; w(u;,u;) of the weights of
the outgoing edges from ;. It is the number of memes published by other users
who have used a meme format pioneered by u;.

4. The weighted in-degree of a user u; is the sum Y. ; w(u;,u;) of the weights of
the incoming edges to u;, indicating how many memes have been published by u;
with a format pioneered by some other user in U.

The PageRank algorithm [19] applied to a graph measures the importance of each
of its nodes taking into account the number of incoming edges and the importance of the
source nodes of these edges. In short, a node will be important if other important nodes
link to it. If A is the adjacency matrix for a graph (U, E,w), the reverse PageRank of the
node u; is the value that the PageRank algorithm for the graph with adjacency matrix
A" (transpose of A) assigns to u;. By computing the PageRank in this manner, one gives
importance to the outgoing edges instead of the incoming edges.

Definition 4. The score of a user u; is the value that the reverse PageRank algorithm
assigns to u;.

For a maximal influence graph, degrees can be interpreted as follows. The out-degree
of u; is the number of users who have been inspired by memes of ;, while the in-degree
is the number of users who have influenced u; when creating memes. The weighted out-
degree of u; is the number of memes that have been influenced by u;, and the weighted
in-degree of u; is the number of memes from u; that have been influenced by some other
user. Since a user, when creating a meme, can be inspired by a meme from a user who is
not the pioneer of the meme format, the influence from a pioneer on a user is assumed to
be indirect. In the case of a non-maximal influence graph, we can also use the previous
interpretations but with some nuances. Suppose that the pioneer is not the absolute pio-
neer of a meme format. In that case, there might not even be an indirect relationship of
influence, since given a user u; in a set of users U who published a meme with a format F
with pioneer u; € U, there exists a possibility that u; first saw the format F* from another
user uy ¢ U. Therefore, the relationship of influence on a meme influence graph that is
not maximal has to be interpreted as potential influence.

4. Implementation

The process for building a meme influence graph (Definition 2) is shown in Fig. 3. The
input is a set of users U and the output is the meme influence graph for those users. Even
though the meme influence graph is defined for users of any social media platform, in
this study we limited the scope to Instagram. Since Instagram only allows users to pub-
lish images and videos, it is likely to find users whose content is mainly image memes.
Furthermore, Instagram is the third biggest social media platform [20] and, on this plat-
form, it is common for brands to partner with influential users (influencers) and publish
sponsored posts [21]. Thus, metrics for determining influential users are valuable.



C. Onielfa et al. / Influence in Social Networks Through Visual Analysis of Image Memes 75

() R
L Data Meme

Text

Scraping L Detection Removal ——
Users Downloaded Images Memes Text-free Memes

|onN

o /@\ﬁ el

g HE B

®><§/f/ Edge Clustering . =

o) ullding gorithm = = =

6 Buildi Algorith L E

Meme Influence Graph Meme Format Clusters Embeddings

Figure 3. Flow diagram for the creation of a meme influence graph.

Data Scraping. Data for Instagram were extracted by storing the responses of Insta-
gram’s API to the calls that the browser made when browsing relevant data. The data
accessed in this study are 100% public and accessible by anyone. Retrieving user data is
not strictly necessary for building a meme influence graph, but having some user charac-
teristics enables us to interpret the graph and compare the metrics from the graph to the
existing features of the users. Relevant features are their usernames, amount of follow-
ers, number of posts, average comments and likes per post, and text-to-image area ratio
(computed after processing all the images from the user).

Algorithm 1 Meme Detection Algorithm

Require: [ :=image to process of size (w,h)
o, B := lower and upper bounds for the text-to-image area ratio
¥ := minimum standard deviation threshold
Ensure: true if the image is detected as a meme, false otherwise
1: p + text detection(/) > Detect areas containing text on the image using the CRAFT text detector [22]

2: Agor < W X h, Aex <+ area(p) > Compute total image area and text area
3: 1 Awext/Avot > Compute text-to-image area ratio
4: ifr ¢ (o, B) then > If the text-to-image area ratio is not within bounds
5: return false > The image has either only text or no text and it is not a meme
6: end if
7: Lnpainted = inpaint(Z, p) > Inpaint / using the Navier—Stokes algorithm [23] with p as inpainting mask
8: o= std(Iinpaimed) > Compute standard deviation of grayscale values of the inpainted image
9: if 0 < y then > If after text removal the image has high grayscale deviation
10: return false > There was no content of substance left after removing the text, so it is not a meme
11: else > If after text removal the image has low grayscale deviation
12: return frue > There was an underlying image after removing the text, so the image is a meme
13: end if

When browsing the user’s publications (or posts), the only essential information are
the images within them. As with the user data, features from publications were also valu-
able for later study, so they were extracted as well. Features extracted from posts were
the user who posted it, the text, the amount of comments and likes, the date and time
when the post was published, the hashtags added by the user, and whether the image had
been detected as a meme or not (after processing it). In the case of Instagram, one publi-
cation can contain more than one media attachment (we call these publications albums)
and the attachments can be images or videos. Videos have been treated as images using
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their first frame. The first frame of a video is a good representation of the media in this
context, since meme videos using the same format have very similar first frames.

Meme Detection. In line with our broad definition of meme, the task that the meme
detection algorithm had to perform was to discard images with no text or no underlying
image. The process used to perform this task is described in Algorithm 1.

Embeddings. From a text-free meme, we have to extract features to have a lower-
dimensional representation of the source image that enables us to determine differences
in content between two images by comparing their features. Using text-free memes in-
stead of the original memes with text makes the underlying meme format exposed. This
diminishes the differences between memes using the same meme format and makes it
easier to cluster them together in the next step.

‘We use the convolutional neural network VGG16 [24] pre-trained with weights from
the ImageNet challenge. This neural network was chosen because it gave good results
for characterizing memes in [6], which had a broader meme definition than [3] and [9].
To adapt the network to the task at hand, we set the output to the second-to-last fully
connected layer, bypassing the classifier layers and giving an output of 4096 dimensions.

Deep Image Clustering. To cluster memes into groups sharing the same meme for-
mat, we input the embeddings into a clustering algorithm, namely Density-Based Spatial
Clustering of Applications with Noise (DBSCAN [25]). The DBSCAN algorithm works
well with a large number of samples and uneven cluster sizes. It includes outlier removal
while only requiring tuning of one parameter. We apply principal component analysis
(PCA) to reduce the dimensionality of the samples to 1024 for improving efficiency.

Meme Influence Graph. Finally, we build the meme influence graph (Definition 2). We
add input users as nodes and then, for each cluster, we create edges from the pioneer of
a cluster to the authors of the rest of the memes of that cluster. After building the graph,
we compute the metrics defined in Section 3.

Scalability. Meme detection and feature extraction are parallelizable. Clustering can be
scaled by using an incremental DBSCAN implementation [26] or a highly parallelizable
one [27]. Scaling is limited by the speed at which data can be extracted from Instagram.

5. Results

This section contains the results of using our implementation to build the meme influence
graph for a selected set of users. The implementation was coded using Python. A No-
SQL database was used for locally storing the data generated at each step of the process.

Data Scraping. The study set includes 91 users and 457,101 media. Users were selected
starting from two sets of 5 and 11 users who posted memes in Spanish and Catalan, re-
spectively, and had a large amount of followers. We added users who appeared in the
“Related Accounts” section of the profiles of the starting users and also posted memes.
This criterion was established to obtain a set of users that we expect to be densely con-
nected in their meme influence graph. The amount of users was limited by the speed
at which the data could be extracted from Instagram. The time frame of the posts was
limited to a period comprised between January 1st, 2017 and April 23rd, 2022. Within
the study set, there are users who post general topic memes but also some who post
topic-specific memes, such as football-themed, music-themed, or region-themed.
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Figure 4. Images correctly detected as memes. Classification is based on text-to-image area ratio and standard
deviation of gray values of the inpainted image converted to grayscale (Algorithm 1).

Meme Detection. The meme detection parameters (o, 3,7) in Algorithm 1 were found
experimentally by selecting a random sample of the images on the dataset and split-
ting it into memes and non-memes using the meme detection algorithm. False positives
and false negatives were manually identified and the thresholds were adjusted. This step
was repeated several times until adjustments to the values were negligible. With this
procedure, the following values were found: @ = 0.018, B = 0.4, ¥ = 26. Since stan-
dard deviation can vary depending on the size of the image, the images were resized
to 224 x 224 pixels, matching the required dimensions for an input image to the neural
network VGG16. In Figs. 4 and 5 we can see examples of how our meme detection al-
gorithm processes the images. After applying the detection algorithm to all the images
in our dataset, 342,984 out of 457,101 (75%) of images were detected as memes.

Embeddings and Clustering. The inputs to the VGG16 neural network are the text-free
memes generated in the previous step, in a size of 224 x 224 pixels. The embeddings
were reduced in dimensionality to 1024 components using PCA. The DBSCAN cluster-
ing algorithm was used with the cosine distance as metric, a minimum samples per clus-
ter value of 3, and an epsilon value € = 0.12. The epsilon parameter for the algorithm
was tuned manually by selecting a small number of memes with popular meme formats
and visualizing their clusters with an initially big epsilon value. The epsilon value was
lowered in small increments until the only memes left in the selected meme’s cluster
were memes with the same meme format. The clustering was able to group memes us-
ing the same meme format (Fig. 6). On our dataset, the algorithm found 13,663 clusters
containing 82,801 memes, and 260,183 memes were detected as noise.

Influence Graph and Metrics. We built the meme influence graph and computed the
metrics defined in Section 3. The graph for our anonymized set of users is shown in
Fig. 7, where high score nodes can be easily identified. By computing the Pearson cor-
relation coefficient between each of the pre-existing characteristics of the users and each
of our metrics, we found that the follower count had low positive correlations with score
(p =0.29), weighted in-degree (p = 0.27), and weighted out-degree (p = 0.30). Hence
we conclude that the number of followers, which is frequently used for determining the
importance of a user [28], was unable to tell the difference between incoming influ-
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of grayscale values, respectively (Algorithm 1).

Figure 6. Some of the images in three clusters.

ence and outgoing influence in our set of users. The amount of posts published by these
users had a high correlation with score (p = 0.69), weighted in-degree (p = 0.85), and
weighted out-degree (p = 0.73). This matches the intuition that the more posts a user
makes, the more opportunities for their memes to influence or be influenced. No correla-
tion higher than 0.10 was found for average likes and comments per post with influence
per post (weighted out-degree/media count), indicating that user engagement in posts
does not correlate significantly with more influential memes.

We found communities of users sharing memes that match a certain topic or geo-
graphic area using the Clauset—-Newman—Moore community detection algorithm [29] on
our graph. There were communities posting football-related memes and others related to
territories. Most users were not included in any community with a relevant trait.

6. Conclusions

We presented a graph and metrics on it that serve as tools to visualize the influence and
the relationships of meme creators, and provided a pipeline for constructing the graph
and computing the metrics. This process was implemented using a novel approach to
meme detection, deep features extraction, and DBSCAN clustering.

Our ranking method could be applied, for example, in order to select candidates
from a set of users for a marketing campaign using memes. By basing our criteria on their
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Figure 7. The meme influence graph for our set of 91 users. Nodes are labeled from 1 to 91; node size
represents follower count; node color represents score from 0 (blue) to 0.13 (yellow) ; edge thickness represents
edge weight; edge color matches the source node color; edge directions are represented clockwise.

scores, we ensure that memes generated by the selected users have the highest chance
of viral spread through other users and reach an audience bigger than their group of
initial followers. Using our graph, we can detect users who can be considered as “hidden
gems”, that is, users with a high score although they may not rank high with respect to
their number of followers. For example, user #35 in Fig. 7 has the highest score but ranks
13th regarding the number of followers.

Limitations. This small-scale experiment does not attempt to characterize Instagram
as a social network or extract information about general meme format use or virality,
although observing such characteristics would be feasible if the experiment were scaled
to encompass enough users. The set of users in this article does not represent a general
population; therefore, the methodology can be extrapolated to other sets of users but not
the results. The metrics and connections also need to be carefully interpreted according
to their definition as explained in Section 3, since it is very likely that users are related
with other users not represented in the graph.
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