
A Sequence-Based Dialog Management
Framework for Co-Regulated Dialog

Florian Kunneman a and Koen V. Hindriks a

a Vrije Universiteit Amsterdam, Social AI group, The Netherlands

Abstract. We propose SUPPLE (Sequence-Update Pattern-Based Processing with
Logical Expansions), a new dialog management framework that takes the core con-
cept of a dialog sequence as its main starting point. SUPPLE naturally enables
the integration of the flexible and re-usable conversation patterns from the Nat-
ural Conversation Framework (NCF). Whereas NCF primarily provides a design
framework, we developed a dialog engine and authoring framework that builds on
the notion of a pattern for specifying sequence structure. In our approach we com-
bine patterns with the key concepts of update strategies and agenda adopted from
the Information State Update (ISU) approach. The main contributions of our work
are the introduction of concepts and mechanisms for automatically managing dia-
log sequences. The framework is implemented as a cognitive agent, and we show
through a cooking assistant case study how the agent keeps track of a recipe in-
struction agenda while allowing for user- as well as agent-initiated sequence ex-
pansions. conversational agents to co-regulate the conversation and thus allows for
more flexibility.

Keywords. Sequence Updates, Natural Conversation Framework, Mixed-Initiative
Dialog, Information State Update, Conversation Patterns, Conversational Agents

1. Introduction

Most dialog management frameworks focus on the dialog moves that are performed and
less so on the overall structure of a conversation [1]. According to [2], who propose the
Information State Update approach (ISU), the main functions of a dialog manager are up-
dating the current information state given the last move that was performed and selecting
the next move to perform (if it is the agent’s turn). One recent approach combines dialog
state tracking with reinforcement learning, where the dialog state is extracted as the most
recent prompt of the system and the utterance of the user, along with the slots that have
been collected [3]. End-to-end architectures, finally, directly map the last user utterance
to a response formulation [4]. While the conversation history may be incorporated, there
is no concrete notion of sequential organisation of the conversation involved.

In contrast, the Natural Conversation Framework (NCF; [5]) focuses more on the
structural aspects of conversation and proposes a library of patterns that naturally occur
in conversation. NCF also has more to say on how a conversation is managed than most
dialog theories. By proposing patterns of conversation moves, it provides a toolbox for
designing conversational agents. NCF is primarily intended for guiding the practice of
conversational UX design, and does not explicate how conversational patterns could in-
form a dialog management module in a way similar to how ISU integrates dialog moves.

HHAI2022: Augmenting Human Intellect
S. Schlobach et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220195

143



Figure 1. Example dialog between user and SUPPLE agent. Yellow boxes are agent and blue boxes are user
utterances. Indented utterances mark sequence expansions. Patterns in bold are initiated based on the agenda.

We propose SUPPLE (Sequence-Update Pattern-Based Processing with Logical Ex-
pansions), a new dialog management approach that combines the strengths of ISU and
NCF - managing conversations in a natural way using patterns and sequence expansion
as the core mechanism for update strategies, and including agenda-keeping capacities
for initialising and adapting the direction of a conversation. Our approach offers a rich
set of design patterns derived from NCF. There is no need for completely scripting or
designing the dialog flow, but only a need to create patterns that the conversational agent
can select from. This allows for a more flexible conversation, where both user and agent
can co-regulate the interaction [6], in order to cover the full range of natural dialogs users
may want to engage in [7] and to impose as few constraints on the dialog as possible [8].

To illustrate two common challenges in dialog systems and how they are addressed
in SUPPLE, we present an example conversation with a cooking assistant in Figure 1.
The assistant walks the user through a (dummy) recipe by following the course of a
set of conversation patterns. One of the main challenges in dialog systems is how to
support flexibility, which can be defined as the extent to which both parties can take the
initiative in a dialog. The conversation patterns in the example are either initiated by the
agent, often based on convention (opening the conversation, e.g. Fig. 1.1-3) or its agenda
(checking whether ingredients are available in 1.13-14, instructing the recipe in 1.15-26),
or by the user when asking a question (lines 1.5, 1.21 and 1.28) or thanking the agent
(1.23). One of our design goals is to facilitate such a mixed-initiative interaction . Dialog
systems that support mixed-initiative interaction need to be able to handle complexities
due to the numerous and varied directions in which the user might steer the dialog [9].
This means that such systems need to be able to cope with utterances that fall outside of
the system’s expected dialog sequence.

A second challenge is related to the engineering of dialog systems. Our work aims to
address the question of how to simplify the engineering of and facilitate re-use in design-
ing a dialog system, which is considered a complex task and difficult problem requiring
much effort in the literature [10,11]. Our work in this regard is similar to the goals of
[12,13], who aim to facilitate authoring dialog and specifying dialog system behaviour.
We believe our approach provides for a clear recipe of what a conversational designer
needs to do whereas our framework already automates the domain-independent mech-

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework144



anisms provided to a user for navigating through a dialog. The conversational patterns
aligned with the conversation in Figure 1 can easily be implemented in our framework to
be readily applied by the agent. Although an expert developer can still adapt these rules
or fine-tune how they apply, the essence of creating a dialog system for an application
domain is selecting the patterns needed and a developer can focus attention on content.

Our work contributes the following:

• A new dialog engine that enhances co-regulation in conversations by means of se-
quence update mechanisms. These mechanisms enable expanding a sequence with
sub-sequences (sub-dialogs), jumping to different patterns, and initiating repair in
case of recognition or other problems;

• A pattern library that integrates generic conversation patterns for opening, closing,
repairing, and others from NCF. This library facilitates re-usability and configura-
bility across conversational agents of domain-independent dialog capabilities;

• An authoring approach that facilitates design of re-usable and easy-to-adapt con-
versation patterns. This approach aims to reduce the effort for and complexity of
developing a mixed-initiative dialog management system [10,11].

2. Related Work

There have been many different frameworks proposed for managing a dialog by a con-
versational agent. For example, [8] proposes the use of frames, and [14,15,16,17] a plan-
based approach to manage a dialog. A shared goal among several of these frameworks is
to approximate human-like performance in conversations, with as a prominent aim to en-
able flexible mixed-initiative conversations that can be shaped by both the agent and user.
To this end, [18] incorporate insights from the field of conversation analysis by structur-
ing dialog with conversational fragments and adjacency pairs for an interactive toy. Like
them, we propose a mixed-initiative framework that is inspired by the same concepts, but
we add sequence expansion as a core mechanism to our dialog engine, which consider-
ably enhances the possibilities of interlocutors to take initiative while also maintaining
structure in the conversation. [19] models mixed-initiative in their dialog manager as a
reward system, where the agent takes initiative when this is expected to be rewarding in
the conversation, and likewise allows humans to do so for the same reason. This, how-
ever, also reduces the scope of natural conversational directions, as it is difficult to frame
many natural sequence expansions in terms of rewards.

Our dialog management framework builds on Prolog for modelling the agent’s
knowledge about a domain and conversation in general. Likewise, the TRAINS project
[14] proposes a logic-based approach to dialog management, using episodic logic with
inference and including an abstract execution plan with expectations regarding the dia-
log acts to perform, which is monitored and re-planned if needed. Our framework also
features planning and adaptation functionality, but offers more flexibility by using se-
quences of dialog acts as central building blocks that can be expanded on by the agent or
user.

[13] proposes a dialog management framework based on concepts from program-
ming language theory emphasising the value of the concept of partial evaluation for flex-
ible dialog management. Their main goal is to offer a solution for the combinatorial ex-
plosion that needs to be dealt with when the order of utterances in a dialog can become

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 145



Figure 2. Example of a conversational pattern mark-up (A=agent, U=user) adapted from [5].

very flexible as is often the case in mixed-initiative systems. Our goals are similar but
the tools we propose different. One of the main lessons we derive from the work of [13]
is that the size of the patterns used in the dialog management framework that we pro-
pose should be kept small. The smaller the patterns are that are used the fewer variants
there exist. Moreover, having many different small patterns allows for great flexibility in
our approach as in principle the key mechanism of sequence expansion allows for any
combination of the available patterns.

The RavenClaw framework introduced in [17] aims to support domain-independent
conversational skills, and the development of mixed-initiative systems operating in task-
oriented domains. It requires the conversational designer to specify a hierarchical plan
for the interaction. Instead of asking the designer to specify a tree structure at design
time, our framework only requires the designer to specify linear structures (patterns)
which the dialog engine is able to turn into a dialog tree at run-time.

3. Background

We provide some background on the key concepts of the Information State Update ap-
proach and the Natural Conversation Framework that our work builds on.

Information State Update The Information State Update (ISU) approach was originally
proposed by [20] as a way to specify how dialog moves can trigger a subsequent agent
move in a structured conversation. At its core are the concepts of information state,
dialog moves, and update rules [2]. The information state, which is represented as a
record, keeps track of all aspects relevant to the conversation, such as the conversation
history, the knowledge and beliefs of the agent, and the agenda which guides the agent’s
targets in the conversation. Information states are updated by update rules which are
triggered by the current state and dialog moves performed by the dialog participants [21].

Natural Conversation Framework The Natural Conversation Framework (NCF) is pro-
posed by [5] and based on insights from Conversation Analysis [22].

NCF is aimed at improving the user experience of conversational interfaces by
proposing a pattern language similar to what is used in interaction design [23]. The pat-
tern language consists of conversational patterns as common sequences of social actions
which are similar to the dialog moves in ISU. The patterns can be used to shape the di-
alog behaviour and capabilities of a conversational agent. NCF is proposed as a frame-
work to be used by development teams of conversational agents. The pattern language
may be applied in combination with any platform, but is particularly aimed at those that
support the Intent-Entity-Context-Response paradigm, which we assume as the default
approach for natural language understanding here (see also Section 4.3).

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework146



The patterns in [5] are specified as a sequence of moves by either user or agent and
are accompanied by an example conversation. Each pattern is given a code so as to facil-
itate re-usability. Figure 2 provides an illustration of a typical pattern, where a question
first is posed that is followed by an answer and a sequence closer. [5] describes many
of such patterns, categorised into Conversational Activity, Sequence-level management
and Conversation Management UX patterns. These conversational patterns can inform
an agent about the direction that a conversation may follow, while offering the flexibility
to follow different paths and allowing for turns that switch from one pattern to another.

Patterns established by conversation analysis aim at identifying the sequential ex-
pectations that are raised and oriented to by participants - inquiries are typically followed
by an answer [24]. They are deliberately kept short to enable sequence expansion, for
example, when the question is not completely understood and a paraphrase is given in-
stead of an answer, which may in turn be confirmed after which the answer is given. By
means of sequence expansion humans can maintain common ground and satisfy condi-
tions needed for closing an original sequence. The ambition of our framework is to auto-
mate these mechanisms and provide a method for specifying patterns by a dialog author
and used as sub-sequences that relate to the main active conversational sequence.

4. SUPPLE

In SUPPLE, we adopt and integrate concepts from both ISU and NCF. From ISU we
take the concepts of information state and agenda, following [2], which can be used to
provide a solid way for keeping track of the conversation, and for guiding subsequent
agent moves to give direction to a conversation. From NCF, we borrow concepts for
modelling dialog structure. In particular, we include as first-class citizens in our approach
the concepts of a sequence (expansion) and pattern from NCF.

ISU allows an information state to vary per dialog theory and specifies various com-
ponents that can be used to model such a state. In SUPPLE, the agent maintains an in-
formation state that consists of an agenda, the session history, and a memory (beliefs in
the terminology of ISU). The session history represents the (in)complete sequences of a
conversation and the progress made in the conversation thus far. We store the complete
session and not only the last dialog move. The memory extracts and keeps useful infor-
mation provided by the user about entities up-to-date (e.g., which recipe a user selected).
In addition, patterns are stored in the agent’s knowledge base as static information about
basic dialog conventions.

The architecture of SUPPLE is depicted in Figure 3 and consists of a dialog author-
ing approach (Section 4.1), a dialog engine (Section 4.2), and user interaction compo-
nents (Section 4.3). 1 SUPPLE’s dialog authoring approach complements NCF’s generic
design framework by providing concrete guidelines on how to instantiate conversational
patterns with domain-specific content. The SUPPLE dialog engine defines and imple-
ments the mechanisms for sequence expansion and provides support for coordinating the
flow of the dialog and communication with other sub-systems and components. User in-
teraction in SUPPLE is supported by means of a user interface (which can be either text
or voice-based) for collecting user input and a Natural Language Understanding (NLU)

1See https://bitbucket.org/socialroboticshub/clients/src/master/dialogmngr/ for the
source code.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 147

https://bitbucket.org/socialroboticshub/clients/src/master/dialogmngr/


Figure 3. The SUPPLE Architecture (codes next to boxes map to the subsections in this paper)

component based on the IECR paradigm. We assume the NLU component outputs in-
tents (dialog moves), entity key-value parameters, and recognition confidence.2 The dia-
log engine and the dialog authoring notation are implemented as a cognitive agent in the
GOAL programming language [25] and Prolog [26].

4.1. Authoring Language

We introduce the dialog-authoring notation of our approach to demonstrate its versatility
but also the ease with which (at least) a (simple) conversational agent can be specified.
A conversational agent can already be developed with only basic knowledge of Prolog.
Although there is no requirement to develop advanced capabilities, the use of Prolog (or
other KR languages) has the benefit of providing the agent with access to more advanced
reasoning capabilities. We illustrate below how the memory maintained automatically
by the dialog engine can be queried to select appropriate phrases by the agent. We note
that even though the approach we discuss here requires specifying knowledge, this does
not preclude the use of automated approaches to extract knowledge about a domain or
conversational patterns.

The approach for developing a conversational agent in our framework consists of
four key steps: the conversational designer needs to (1) specify domain-specific content,
(2) specify intents and associated phrases, (3) specify domain-specific conversational
patterns, and, last but not least, (4) fine-tune the agent’s behaviour by specifying various
parameters for generic patterns.

4.1.1. Specifying Domain-Specific Content A designer is free to specify domain con-
tent any way they want by introducing Prolog facts and rules. For example, the fact
ingredient(pasta, penne,‘400 grams’) specifies the amount of penne needed for
making pasta and step(pasta, 2, ‘Cut the garlic.’) specifies the second step of the
pasta recipe. Including the step number here is useful to be able to iterate over recipe
steps in the recipe pattern.

4.1.2. Specifying Intents and Associated Phrases A designer needs to specify both user
and agent intents, which are the basic building blocks for specifying patterns. Specifica-
tion of user intents and associated entities depends on the NLU component used. It is the
designer’s responsibility to optimise the intent recognition from user input by providing

2In our current implementation we used Google Dialogflow https://cloud.google.com/dialogflow.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework148

 https://cloud.google.com/dialogflow


examples of such input. For cases where the NLU component fails, the dialog engine will
automatically deploy a generic repair pattern for handling intent recognition failures.

The agent intents name the dialog moves available to the conversational agent. The
main task here is to specify intent-phrase pairs of the form text(recipeInquiry, "What

recipe would you like to cook?") that the agent can use to generate utterances. Gen-
erating phrases often requires specifying a rule to be able to access context and domain-
specific information. To this end, several predefined predicates are supported by the
dialog engine, such as stepCounter/1 for keeping track of steps that need to be iter-
ated and keyValue/2 for accessing memory. For example, text(recipeStep, Txt) :-

currentRecipe(Recipe), stepCounter(Cnt), step(Recipe, Cnt, Txt) uses the do-
main knowledge about recipe steps illustrated above to retrieve the next instruction
text for the intent recipeStep. A designer can also define queries to extract rele-
vant information from the session (history). For example, currentRecipe(Recipe) :-

keyValue(recipe, Recipe) used above accesses memory to retrieve the current recipe.
Finally, a designer needs to provide domain-specific phrases for some of the intents

that are part of the generic pattern library. For example, there is a generic pattern for
performing capability checks by a user and a designer needs to specify the phrase in
Figure 1.29 for the agent intent describeCapability.

4.1.3. Specifying Patterns The most important task of a designer is to specify domain-
specific patterns for structuring the conversation. Patterns specify the order in which in-
tents are expected by the dialog engine and whether the agent or user is expected to gen-
erate these intents. To be precise, a SUPPLE pattern is a list with an identifier (its name)
at the head of the list followed by a list of actor-intent pairs which indicate who is ex-
pected to take the turn (either user or agent) and which intent is expected; an actor-intent
pair can also be replaced with an agenda management action (Section 4.2). One approach
is to specify domain-specific patterns by instantiating some of the patterns discussed
in [5]. For example, pattern([a20recipeOptions, [user, requestRecipeOptions],

[agent, recipeOptions]]) specifies a pattern with id a20recipeOptions which allows
a user to ask which recipes are available and the agent to respond with a list of options.
Multiple variants of a pattern with the same identifier can be specified which allows for
more flexible user interaction. Besides actor-intent pairs, agenda management actions
can be used as part of a pattern for, e.g., repeating a sub-pattern. This allows for more
sophisticated interactions with a user. For example, pattern([a30recipe, [agent,

recipeConfirm], [agent, repeat(a30recipeStep)], [agent, finalStep]]) instan-
tiates an extended telling pattern where a30recipeStep is a sub-pattern that is repeatedly
deployed until all steps of a recipe have been made.

4.1.4. Fine Tuning Generic Patterns The dialog engine has a library of generic patterns
(including generic intents) which can be re-used that do not need to be specified by a de-
signer. Many of these generic patterns have variants which can be activated or fine-tuned
by means of parameters available to a conversational designer. For example, parameters
for specifying the agent’s name (e.g., agentName(‘Sous-Chef’)) and whether the agent
takes the initiative or performs a welfare check can be used to make the agent start by
self-identifying or not (Fig. 1.2). Other parameters can be used, for example, to make the
agent perform a check at the end of a session on whether a user needs anything else (Fig.
1.27), or for fine-tuning the response of repair mechanisms.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 149



4.2. Dialog Engine

4.2.1. Session history This is the core of the dialog engine, in which the running con-
versation is stored and updated. A session (history) is a list of sequences, where each
sequence in a session is associated with a pattern. A SUPPLE sequence essentially is an
(incomplete) pattern where the actor-intent pairs are replaced by actor-intent-parameter
triples, agenda management actions, or subsequences (i.e. subdialogs). The parameters
in the triples store additional information about entities extracted from the user input
during a conversation (e.g., a recipe name). Contextual elements such as the most recent
values for entity parameters (overwriting older ones) are also stored in the agent’s mem-
ory for convenient access but only the session maintains the full history of user input and
can be queried to retrieve this information. We say that a sequence is complete if the se-
quence without subsequences matches with a pattern, which indicates the sequence has
completely executed the pattern. The currently active (incomplete) sequence at the head
of a session is used by the dialog generation module to select a next agent dialog move
(intent) that matches with the sequence’s corresponding pattern if it is the agent’s turn.

A session history has a tree-like structure to represent the relation between sequences
and subsequences: when an active sequence is expanded with a subsequence, this subse-
quence becomes part of the active sequence. The information state in our approach thus
is not a flat representation of plans or questions under discussion [2] but at runtime is
similar to plan-based approaches such as [17,21].

4.2.2. Agenda The agenda is also part of the information state that is updated during
the course of a conversation. A SUPPLE agenda is an ordered list of pattern identifiers,
which specifies the overall “plan” of the agent for carrying out a task. The agent uses its
agenda as a top-level schedule in its dialog generation module to structure the conversa-
tion, and thus has a goal-setting function. Several agenda management actions may be
performed on the agenda.

4.2.3. Generic patterns This knowledge base stores patterns and intents that are appli-
cable to most conversational contexts. Examples include patterns for opening and closing
a conversation, for sequence closing and repair, and for automatic slot filling.

4.2.4. Session Update This module performs updates to the session history based on
the last dialog move that was performed by either user or agent. By design we know
that the dialog engine will always select agent moves that match expectations (set by
the currently active sequence) and therefore agent moves can simply be added to the
active sequence. However, as we cannot control user input to match such expectations
and instead want to allow for user initiative, the engine is provided with mechanisms for
handling each of the following cases. These mechanisms for sequence management and
expansion are at the heart of and are a core contribution of the SUPPLE framework:

• User input matches expected input and contributes to the active sequence (e.g.
Fig. 1.3): recognised intent matches the next intent in a pattern associated with
the currently active sequence and user input is appended to the active sequence to
make progress to complete the associated pattern.

• User input does not match expectations but corresponds with a first move in a
pattern that can be used to validly expand the current sequence (e.g. Fig. 1.5):
the active sequence is expanded with a new subsequence consisting only of the
associated pattern identifier.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework150



• User input corresponds with the start of a known pattern and there is no currently
active sequence: a new sequence is added to the head of the session history (this
only happens if the agent is not set to take the initiative in those cases).

• User input that does not match expectations and is only known to occur later than
the first move in any pattern (e.g. Fig. 1.7): this triggers expansion of the active
sequence with a subsequence that focuses on repair toward the active sequence.

The session update module also handles turn-taking and determines whose turn it is
from the pattern that matches the currently active sequence. Turn taking may take place at
each turn conversational unit, but does not need to. Multiple moves may be subsequently
performed by the agent.3 In case the agent performs consecutive moves, this is in line
with either the conversational pattern or agenda (after finishing a sequence, the agent
might want to start a new sequence in line with its agenda).

4.2.5. Dialog Generation The Dialog Generation module decides which dialog move
the agent should make next based on the ongoing session and its agenda. If a pattern is
active with an expected agent intent that can be performed, this intent will be selected.
The currently active sequence in a session history thus provides a mechanism for keeping
track of discourse obligations [27]. From the last user move the agent can infer if it needs
to respond to that move by checking if the pattern that is executed requires the agent
to make a move. It may also be the case that the last user move ends a subsequence,
in which case the agent can proceed with older obligations, such as the need to still
provide an answer after a clarification expansion of the sequence. Note that obligations
are not explicitly represented in the system but rather inferred from the session history
using the reasoning rules that are part of the agent’s knowledge. We assume an agent
will always comply with the expectation of the currently active pattern, i.e. perform an
utterance with the intent that follows the last intent, or will engage in a clarification or
request dialog such as requesting for additional values for entities (slot filling, e.g., Fig.
1.6). Such a clarification or request dialog can be instigated by the agent if a pattern is
active while an expected agent intent cannot be performed. If, for example, this is due to
lack of information, the agent will expand the sequence with a subsequence to enable the
expected agent intent. The Dialog Generation module is also responsible for initiating
generic patterns for opening and closing a conversation (e.g., Fig. 1.27) and for executing
agenda management actions (e.g., Fig. 1.16).

4.2.6. Dialog Update This module handles incoming user intents from the Natural Lan-
guage Understanding module (see Section 4.3) and updates the agent’s memory with
newly received entity values. It matches the intents to the moves that it knows about and
handles unknown intents by expanding the current sequence with a repair sequence.

4.2.7. NLG The Natural Language Generation (NLG) module transforms agent intents
into a textual or spoken utterance. As natural language generation is beyond the scope of
this paper, we provide a simple generic template-based approach for generating natural
language phrases that the agent uses to respond to user input (see Section 4.1). In its
most simple form, all that is needed is to associate a textual phrase with an intent. In its
more advanced forms, language generation can involve filling in phrase parts by means
of inferred information from knowledge sources. Alternatively, general purpose natural
language generation may be deployed for transforming semantic representations to text.

3Multiple moves by the user might yield a conflict with the known conversation patterns. In practice, how-
ever, intent recognition is commonly not catered for detecting multiple intents from a single user turn.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 151



4.3. User Interaction and Implementation

4.3.1. User interaction The SUPPLE framework does not make any specific assump-
tions about user interaction nor the modalities used (e.g., text, speech) other than that
such interaction is facilitated through a conversational interface. Currently, the frame-
work supports a textual as well as basic voice-based (with strict turn-taking) interface.

4.3.2. Natural Language Understanding SUPPLE assumes that any utterance received
from the user via an interface is interpreted by a separate Natural Language Understand-
ing (NLU) component that outputs a recognised intent, associated entities, and recogni-
tion confidence (if any). The output of the NLU component is forwarded to the dialog
engine. A range of mature applications are available for Intent-Entity-Context-Response-
based dialog modelling that only require a conversational designer to provide example
phrases to be able to perform intent recognition by means of exact matching and Machine
Learning in the back-end. We make use of Google Dialogflow for the interpretation of
user utterances but other similar applications such as RASA [28] may also be used.

4.3.3. Cognitive agent The dialog engine is implemented using the cognitive agent pro-
gramming language GOAL [25]. Agents have been used before for implementing dialog
management, e.g. [29]. For our purposes, it is particularly useful that cognitive agents are
rule-based and therefore also offer a natural implementation framework for the update
rules and strategies of ISU.

5. Case Study: Cooking Assistant

To showcase the co-regulation and agenda-keeping capabilities of SUPPLE, we designed
a cooking assistant example that has the purpose to guide a user through a recipe and help
them with questions about the recipe, cooking skills and ingredients. Recipe instruction
as a genre has a solid conversation structure in the form of the recipe steps, and likewise
requires sequence expansions to enable, for example, clarification of recipe steps.

An example conversation, already briefly introduced and referenced above, is dis-
played in Figure 1. As before, we refer to lines in the conversation by reference to the
figure and index, e.g. 1. 1 refers to the first opening line. Here, we focus on how SUPPLE
enables particular mixed-initiative dialog sequences. The patterns and moves are speci-
fied in separate columns in Figure 1. The pattern codes are based on patterns discussed in
[5]. Codes followed by a name are adjusted to the cooking assistant domain, while codes
without a name refer to domain-independent patterns that are part of the generic pattern
library adapted from [5]. The recipe that is discussed in the conversation is deliberately
kept short to show most conversational mechanisms enabled by SUPPLE, but will not
result in a proper pasta meal.

Opening and closing The opening and closing lines 1.1-3 and 1.27-31 are based on
generic patterns as they are standard to most conversational genres. These patterns can
be agent- or user-initiated and fine-tuned by various parameters (see Section 4.1). The
cooking assistant agent initiates the conversation and introduces itself.

The agent has been adapted to perform a last topic check when the agenda has suc-
cessfully been completed. The dialog engine will therefore automatically trigger the as-
sociated C4 pattern and the agent will proceed to a last topic check. In our example, the
user expands the sequence with a capability check (also standard to most assistants) after

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework152



which the user decides to say goodbye, which is then followed by a closing goodbye
from the agent. There are multiple variants of the C4 pattern available to handle different
user responses. For example, the user could also have given a disconfirmation regarding
the last topic check, after which the agent would reply with a wellwish.

Agenda keeping The patterns marked in bold in Figure 1 are part of the agenda that the
agent is initialised with. The agent initiates these patterns in order, only when a preceding
top-level pattern is successfully completed. That means that the agent will only continue
with agenda items (patterns) if all sub-dialogs have either been completed or aborted and
the conversation has returned to the main top-level. While the agenda is maintained by
the agent, the user has the option to add agenda items (for example, a second recipe) or
put agenda items into focus. These actions are not manifested in the example.

Sequence expansion Lines 1.4-11 illustrate the sequence expansion mechanism, which
is at the core of the SUPPLE framework. They introduce four different levels of expan-
sions indicated by indentation. The agent and user consecutively take the initiative in the
conversation, i.e., initiate a (sub)sequence. These sequence expansions are typical of the
mixed-initiative conversations enabled by SUPPLE. The consecutive sequence expan-
sions are in turn closed in reverse order, in line with the tree structure of the session his-
tory. This structure enables the agent to keep track of the sequence(s) before expansion
and correctly interpret the user answer in 1.11 to a question it asked seven turns earlier.

After the agent asks the user for the preferred recipe in 1.4, the user takes the initia-
tive and replies by asking for the quantity of a particular ingredient in 1.5. By receiving a
user intent that is not expected (the agent expects a recipe name as answer to its question)
but instead matches with the first intent of another domain-specific pattern, the dialog
engine initiates a sequence expansion with this matching pattern. This in turn spurs the
agent to take the initiative because it identifies it misses information (slots) by further
expanding the sequence with a generic slot filling pattern to ask for additional details so
as to be able to answer this reply in 1.6. The user then says something unintelligible in
this context in 1.7 even though the NLU component identifies the move as a recipe con-
tinuer intent. The dialog engine processes this move as out-of-context, which triggers an
expansion with a response of the agent in a new repair sequence 1.8. The user then con-
tinues and gives an answer to the agent’s question in 1.9. With the additional information
collected, the agent can now answer the original question of the user in 1.10, after which
the user replies to the agent’s initial question by making a choice for a recipe in 1.11. At
that point all (sub)sequences have been closed again.

The Repeat Agenda Management Action Lines 1.15-26 illustrate the use of the agenda
management capability to repeat a (sub)dialog as many times as needed. This allows for
a form of expansion by which the length of a pattern is dynamically decided based upon,
in this case, the length of the recipe to be instructed. The A3 recipe pattern initiated in
1.15 is consecutively expanded by the A3 recipe step pattern in lines 1.16, 1.18, and 1.20,
matching the first three steps of the recipe. The repeat action iterates over these steps until
there are no steps left to instruct. This facilitates conversations guided by an extended
and repetitive information exchange, like storytelling, instruction or interviewing. Note
that the last step is handled differently to avoid the dialog engine getting stuck on the
expectation that a user replies with a continuer.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 153



Contextualised response Lines 1.21-24 illustrate how agent responses are contextu-
alised. In 1.21 the user essentially repeats its earlier question in 1.5 how much of an
ingredient will be needed. Whereas at 1.5 it is not yet clear which recipe the user will
select, this is different at 1.21 where the selected recipe is already being instructed. The
agent at that point is able to retrieve the recipe from memory and therefore does not
initiate the slot filling pattern as in 1.6 but immediately is able to answer the question.
The subsequent appreciation in line 1.23 does not match the expected continuer which
initiates a matching (sub)dialog at the same sequence level.

6. Discussion and Conclusion

We propose the SUPPLE (Sequence-Update Pattern-based Processing with Logical Ex-
pansions) dialog framework. SUPPLE addresses the core challenge of enabling mixed-
initiative, yet structured dialog with a conversational agent, where both agent and user
can co-regulate the course of the conversation and the agent keeps track of the conver-
sation to progress toward certain goals. The SUPPLE dialog engine provides a range
of mechanisms for managing conversations by building on the key notion of sequence
expansion. Re-usability and development effort and expertise are additional challenges
which we address by introducing an authoring approach which separates the design of
domain-specific conversational patterns from the domain-independent generic patterns
and conversational skills that are available to a SUPPLE agent.

A key contribution of our work has been to add conversational management, repair,
and other capabilities to a dialog system inspired by the work of [20,2,5]. We thus build
on sophisticated theories for dialog updating of information states [20,2], complemented
by the work of [5] which focuses on conversational structure. Where [5] mostly addresses
conversational design, we have designed SUPPLE as a new approach that provides auto-
mated support for conversational sequence management. Conversational context is pro-
vided by SUPPLE by means of instantiated patterns, i.e. sequences of dialog moves as-
sociated with utterances from either user or conversational agent. The mechanism of se-
quence updating based on processing predefined patterns, which is at the core of the
SUPPLE framework, provides for the flexibility needed for mixed-initiative interaction.

Future Work In this paper, we have focused on the design of SUPPLE and provided the
cooking assistant case study to illustrate the approach. It has shown SUPPLE supports
sequence expansion by either agent or user which enables the agent to respond to earlier
moves in a sequence regardless of the depth of the expansion. In principle, a SUPPLE
conversational agent can handle any conversational pattern, but it is of course limited by
the patterns that are available to it. To scale up, we will develop an approach to auto-
matically analyze how conversational sequences follow, expand and close one another in
real-world conversation data. The recent study by [30] provides a good basis to this end.

Even though our approach facilitates identification of out-of-context dialog moves
(e.g., Fig 1.7), it raises additional questions of how to manage this flexibility and how
to provide conversational designers with the tools to restrict the scope of application of
sequence expansions. Future work should clarify how we can specify such scoping con-
straints and how the agent should handle dialog moves of a user that conflict with these
constraints. Foremost, the case-study is only a proof of concept and usability studies
are a crucial next step to empirically assess the usefulness of automatically generating a
tree-like chain of predefined patterns based on user and agent dialog moves.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework154



References

[1] Core MG, Allen J. Coding dialogs with the DAMSL annotation scheme. In: AAAI fall symposium on
communicative action in humans and machines. vol. 56. Boston, MA; 1997. p. 28-35.

[2] Traum DR, Larsson S. In: van Kuppevelt J, Smith RW, editors. The Information State Approach to
Dialogue Management. Dordrecht: Springer Netherlands; 2003. p. 325-53. Available from: https:
//doi.org/10.1007/978-94-010-0019-2_15.

[3] Henderson M, Thomson B, Young S. Deep neural network approach for the dialog state tracking chal-
lenge. In: Proceedings of the SIGDIAL 2013 Conference; 2013. p. 467-71.

[4] Qun H, Wenjing L, Zhangli C. B&Anet: Combining bidirectional LSTM and self-attention for end-to-
end learning of task-oriented dialogue system. Speech Communication. 2020;125:15-23.

[5] Moore RJ, Arar R. Conversational UX Design: A Practitioner’s Guide to the Natural Conversation
Framework. Morgan & Claypool; 2019.

[6] De Jaegher H, Di Paolo E, Gallagher S. Can social interaction constitute social cognition? Trends in
cognitive sciences. 2010;14(10):441-7.

[7] Blaylock N. Towards Flexible, Domain-Independent Dialogue Management using Collaborative Prob-
lem Solving. In: Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of
Dialogue; 2007. p. 91–98.

[8] Rosset S, Bennacef S, Lamel L. Design strategies for spoken language dialog systems. In: Sixth Euro-
pean Conference on Speech Communication and Technology; 1999. .

[9] Buck JW, Perugini S, Nguyen TV. Natural Language, Mixed-Initiative Personal Assistant Agents. In:
Proceedings of the 12th International Conference on Ubiquitous Information Management and Commu-
nication. IMCOM ’18. New York, NY, USA: Association for Computing Machinery; 2018. Available
from: https://doi.org/10.1145/3164541.3164609.

[10] Allen JE, Guinn CI, Horvtz E. Mixed-initiative interaction. IEEE Intelligent Systems and their Appli-
cations. 1999;14(5):14-23.

[11] Hochberg J, Kambhatla N, Roukos S. A flexible framework for developing mixed-initiative dialog
systems. In: Proceedings of the Third SIGdial Workshop on Discourse and Dialogue; 2002. p. 60-3.

[12] Jordan P, Ringenberg M, Hall B. Rapidly developing dialogue systems that support learning studies. In:
Proceedings of ITS06 Workshop on Teaching with Robots, Agents, and NLP; 2006. p. 1-8.

[13] Perugini S, Buck JW. A Language-Based Model for Specifying and Staging Mixed-Initiative Dialogs.
In: Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems.
EICS ’16. New York, NY, USA: Association for Computing Machinery; 2016. p. 204–216. Available
from: https://doi.org/10.1145/2933242.2933262.

[14] Allen JF, Schubert LK, Ferguson G, Heeman P, Hwang CH, Kato T, et al. The TRAINS project: A
case study in building a conversational planning agent. Journal of Experimental & Theoretical Artificial
Intelligence. 1995;7(1):7-48.

[15] Rich C, Sidner CL, Lesh N. Collagen: Applying collaborative discourse theory to human-computer
interaction. AI magazine. 2001;22(4):15-5.

[16] Görz G, Ludwig B. Speech Dialogue Systems-A Pragmatics-Guided Approach to Rational Interaction.
KI. 2005;19(3):5.

[17] Bohus D, Rudnicky AI. The RavenClaw dialog management framework: Architecture and systems.
Computer Speech Language. 2009;23(3):332 361. Available from: http://www.sciencedirect.
com/science/article/pii/S0885230808000545.

[18] Wong W, Cavedon L, Thangarajah J, Padgham L. Flexible conversation management using a bdi agent
approach. In: International Conference on Intelligent Virtual Agents. Springer; 2012. p. 464-70.

[19] Morbini F, DeVault D, Sagae K, Gerten J, Nazarian A, Traum D. FLoReS: A Forward Looking, Reward
Seeking, Dialogue Manager. In: Mariani J, Rosset S, Garnier-Rizet M, Devillers L, editors. Natural
Interaction with Robots, Knowbots and Smartphones. New York, NY: Springer New York; 2014. p.
313-25.

[20] Poesio M, Cooper R, Larsson S, Matheson C, Traum D. Annotating conversations for information
state update. In: Proceedings of Amstelogue 99, 3rd Workshop on the Semantics and Pragmatics of
Dialogues; 1999. .

[21] Ljunglöf P. Dialogue management as interactive tree building. In: Workshop on the Semantics and
Pragmatics of Dialogue; 2009. .

[22] Sacks H. Notes on methodology. Structures of social action: Studies in conversation analysis.
1984;21:27.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework 155

https://doi.org/10.1007/978-94-010-0019-2_15
https://doi.org/10.1007/978-94-010-0019-2_15
https://doi.org/10.1145/3164541.3164609
https://doi.org/10.1145/2933242.2933262
http://www.sciencedirect.com/science/article/pii/S0885230808000545
http://www.sciencedirect.com/science/article/pii/S0885230808000545


[23] Erickson T. Lingua Francas for design: sacred places and pattern languages. In: Proceedings of the 3rd
conference on Designing interactive systems: processes, practices, methods, and techniques; 2000. p.
357-68.

[24] Levinson SC. Pragmatics. Cambridge University Press; 1983.
[25] Hindriks KV. In: El Fallah Seghrouchni A, Dix J, Dastani M, Bordini RH, editors. Programming

Rational Agents in GOAL. Boston, MA: Springer US; 2009. p. 119-57. Available from: https:
//doi.org/10.1007/978-0-387-89299-3_4.

[26] Sterling L, Shapiro EY. The art of Prolog: advanced programming techniques. MIT press; 1994.
[27] Allen J, Ferguson G, Stent A. An Architecture for More Realistic Conversational Systems. In: Proceed-

ings of the 6th International Conference on Intelligent User Interfaces. IUI ’01. New York, NY, USA:
Association for Computing Machinery; 2001. p. 1–8. Available from: https://doi.org/10.1145/
359784.359822.

[28] Bocklisch T, Faulkner J, Pawlowski N, Nichol A. Rasa: Open source language understanding and dia-
logue management. 31st Conference on Neural Information Processing Systems (NIPS 2017). 2017.

[29] Nguyen A, Wobcke W. An adaptive plan-based dialogue agent: integrating learning into a BDI architec-
ture. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems; 2006. p. 786-8.

[30] Tewari M. Beyond adjacency pairs: Hierarchical clustering of long sequences for human-machine dia-
logues. In: Computational Approaches to Discourse (CODI), held in conjunction with Empirical Meth-
ods in Natural language processing (EMNLP), Virtual meeting, November 16-20, 2020; 2020. p. 11-9.

F. Kunneman and K.V. Hindriks / A Sequence-Based Dialog Management Framework156

https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1145/359784.359822
https://doi.org/10.1145/359784.359822

