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Abstract. We define a new MaxSAT tableau calculus based on resolution. Given
a multiset of propositional clauses φ , we prove that the calculus is sound in the
sense that if the minimum number of contradictions derived among the branches of
a completed tableau for φ is m, then the minimum number of unsatisfied clauses
in φ is m. We also prove that it is complete in the sense that if the minimum number
of unsatisfied clauses in φ is m, then the minimum number of contradictions among
the branches of any completed tableau for φ is m. Moreover, we describe how to
extend the proposed calculus to solve Weighted Partial MaxSAT.
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1. Introduction

The Satisfiability problem (SAT) is the problem of deciding if there exists a truth assign-
ment for a given propositional formula in conjunctive normal form (CNF) that evaluates
the formula to true. An important optimization variant of SAT is Maximum Satisfiability
(MaxSAT), which is the problem of finding a truth assignment that minimizes the num-
ber of unsatisfied clauses in a multiset of clauses [23]. Note that minimizing the number
of unsatisfied clauses is equivalent to maximizing the number of satisfied clauses.

The inference rules applied in SAT are sound if they preserve satisfiability. Neverthe-
less, such rules are not applicable in MaxSAT because they are usually unsound. Sound
MaxSAT inference rules must preserve the minimum number of unsatisfied clauses be-
tween the premises and the conclusions. As a consequence, new complete inference sys-
tems for MaxSAT have had to be defined [20]. They are MaxSAT extensions of either
the resolution rule [33] or semantic tableaux [11,15,34].

This paper presents a new tableau calculus for MaxSAT based on resolution, proves
its completeness and defines its extension to Weighted Partial MaxSAT, the case in which
some clauses can be declared as hard and soft clauses have an associated weight. The ad-
vantage of our calculus is that it can produce shorter proofs than other related approaches
in some cases.

Although this work is mainly theoretical, it is worth mentioning that MaxSAT offers
a competitive generic problem solving formalism for combinatorial optimization. For ex-
ample, MaxSAT has been applied to solve optimization problems in real-world domains
as diverse as combinatorial testing [1], community detection in complex networks [17],
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diagnosis [12], group testing [10], planning [35], routing [31], scheduling [5] and team
formation [32], among others. Furthermore, there exist efficient branch-and-bound [21]
and SAT-based MaxSAT solvers [4].

The paper is structured as follows. Section 2 defines basic concepts. Section 3 re-
views the related work. Section 4 defines a novel MaxSAT tableau calculus based on
resolution and proves its completeness. Section 5 defines an extension of the proposed
calculus to Weighted Partial MaxSAT. Section 6 gives the conclusions.

2. Preliminaries

A literal is a propositional variable or a negated propositional variable. A clause is a dis-
junction of literals. A weighted clause is a pair (c,w), where c is a disjunction of literals
and w, its weight, is a natural number or infinity. A clause is hard if its weight is infinity;
otherwise, it is soft. The infinity weight is denoted by �. A weighted partial MaxSAT in-
stance is a multiset of weighted clauses φ = {(h1,�), . . . ,(hk,�),(c1,w1), . . . ,(cm, wm)},
where the first k clauses are hard and the last m clauses are soft. A soft clause (c,w) is
equivalent to having w copies of the clause (c,1), and {(c,w1),(c,w2)} is equivalent to
(c,w1 +w2). For simplicity, in what follows, we omit weights when all the soft clauses
have the same weight.

A truth assignment assigns to each propositional variable either 0 (false) or 1 (true).
Weighted Partial MaxSAT, or WPMaxSAT, for an instance φ is the problem of finding
an assignment that satisfies all the hard clauses and minimizes the sum of the weights of
the unsatisfied soft clauses; such an assignment is said to be an optimal assignment.

The Weighted MaxSAT problem, or WMaxSAT, is WPMaxSAT when there are no
hard clauses. The Partial MaxSAT problem, or PMaxSAT, is WPMaxSAT when all the
soft clauses have the same weight. The (Unweighted) MaxSAT problem is PMaxSAT
when there are no hard clauses. The SAT problem, or SAT, is PMaxSAT when there are
no soft clauses.

Minimum Satisfiability (MinSAT) is the dual problem of MaxSAT and its goal is to
find an assignment that maximizes the number of unsatisfied clauses. The most general
extension of MinSAT is Weighted Partial MinSAT, or WPMinSAT, whose goal is to find
an assignment that satisfies all the hard clauses and maximizes the sum of the weights of
the unsatisfied soft clauses.

3. Related Work

The fact that unit propagation could not be used to simplify CNF formulas in branch-
and-bound MaXSAT solvers led to the definition of incomplete resolution-based infer-
ence rules for MaxSAT [18,24,25] and of a complete MaxSAT resolution rule [7,8,16].
More recently, the proof complexity community has drawn the attention to MaxSAT res-
olution with the aim of defining a stronger proof system than SAT resolution. For ex-
ample, MaxSAT resolution with the split rule (replace clause C with ¬x∨C and x∨C)
produces polynomial-size proofs of the pigeon hole principle, and this does not happen
if MaxSAT resolution is replaced with SAT resolution [6,19]. MaxSAT resolution has
also been used in a MinSAT branch-and-bound solver [30] and a variable elimination
algorithm for MinSAT has been defined in [22,29].
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The first tableau calculus for MaxSAT was defined in [27] and then it was extended
to non-clausal MaxSAT [13,28]. These works inspired the creation of a complete natural
deduction calculus for MaxSAT [9] and tableau calculi for MinSAT [2,3,14,26].

Compared with existing tableau calculi, the calculus of this paper does not need to
expand all the clauses in a branch to detect all the possible contradictions. It only needs to
expand those clauses containing a complementary literal in another clause of the branch.

4. A MaxSAT tableau calculus based on resolution

We define a MaxSAT tableau calculus and prove its soundness and completeness.

Definition 4.1. A tableau is a tree with a finite number of branches whose nodes are
labelled by either a clause or a box (�). A box in a tableau denotes a contradiction. A
branch is a maximal path in a tree, and we assume that branches have a finite number of
nodes.

Definition 4.2. Let φ = {φ1, . . . ,φm} be a multiset of clauses, l a literal, and D and D′
disjunction of literals. A tableau for φ is constructed by a sequence of applications of the
following rules:

Initialize A tree with a single branch with m nodes such that each node is labelled with
a clause of φ is a tableau for φ . Such a tableau is called the initial tableau and its
clauses are declared to be active.

Given a tableau T for φ and a branch b of T ,

Res-rule If b contains two active clauses with complementary literals, l ∨D and
¬l∨D′, the tableau obtained by appending a new left branch with two nodes
below b labelled with ¬l and D and a new right branch with two nodes below
b labelled with l and D′ is a tableau for φ . Clauses l∨D and ¬l∨D′ become
inactive in b and the added clauses are declared to be active.

Unit-rule If b contains an active unit clause l and an active non-unit clause ¬l ∨
D, the tableau obtained by appending a new left node below b labelled with
� and a new right node with two nodes below b labelled with l and D is
a tableau for φ . Clauses l and ¬l ∨D become inactive in b and the added
non-empty clauses are declared to be active.

�-rule If b contains two active and complementary unit clauses, l and ¬l, the
tableau obtained by appending a node below b labelled with � is a tableau
for φ . Clauses l and ¬l become inactive in b.

The expansion rules of the previous definition are summarized in Figure 1. Note that
all the rules preserve the number of premises falsified by an assignment I in at least one
branch and do not decrease that number in the other branch (if any).

Definition 4.3. Let T be a tableau for a multiset of propositional clauses φ . A branch b of
T is saturated when no further expansion rules can be applied on b, and T is completed
when all its branches are saturated. The cost of a saturated branch is the number of
boxes on the branch. The cost of a completed tableau is the minimum cost among all its
branches.
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Figure 1. Tableau expansion rules for non-clausal MaxSAT

Notice that a branch becomes saturated when it does not contain active clauses with
complementary literals. We show below that the minimum number of clauses that can be
unsatisfied in a multiset of propositional clauses φ is m iff the cost of a completed tableau
for φ is m. Thus, the systematic construction of a completed tableau for φ provides an
exact method for MaxSAT.

Example 4.4. Figure 2 shows how we can create a tableau, with the previous calcu-
lus, to prove that the minimum number of unsatisfied clauses in the multiset of clauses
{x1,x2,¬x1 ∨ x3,¬x1 ∨¬x2 ∨¬x3} is one. We first create the initial tableau (the leftmost
tableau) and then apply the Res-rule to the clauses ¬x1∨x3 and ¬x1∨¬x2∨¬x3 (resolv-
ing variable x3), getting as a result the second tableau in the figure. We apply the �-rule
to x1 and ¬x1 on the leftmost branch and obtain the third tableau. That branch is now
saturated because its current active clauses (x2 and ¬x3) do not contain complementary
literals. Then, we apply the Unit-rule to the clauses x1 and ¬x1∨¬x2 (resolving variable
x1) on the rightmost branch, getting as a result the fourth tableau whose middle branch is
saturated (current active clauses: x2 and x3). Finally, we apply the �-rule to x2 and ¬x2
on the rightmost branch and this branch becomes also saturated (current active clauses:
x1 and x3). Since the minimum number of boxes among the branches of the last tableau
is one, the minimum number of clauses that can be unsatisfied in φ is also one.

The advantage of the defined calculus with respect to other MaxSAT tableau cal-
culi [13,27,28] is that it does not need to expand all the active clauses to saturate a branch.
It only needs to expand those active clauses containing a complementary literal in an-
other active clause of the branch. This implies, in some cases, that the resulting tableaux
have fewer nodes. For instance, the other calculi need to double the number of branches
to solve the multiset of clauses of Example 4.4.

4.1. Soundness and completeness

We prove the soundness and completeness of the proposed tableau calculus for MaxSAT.
Before presenting the completeness theorem, we prove termination and the soundness of
the expansion rules.

Proposition 4.5. A tableau for a multiset of propositional clauses φ is completed in a
finite number of steps.

Proof. We first create an initial tableau and then apply expansion rules in the newly
created branches until they become saturated. The Res- and Unit-rule reduce the number

S. Li et al. / A Tableau Calculus for MaxSAT Based on Resolution38



x1

x2

¬x1 ∨ x3

¬x1 ∨¬x2 ∨¬x3

x1

x2

¬x1 ∨ x3

¬x1 ∨¬x2 ∨¬x3

x3

¬x1 ∨¬x2

¬x3

¬x1

x1

x2

¬x1 ∨ x3

¬x1 ∨¬x2 ∨¬x3

x3

¬x1 ∨¬x2

¬x3

¬x1

�

x1

x2

¬x1 ∨ x3

¬x1 ∨¬x2 ∨¬x3

x3

¬x1 ∨¬x2

x1

¬x2

�

¬x3

¬x1

�

x1

x2

¬x1 ∨ x3

¬x1 ∨¬x2 ∨¬x3

x3

¬x1 ∨¬x2

x1

¬x2

�

�

¬x3

¬x1

�

Figure 2. A tableaux for the non-clausal MaxSAT instance {x1,x2,¬x1 ∨ x3,¬x1 ∨¬x2 ∨¬x3}.

of connectives. Since we began with a finite number of connectives, these rules can
only be applied a finite number of times. The �-rule inactivates two literals and adds a
box. Since we began with a finite number of literals and boxes cannot be premises of
any expansion rule, this rule can only be applied a finite number of times. Hence, the
construction of any completed tableau terminates in a finite number of steps.

Proposition 4.6. An assignment I falsifies k premises of a Res-, Unit-, and �-rule iff
assignment I falsifies k clauses in one branch of the conclusions of the rule and at least
k clauses in the other branch (if any).

Proof. We prove the result for each rule:

• Res-rule: An assignment I satisfies both l∨D and ¬l∨D′ iff I satisfies either l and
D′ or ¬l and D. In this case, I satisfies the clauses of one branch and falsifies at
least one clause of the other branch. In any other case, I falsifies either l ∨D or
¬l∨D′. If I falsifies l∨D, it falsifies exactly one clause (D) of the left branch and
at least one clause of the right branch. If I falsifies ¬l ∨D′, it falsifies exactly one
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clause (D′) of the right branch and at least one clause of the left branch. Hence,
the number of unsatisfied clauses is preserved in at least one branch of the rule.

• Unit-rule: An assignment I satisfies both l and ¬l ∨D iff I satisfies l and D, and
in this case I satisfies the two clauses of the right branch. In any other case, I
falsifies either l or ¬l ∨D. So, I falsifies the left branch and at least one clause of
the right branch. Hence, the number of unsatisfied clauses is preserved in at least
one branch of the rule.

• �-rule: An assignment I either falsifies l or ¬l, and satisfies the complementary
literal of the unsatisfied literal. Since the single conclusion is a box and denotes
a contradiction, I falsifies the same number of clauses in the premises and the
conclusion.

Theorem 4.7. Soundness & completeness. The cost of a completed tableau for a mul-
tiset of clauses φ is m iff the minimum number of unsatisfied clauses in φ is m.

Proof. (Soundness:) T was derived by creating a sequence of tableaux T0, . . . ,Tn (n ≥ 0)
such that T0 is an initial tableau for φ , Tn = T , and Ti was obtained by a single application
of the Res-, Unit- or �-rule on an branch of Ti−1 for i = 1, . . . ,n. By Proposition 4.5, we
know that such a sequence is finite. Since T has cost m, Tn contains one branch b with
exactly m boxes and the rest of branches contain at least m boxes. Moreover, the active
clauses in every branch of Tn do not contain complementary literals; otherwise, we could
yet apply expansion rules and Tn could not be completed. The assignment that sets to
true the literals occurring in the active clauses of an optimal branch only falsifies the m
boxes and there cannot be any assignment satisfying less than m clauses in a branch of
Tn because each branch contains at least m boxes. Therefore, the minimum number of
active clauses than can be unsatisfied among the branches of Tn is m.

Proposition 4.6 guarantees that the minimum number of unsatisfied active clauses
is preserved in the sequence of tableaux T0, . . . ,Tn. Thus, the minimum number of un-
satisfied active clauses in T0 is also m. Since T0 is formed by a single branch that only
contains the clauses in φ and all these clauses are active, the minimum number of clauses
that can be unsatisfied in φ is m.

(Completeness:) Assume that there is a completed tableau T for φ that does not have
cost m. We distinguish two cases:

(i) T has a branch b of cost k, where k < m. Then, T has a branch with k boxes
and a satisfiable multiset of active clauses because T is completed. This implies that the
minimum number of unsatisfied active clauses among the branches of T is at most k.
By Proposition 4.6, this also holds for T0, but this is in contradiction with m being the
minimum number of unsatisfied clauses in φ because k < m. Thus, any branch of T has
at least cost m.

(ii) T has no branch of cost m. This is in contradiction with m being the minimum
number of unsatisfied clauses in φ . Since the tableau expansion rules preserve the mini-
mum number of unsatisfied clauses and the branches of any completed tableau only con-
tain active clauses that are boxes or clauses without complementary literals, T must have
a saturated branch with m boxes. Thus, T has a branch of cost m.

Hence, each completed tableau T for a multiset of clauses φ has cost m if the mini-
mum number of clauses that can be unsatisfied in φ is m.
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Figure 3. Tableau expansion rules for Weighted Partial MaxSAT

5. A Tableau Calculus for Weighted Partial MaxSAT based on Resolution

Dealing with weighted soft clauses can be understood as collapsing several unweighted
MaxSAT inferences into a single inference, because a weighted clause (C,w) can be
replaced by w copies of the unweighted clause C. If there are two premises (C1,w1)

and (C2,w2) with different weights (w1 �= w2), (C1,w1) and (C2,w2) become inactive
but (C1,w1 −w) and (C2,w2 −w), where w = min(w1,w2), are added as active clauses
(clauses with weight 0 are not added). Then, the conclusions of the inference have
weight w. For example, from (x1,1) and (¬x1,3) we derive (�,1) and (¬x1,2).
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(¬x3,2)
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(x2,1)

(�,2)

Figure 4. A tableau for the WPMaxSAT instance {(¬x1 ∨¬x2,�),(¬x2 ∨¬x3,2),(x1,2),(x2,3),(x3,2)}

When dealing with hard clauses, the inference applied in SAT remains valid in
MaxSAT when the premises are hard. Moreover, the detection of a contradiction between
two hard clauses implies that we have identified an infeasible solution. In this case, the
contradiction is represented by � and the branch containing that contradiction can be
pruned.

Figure 3 displays the expansion rules of a complete tableau calculus for Weighted
Partial MaxSAT. It is formed by the extensions of the Res-, Unit-, and �-rules when
their premises contain unit hard clauses or weighted soft clauses. In the case in which we
have a non-unit hard clause, we can use the β -rule. In our calculus, unit hard clauses are
always active while non-unit hard premises become inactive after applying an inference
rule. Notice that other inference rules could be used to deal with hard premises but we
used the β -rule because it produces a simple and complete calculus.

Example 5.1. Figure 4 displays a tableau for the WPMaxSAT instance {(¬x1 ∨
¬x2,�),(¬x2 ∨¬x3,2),(x1,2),(x2,3),(x3,2)}. Firstly, we apply the β -rule to (¬x1 ∨
¬x2,�). Secondly, we apply the �-rule to (¬x1,�) and (x1,2) in the left branch. Thirdly,
we apply the �-rule to (¬x2,�) and (x2,3) in the right branch. Fourthly, we apply the
Unit-rule to (¬x2 ∨¬x3,2) and (x2,3) in the left branch. Fifthly, we apply the �-rule
to (¬x3,2) and (x3,2) in the second leftmost branch. Sixthly, we apply the Unit-rule to
(¬x2 ∨¬x3,2) and (x3,2) in the right branch. Since the minimum cost among all the
branches is 3, the minimum sum of weights of the unsatisfied soft clauses while satisfying
the hard clauses is 3.
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Taking into account that a soft clause (c,w) is equivalent to having w copies of clause
(c,1), and {(c,w1),(c,w2)} is equivalent to (c,w1 +w2), we can prove that the previous
calculus is complete for WPMaxSAT.

6. Conclusions

We presented a new tableau calculus for MaxSAT based on resolution, proved its com-
pleteness and defined its extension to WPMaxSAT. The proposed calculus has the advan-
tage of producing shorter proofs in some cases. Moreover, this work is a step forward to
better understanding the logic of MaxSAT. In future work, we plan to extend the calculus
to non-clausal MaxSAT, MinSAT and first-order logic.
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[7] M. L. Bonet, J. Levy, and F. Manyà. A complete calculus for Max-SAT. In Proceedings of the 9th
International Conference on Theory and Applications of Satisfiability Testing, SAT-2006, Seattle, USA,
pages 240–251. Springer LNCS 4121, 2006.
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[25] C. M. Li, F. Manyà, and J. Planes. New inference rules for Max-SAT. Journal of Artificial Intelligence
Research, 30:321–359, 2007.
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