
Yet Another (Fake) Proof of P=NP

Carlos ANSÓTEGUI a and Jordi LEVY b,1

a Universitat de Lleida, Spain.
b IIIA, CSIC, Spain.

Abstract. Obviously, we do not prove P = NP in this article. In fact, the title only
refers to the first part, where the proof that we present contains an error that, to
make reading more attractive, is only revealed in the second part.

In the second part, we describe how the reduction of SAT to Max2XOR and
the proof system presented in the first part –although they do not solve one of the
Millennium Prize Problems– may trigger new complementary ways of solving the
SAT problem.

Keywords. Proof systems, SAT, MaxSAT, MaxCUT

1. Introduction

We start this fake proof by introducing the Cook and Reckhow program [1], as a way to
resolve the P versus NP problem. The program is based on the following observation.
The complexity class P is closed under complement, therefore, if P = NP, then NP is
also closed under complement. In other words,

NP �= CoNP implies P �= NP (1)

The class P does not need any introduction. The class NP is the set of decision
problems that can be solved in polynomial time by a non-deterministic Turing Machine.
Equivalently, NP can be defined as the class of decision problems P for which x ∈ P has
certifications or proofs verifiable in polynomial time by a deterministic Turing machine.
The classical NP-hard problem is SAT [2,3], defined as the set of propositional formulas
in conjunctive normal form that are satisfiable. In this case, a certification that a given
formula is in SAT can be simply a truth assignment to the variables that satisfies all the
clauses. Given a formula and a truth assignment, we can verify that the assignment certi-
fies the satisfiability of the formula using a deterministic Turing Machine in polynomial
time.

The class CoNP is the complement of NP. It can be defined as the class of decision
problems P for which x �∈ P has certifications verifiable in polynomial time by a deter-
ministic Turing machine. The classical CoNP-hard problem is the complement of SAT,
i.e. TAUT.

In order to prove that NP = CoNP, since TAUT is CoNP-hard, we only need to
prove that x ∈ TAUT has certifications verifiable in polynomial time. Here, it makes

1Corresponding Author: Jordi Levy, IIIA, CSIC, Campus de la UAB, 08193 Bellaterra, Spain; E-mail:
levy@iiia.csic.es.

Artificial Intelligence Research and Development
A. Cortés et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220310

25

sense to call these certifications proofs. These proofs are defined in a very general way,
as sequences of bits s ∈ {0,1}+. A proof system PS is defined as a polynomial-time
algorithm that, for any formula f , we have f ∈ TAUT if, and only if, there exists a proof
s such that the algorithm PS accepts (f ,s). We say that the proof system is p-bounded if,
in addition, we can ensure the existence of a polynomially-bounded proof. In this case,
PS accepts (f ,s) in polynomial time on | f |. Therefore,

there is a p-bounded proof system for TAUT if, and only if, NP = CoNP. (2)

It is important to remark that we do not care about how difficult is to find the proof.
We only have to ensure that there exists a short (i.e. p-bounded) proof. A completely dif-
ferent question is the practical use of these proof systems, in a SAT solver, for instance.
Thus, we observe that most SAT solvers are based on the resolution proof system, al-
though we know that it is one of the weakest proof systems, in the sense that it has long
proofs for tautologies that have short proofs in other proof systems.

2. Reducing SAT to Max2XOR

XOR clauses are similar to SAT clauses, using exclusive OR instead of the traditional
OR. They can be written in the form of parity constraints or clauses

x1 ⊕ . . .⊕ xn = k,

where xi’s are Boolean variables (that may take value 0 or 1), ⊕ is the sum-modulo-two
operator, and k is either the constant 0 or 1. The particular case where n = 0 and k = 1 is
an unsatisfiable clause, similar to the empty clause in SAT, that we will represent as .
The case where n = 0 and k = 0 is always satisfied (a tautological clause) and is removed
from the formula. Repeated variables are also removed from clauses, thus x⊕ x⊕A = k
is simplified to A = k.

Here we will consider parity constraints with at most two variables. The satisfiability
of a set of these constraints, called 2XOR –or even the more general XOR problem– is
in P.

Max2XOR is the optimization version of this problem, where we try to find an as-
signment that maximizes the number of satisfied constraints. The decision version of this
problem, where given a set of parity constraints and an integer C, we decide if there is
an assignment that satisfies at least C constraints, is NP-hard. This can be proved by re-
ducing SAT to Max2XOR using the gadget we describe in [4]. Bellow, we introduce this
reduction through an example.2

Example 1. The clause x1∨·· ·∨x7 can be reduced to the following Max2XOR problem,
where a dashed red line between x and y represents the clause x⊕ y = 0, or equivalently
the equal-variable constraint x = y, and a solid blue line between x and y represents the
clause x⊕ y = 1, or equivalently the non-equal-variable constraint x �= y. The special
node labeled as 1̂ is used to represent unary clauses as edges: x⊕ 1̂ = 1 is equivalent to
x = 0, and x⊕ 1̂ = 0 is equivalent to x = 1. The variables b1, . . . ,b5 are fresh variables
not occurring elsewhere.

2We refer to [4] for a formal definition and proof of correctness. In this original publication, XOR clauses
are weighted, and all weights are multiples of 1/2. Here we avoid the use of weights.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP26

x1 x2 x3 x4

x5

x6 x7

b1 b2 b3

b4 b5

1̂

Any similar set of XOR clauses, representing this kind of tree with the variables
x1, . . . ,x7 in the leaves, would also work.

If the original clause contains negated literals, we proceed in the same way, trans-
forming the resulting XOR clauses by removing negations, using: ¬x⊕A = k is equiva-
lent to x⊕A = 1− k.

Proposition 2 ([4]). The Translation of a SAT clause C with n ≥ 2 literals results into a
multiset T (C) of 3(n−1) XOR clauses.

For any SAT clause C of size n ≥ 2: any assignment I satisfying C, can be extended
(assigning the auxiliary variables b’s) to an assignment satisfying 2(n−1) XOR clauses
of T (C), and any assignment I falsifying C can only be extended to satisfy at most 2(n−
2) of the XOR clauses.

Any SAT problem P with clause sizes Ci ≥ 2, for i = 1, . . . ,m, can be reduced to a
Max2XOR problem T (P) with 3∑m

i=1(Ci −1) XOR clauses, such that
P is satisfiable if, and only if, the maximum number of satisfiable clauses in T (P) is at
least 2∑m

i=1(Ci −1); or equivalently,
P is unsatisfiable if, and only if, the minimum number of unsatisfied clauses in T (P) is at
least 2+∑m

i=1(Ci −1).

The previous proposition allows us to reduce SAT to (the decision version of)
Max2XOR. In the next section we tackle the problem of defining a proof system for
Max2XOR or, in general, for MaxXOR.

MaxCUT is the problem of, given a graph, finding a partition of the vertices into
two sets such that the number of edges connecting two nodes of distinct partitions is
maximized. It is easy to see that MaxCUT is the same as maximizing the satisfaction
of constraints of the form x⊕ y = 1. We can reduce Max2XOR to MaxCUT as follows:
We introduce a new variable, called 1̂, and replace every constraint x = 0 by x⊕ 1̂ = 1,
and x = 1 by x⊕ 1̂ = 0. Then, we replace every constraint of the form x⊕ y = 0 by two
constraints x⊕b= 1 and b⊕y= 1, where b is a fresh variable. In this way, we get a set of
constraints of the form x⊕ y = 1 that, interpreted as edges, can be solved as a MaxCUT
problem.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP 27

3. A Polynomial Proof System for MaxXOR

The equivalent to the resolution rule for XOR constraints, called XOR resolution rule or
Gaussian elimination, is

x⊕A = k1
x⊕B = k2

A⊕B = k1 ⊕ k2

(3)

When we apply this rule, we must remove repeated variables (we assume that there
is at least one of such repeated variables, called x in the previous scheme). Thus, these
are particular instances of the rule scheme:

x⊕ y⊕ z = 1
x⊕ y⊕ t = 1

z⊕ t = 0

x⊕ y = 1
x⊕ y = 0

where, in addition to x, we also remove the repeated variable y. Based on this rule we
can prove that deciding satisfiability of XOR constraints is in P.

In order to extend this rule to MaxXOR or Max2XOR, we can take inspiration from
the extension of resolution to MaxSAT resolution [5,6]. The MaxSAT resolution rule is:

x∨A
¬x∨B
A∨B

x∨A∨¬B
¬x∨B∨¬A

where the rule deals with multisets of clauses, replacing premises by conclusions, and
where, if B = b1 ∨·· ·∨bn, the meta-clause x∨A∨¬B stands for the set {x∨A∨¬b1,x∨
A ∨ b1 ∨¬b2, . . . ,x ∨ A ∨ b1 ∨ ·· · ∨ bn−1 ∨¬bn}. This rule is sound and complete for
MaxSAT, in the sense that, m is the minimum number of unsatisfiable clauses in a mul-
tiset Γ if, and only if, there exists a derivation Γ � { , m. . ., }∪Δ, where Δ is a multiset
of satisfiable clauses and stands for the empty clause. The proof of the soundness of
this rule is based on the fact that, for any assignment, the number of falsified premises
is equal to the number of falsified conclusions. The proof of completeness is more com-
plicated. Basically, we prove that we can always construct a regular refutation in the fol-
lowing way. We consider a fixed list of variables x1, . . . ,xn. We only resolve the variable
x1 until all occurrences of this variable have the same sign, or all possible pairs are of the
form x1 ∨A and ¬x1 ∨B with a variable y satisfying y ∈ A and ¬y ∈ B. In this situation,
the new clause A∨B is a tautology. Then, we proceed to resolve x2, and so on. In the
end, we only have empty clauses and satisfiable clauses.

In the case of MaxXOR, simply consider the same XOR-resolution rule (3), but
applied replacing premises by the conclusion. First, we have the following observation:

Lemma 3. For any assignment, in the XOR-resolution rule, the number of falsified
premises is always equal to or greater than the number of falsified conclusions.

The number of falsified clauses only decreases when the assignment falsifies both
premises.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP28

Proof. An analysis of all the cases allows us to verify that, for any assignment, there
are only three possibilities: 1) the assignment satisfies both premises and the conclusion,
2) the assignment satisfies one of the premises and falsifies the other premise and the
conclusion, or 3) the assignment falsifies both premises and satisfies the conclusion.

This fact is enough to prove the soundness of a proof system based on this rule:

Lemma 4 (Soundness). The XOR-resolution rule is sound for MaxXOR, i.e. if there ex-
ists a refutation of the form Γ � { , m. . ., }∪Δ, then the minimal number of unsatisfiable
constraints in Γ is at least m.

Proof. For any assignment I, by Lemma 3, the number of clauses falsified by I in Γ is
bigger or equal to the number of clauses falsified by I in { , m. . ., }∪Δ, that is at least
m because empty clauses are always falsified. Therefore, m is a minimum of the number
of clauses falsified in Γ for any assignment.

Completeness is more complicated. As for the MaxSAT resolution rule, to construct
the proof Γ � { , m. . ., }∪Δ, we can fix an ordering of the variables x1, . . . ,xn. Then, we
apply XOR-resolution to remove all pairs of occurrences of x1, except those that generate
tautologies.3 When finished, we continue with x2, and so on until we get the empty
clauses. However, in this process, we have to ensure that, at least for one assignment, the
number of unsatisfied clauses is preserved. Therefore, using this guiding assignment, we
will avoid applications of the XOR-resolution when the two premises are falsified and
the conclusion is satisfied. As we have seen in the proof of Lemma 3, this is the only
situation where the number of unsatisfied clauses is not preserved.

Given an assignment I, we write Γ �I Δ when we can derive Δ from Γ using the
MaxXOR inference rule (i.e. replacing premises by the conclusion) and, in all steps, the
assignment satisfies at least one of the premises. This ensures that the number of clauses
falsified by I in Γ is equal to the number of clauses falsified by I in Δ.

The following lemma states that, for any variable x, we can always choose an assign-
ment –in fact, any of the optimal assignments will work– that allows us to derive Γ �I Δ
where Δ only contains one kind of clause for x. Basically, this allows us to forget about x
and, eventually, proceeding in the same way with the rest of the variables, removing all
of them, obtaining at the end a set of empty clauses. Since the set of unsatisfied clauses is
preserved, the cardinality of this multiset of empty clauses would be equal to the number
of clauses falsified by I in the original problem, i.e. equal to the minimum number of
unsatisfiable clauses.

Lemma 5 (Iteration). For any XOR formula Γ and any variable x, there exists an assign-
ment I and a derivation Γ �I Δ, where all clauses in Δ that contain x are equal. In other
words, Γ �I Cx ∪Δ′, where Δ′ does not contain x and Cx = {x⊕A = k, . . . ,x⊕A = k}.

Proof. Let I be any optimal assignment that maximizes the number of satisfied clauses.
Let Γx be the subset of clauses that contain x. Since I is optimal, the number of clauses
of Γx satisfied by I is bigger than the number of clauses of Γx falsified by I. If this were
not true, we could consider another assignment I′ defined as I′(y) = I(y), if x �= y, and
I′(x) = 1− I(x) that satisfies more clauses than I. Then, we can partition Γx =

⋃r
i=1 Ai ∪

3Notice that the only way to obtain a tautology is to resolve a clause with another identical clause, i.e. if we
resolve x⊕A = k and x⊕A = k. Therefore, we only stop when all clauses containing x1 are equal.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP 29

⋃s
j=1 B j ∪C, where Ai contain a couple of distinct clauses both satisfied by I, B j contain

a pair of clauses, one satisfied by I and the other falsified by I, and all clauses in C are
equal. We can apply �I to every pair in Ai’s and in B j’s, leaving C as the only clauses
that contain x.

Notice that, since there is only one kind of clause containing x, these clauses x⊕A =
k in Cx are always satisfiable by taking I(x) = k− I(A).

Finally, we can prove that any XOR-resolution proof is polynomially bounded:

Lemma 6. For any Γ, the length of any proof Γ � Δ is linearly bounded on |Γ|.

Proof. It is trivial, since any XOR-resolution step removes one clause from the multiset.

4. Where is the Bug?

The attentive reader can probably skip this section, or probably wants to think about the
MaxXOR proof system a little bit more before we reveal the solution. . . , no? Then,. . .

In fact, to the best of our knowledge, everything we have said so far is true! However,
it is said in a way that might lead the reader to conclude that this proves P=NP. Actually,
there are two pitfalls.

The first one is that, even if we were able to find a p-bounded proof system for
TAUT, we cannot conclude P=NP. Notice that statement (2) is a double implication, but
statement (1) only works in one direction. This means that we could prove NP = CoNP,
and make all the arithmetic hierarchy collapse, but we could still have P � NP = CoNP.
This possibility is not usually considered when discussing the P versus NP problem,
but it is perfectly plausible. It imply that we could no longer try to use the Cook and
Reckhow’s approach to solve the P versus NP problem.

The second pitfall makes the proof system that we have defined for MaxXOR in-
complete. This can be better seen through the following example.

Example 7. Consider the following MaxXOR problem:

x1 ⊕ x2 = 0 x1 ⊕ x3 = 1
x2 ⊕ x3 = 0 x2 ⊕ x4 = 1
x3 ⊕ x4 = 0
x4 ⊕ x1 = 0 x1 x2

x3x4

where, on the right, we represent the 2XOR clauses with red dashed lines to repre-
sent equal-variable constraints, and with blue lines to represent non-equal-variable con-
straints.

The minimum number of unsatisfiable clauses is 2 and there are several optimal as-
signments. One of them is I(x1) = I(x2) = I(x3) = I(x4) = 1. Using this optimal assign-
ment, the four equal-variable constraints are satisfied, and the two non-equal-variable
constraints are falsified. Assume that we want to start by removing variable x1. As shown
in the proof of Lemma 5, among the clauses that contain x1, there are more satisfied than
falsified by I, and we can arrange them in the partition B1 = {x1 ⊕ x2 = 0,x1 ⊕ x3 = 1}

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP30

and C = {x4 ⊕x1 = 0}. Applying one XOR resolution step, we replace B1 by {x2 ⊕x3 =
1},leaving C frozen:

x2 ⊕ x3 = 1
x2 ⊕ x3 = 0 x2 ⊕ x4 = 1
x3 ⊕ x4 = 0
x4 ⊕ x1 = 0 x1 x2

x3x4

The problem is that I is no longer optimal for this new MaxXOR problem. This implies,
for instance, that for some variables, the set of clauses containing it may contain more
falsified clauses than satisfied. In our example, there are two clauses involving x2 that
are falsified by I, whereas only one is satisfied by I. Moreover, if we try to remove x3 or
x4, in both cases, we reach a situation where we cannot continue the application of XOR
resolution steps. In fact, whatever we do, our proof system only can obtain one empty
clause from our original MaxXOR instance.

The previous example shows that, although Lemma 5 is true and allows us to remove
one variable, the optimal assignment is not optimal for the resulting MaxXOR problem.
Therefore, we can not use the same lemma to iteratively remove another variable. In
the previous section we have added an “eventually” to avoid the introduction of false
statements and used the name “iteration” for Lemma 5 that is misleading, since it only
applies to the first variable.

Taking into consideration the reduction of Max2XOR to MaxCUT, or from SAT
to MaxCUT, it is easy to see that the existence of polynomial certifications or proofs
for the MaxCUT problem would have important consequences and would also prove
NP = CoNP.

5. Three Pigeons and Two Holes

The Pigeon-hole principle, noted PHPn+1
n , is a family of tautologies that state that we

can not place n+1 pigeons in n holes with at most one pigeon in each hole. In the form
of SAT clauses, it is encoded as:

x1
i ∨ . . .∨ xn

i for i = 1, . . . ,n+1
¬xk

i ∨¬xk
j for 1 ≤ i < j ≤ n+1 and k = 1, . . . ,n

where x j
i means that pigeon i is placed in hole j. This principle was used by Haken [7]

to prove that some tautologies require super-polynomial proofs in the resolution proof
system.

In this section, we show how the pigeon-hole principle PHP3
2 , with 3 pigeons and

2 holes, may be proved with the XOR-resolution proof system. We use the SAT to
Max2XOR reduction described in Section 2. The clauses x1

i ∨ x2
i , for i = 1,2,3, generate

the constraints {x1
i = 1, x2

i = 1, x1
i ⊕x2

i = 1}. The clauses ¬x j
i ∨¬x j

i′ , for i, i′ = 1,2,3 and
i < i′, and j = 1,2, generate the constraints {x j

i = 0, x j
i′ = 0, x j

i ⊕x j
i′ = 1}. All these con-

straints are represented in Figure 1. From them, only resolving the constraints with the
same colors, we get 11 copies of . The Max2XOR problem comes from the translation
of 9 binary clauses. Therefore, according to Proposition 2, we had to get 2+9(2−1)= 11

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP 31

x1
1 x2

1

x1
2

x2
2x1

3

x2
3 1̂

Figure 1. Graphical representation of the proof of PHP3
2 . Solid lines between two nodes x and y represent

x⊕ y = 1, and between x and 1 represents x = 0. Similarly, dashed lines represent x⊕ y = 0 or x = 1. Every
pair of black lines with the same origin and target generates an empty clause (there are 6 pairs). For the rest 5
colors, each set of 3 lines of the same color that forms a triangle generates another empty clause.

copies of to prove the unsatisfiability of the original formula. This concludes the proof
of PHP3

2 .

6. Makes It Sense to Reduce SAT to Max2XOR?

A priory, the reduction of SAT to Max2XOR has some pros and cons. As for cons, since
we are trying to maximize the number of satisfied clauses, instead of satisfying all of
them, it is more difficult to make inferences. For instance, it is difficult to apply learn-
ing techniques, which have been so successful in modern SAT solvers. In the case of
MaxSAT, we can use MaxSAT resolution (instead of classical resolution) to make infer-
ences. In the case of MaxXOR, it is difficult to obtain a similar complete proof system.
As an advantage, we can mention that the transformation produces small clauses. Any-
body familiarized with SAT techniques would appreciate the generation of these small
clauses, because they reduce drastically the number of possible satisfying assignments.
In [8], we show how the reduction of SAT to MaxSAT and the use of MaxSAT resolu-
tion on the resulting formula, allows us to obtain polynomial proofs for the pigeon-hole
principle that, as we mentioned, has super-polynomial proofs in resolution.

It is preferable to reduce SAT to Max2SAT, as in [8], or to Max2XOR, as in [4]?
Again, a priory, there are advantages in both cases. In the case of Max2SAT, we have
a complete proof system, that we do not have in the case of Max2XOR. However, in
the case of Max2SAT, we have to consider that, even if all clauses are unary or binary,
as a result of the application of the MaxSAT resolution rule, we can get bigger clauses,
that have to be reduced again. In the case of MaxXOR, we have the advantage that the
decision problem XOR is in P, whereas the decision problem for MaxSAT, i.e. SAT, is
NP-complete. This means that, once we have decided which clauses we want to satisfy,
it is easy to check if they are satisfiable.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP32

The classical scheme of a SAT solver may be seen as a search engine that tries to find
a satisfying assignment working together with an inference engine that tries to construct
a proof of unsatisfiability. The great advantage of resolution as a proof system is that
the construction of the proof is similar to the search of the assignment. Therefore, both
engines work closely interleaved.

On the other side, so-called local search SAT solvers, only try to find a satisfying
assignment, and can work forever if such an assignment does not exist. If we do not
have a complete proof system for Max2XOR, it seems that we can only undertake to
implement local-search solvers.

The best approximated algorithm for MaxCUT is based on a relaxation to Semidef-
inite Programming (SDP) [9]. In practice, although SDP is polynomial, it is still ineffi-
cient. One possibility is to reduce the number of dimensions used to represent the vectors
associated with Boolean variables. It is known that, for a sufficient rank (

√
2n instead

of n), the solution of the approximating problem is still unique and the so-called mixing
method converges to it [10]. The mixing method has been adapted to Max2SAT [11], and
it can be adapted to the Max2XOR problem. We have started to explore this possibility,
and the results obtained with this approximated algorithm are promising.

Once we have an approximated algorithm, we can apply several techniques on top
of it. One possibility is to implement a decimation algorithm. It consists of, once we
have a kind of probability for each variable to have a certain truth value, provided by
the approximated algorithm, we can fix this value for one or a fraction of the variables
for which this probability is higher, and we call again to the approximated algorithm.
Another possibility is to use a branch-and-bound algorithm. In the case of Max2XOR, the
approximated algorithm also returns a kind of probability for each clause to be satisfied.
Therefore, in parallel, we can fix the values of variables and also force the satisfaction of
clauses with higher probabilities.

Finally, we know that real-world SAT instances are highly modular [12,13]. The
reduction defined in [4] allows us to group variables in any way. Therefore, we can
analyze the modular structure of the original SAT instance, and get a Max2XOR problem
where only variables closely related occur together in most of the clauses. This would
contribute to increasing the modularity and thus make it easier to find a solution.

7. Conclusions and Further Work

We have used a fake proof of P = NP as an excuse to introduce (we hope that in a
funny way) a reduction of SAT to Max2XOR. This has also served us to comment on
the difficulties of defining a complete proof system for Max2XOR. To finish, we have
discussed the possibilities of implementing a local-search algorithm for Max2XOR based
on the mixing method. The preliminary results using these ideas are promising. The
modular structure of the original SAT instance can be used in the reduction to obtain an
even more modular Max2XOR problem.

References

[1] Cook SA, Reckhow RA. The Relative Efficiency of Propositional Proof Systems. J Symb Log.
1979;44(1):36-50. DOI: 10.2307/2273702.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP 33

http://doi.org/10.2307/2273702

[2] Cook SA. The Complexity of Theorem-Proving Procedures. In: Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, STOC’71. ACM; 1971. p. 151-8. DOI: 10.1145/800157.805047.

[3] Levin LA. Universal Sequential Search Problems. Problems of Information Transmission. 1973;9(3).
[4] Ansótegui C, Levy J. Reducing SAT to Max2XOR. ArXiv. 2022;2204.01774. DOI:

10.48550/ARXIV.2204.01774.
[5] Bonet ML, Levy J, Manyà F. A Complete Calculus for Max-SAT. In: Proceedings of the 9th International

Conference on Theory and Applications of Satisfiability Testing, SAT’06. vol. 4121 of Lecture Notes in
Computer Science. Springer; 2006. p. 240-51. DOI: 10.1007/11814948_24.

[6] Bonet ML, Levy J, Manyà F. Resolution for Max-SAT. Artif Intell. 2007;171(8-9):606-18. DOI:
10.1016/j.artint.2007.03.001.

[7] Haken A. The intractability of resolution. Theoretical Computer Science. 1985;39:297-308. Third
Conference on Foundations of Software Technology and Theoretical Computer Science. DOI:
10.1016/0304-3975(85)90144-6.

[8] Ansótegui C, Levy J. Reducing SAT to Max2SAT. In: Proceedings of the 30th International Joint
Conference on Artificial Intelligence, IJCAI’21; 2021. p. 1367-73. DOI: 10.24963/ijcai.2021/189.

[9] Goemans MX, Williamson DP. Improved Approximation Algorithms for Maximum Cut and Sat-
isfiability Problems Using Semidefinite Programming. J ACM. 1995 nov;42(6):11151145. DOI:
10.1145/227683.227684.

[10] Wang PW, Chang WC, Kolter JZ. The Mixing method: low-rank coordinate descent for semidefinite
programming with diagonal constraints. ArXiv. 2018;1706.00476.

[11] Wang P, Kolter JZ. Low-Rank Semidefinite Programming for the MAX2SAT Problem. In: Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI’19. AAAI Press; 2019. p. 1641-
9. DOI: 10.1609/aaai.v33i01.33011641.

[12] Ansótegui C, Giráldez-Cru J, Levy J. The Community Structure of SAT Formulas. In: Proceedings of the
15th International Conference on Theory and Applications of Satisfiability Testing, SAT’12. vol. 7317 of
Lecture Notes in Computer Science. Springer; 2012. p. 410-23. DOI: 10.1007/978-3-642-31612-8_31.

[13] Ansótegui C, Bonet ML, Giráldez-Cru J, Levy J, Simon L. Community Structure in Industrial SAT
Instances. J Artif Intell Res. 2019;66:443-72. DOI: 10.1613/jair.1.11741.

C. Ansótegui and J. Levy / Yet Another (Fake) Proof of P=NP34

http://doi.org/10.1145/800157.805047
http://doi.org/10.48550/ARXIV.2204.01774
http://doi.org/10.48550/ARXIV.2204.01774
http://doi.org/10.1007/11814948_24
http://doi.org/10.1016/j.artint.2007.03.001
http://doi.org/10.1016/j.artint.2007.03.001
http://doi.org/10.1016/0304-3975(85)90144-6
http://doi.org/10.1016/0304-3975(85)90144-6
http://doi.org/10.24963/ijcai.2021/189
http://doi.org/10.1145/227683.227684
http://doi.org/10.1145/227683.227684
http://doi.org/10.1609/aaai.v33i01.33011641
http://doi.org/10.1007/978-3-642-31612-8_31
http://doi.org/10.1613/jair.1.11741

