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Abstract. Cooperation is a widespread phenomenon in nature that has also been
a cornerstone in the development of human intelligence. Understanding coopera-
tion, therefore, on matters such as how it emerges, develops, or fails is an impor-
tant avenue of research, not only in a human context, but also for the advancement
of next generation artificial intelligence paradigms which are presumably human-
compatible. With this motivation in mind, we study the emergence of cooperative
behaviour between two independent deep reinforcement learning (RL) agents pro-
vided with human input in a novel game environment. In particular, we investigate
whether evaluative human feedback (through interactive RL) and expert demon-
stration (through inverse RL) can help RL agents to learn to cooperate better. We
report two main findings. Firstly, we find that the amount of feedback given has a
positive impact on the accumulated reward obtained through cooperation. That is,
agents trained with a limited amount of feedback outperform agents trained with-
out any feedback, and the performance increases even further as more feedback
is provided. Secondly, we find that expert demonstration also helps agents’ per-
formance, although with more modest improvements compared to evaluative feed-
back. In conclusion, we present a novel game environment to better understand the
emergence of cooperative behaviour and show that providing human feedback and
demonstrations can accelerate this process.

Keywords. Multiagent Reinforcement Learning, Multiagent Cooperation, Inverse
Reinforcement Learning, Interactive Reinforcement learning.

1. Introduction

While artificial intelligence (AI) technologies are playing more important roles in our
daily lives than ever, designing intelligent systems which can work with humans more
effectively (instead of replacing them) is becoming a central research challenge [1,2,3,4].
This is mostly pronounced as combining human and machine intelligence, aiming to
benefit from the strengths of both in solving problems in various scenarios.

Developing such systems requires fundamentally novel solutions to major research
problems in Al: It is not secret that the current Al systems outperform humans in many
cognitive tasks from pattern recognition [5] or in playing video games [6], yet they fall
short when it comes to tasks such as causal modelling, common sense reasoning, and
behavioural human capabilities such as explaining its own decisions, adapting to differ-
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ent environments, collaborating with other human agents, etc. A particular challenge in
developing such systems is to work with human input which is the main topic of this
paper.

Being able to work with human input mandates the essential skill that any such sys-
tem should have: cooperation. Cooperation is a widespread phenomenon in nature that
has also been a cornerstone in the development of human intelligence [7,8]. Understand-
ing cooperation, therefore, on matters such as how it emerges, develops, or fails is an
important avenue of research, not only in a human context, but also for the advance-
ment of next generation artificial intelligence paradigms which are presumably human-
compatible [9]. With this motivation in mind, we study the emergence of cooperative
behaviour between two independent deep reinforcement learning (RL) agents provided
with human input in a novel game environment. In particular, we investigate whether
evaluative human feedback (through interactive RL) and expert demonstration (through
inverse RL) can help RL agents to learn to cooperate better.

This work can be considered as a contribution to the multiagent systems with deep
reinforcement learning, which is also referred to as Multi-Agent Deep Reinforcement
Learning (MADRL). MADRL focuses on the sequential decision-making problem of
multiple autonomous agents interacting together with the environment to maximize their
long-term returns using a neural network as a function approximator in order to learn
in environments with high dimensional state spaces. MADRL has achieved important
milestones such as defeating the DOTA II world champion [10] and reaching expert
performance in Starcraft IT [11].
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Figure 1. A simplified illustrative summary of the main idea of the paper. Two player real-time environment
Space Cannons controlled by two DQN agents which are fed with human evaluative feedback (on the left side)
and demonstrations (on the right side).
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We should note that several technical challenges make multiagent learning funda-
mentally more difficult than the single-agent case, such as the moving target problem
(non-stationarity) [12], the curse of dimensionality, multiagent credit assignment [12]
and global exploration [13]. Another limitation in further developing these techniques
concerns the lack of environments in which cooperation between multiple agents is in-
corporated. Moreover, the testbeds that do include this element do not properly capture
cooperative behaviour as a graded quantity and/or solely employ turn-based systems. As
a result, efforts to better understand how cooperation emerges between agents, as well as
to enhance it are bounded.

The main contribution of this paper is two-fold. First, a novel environment is intro-
duced which can be used to more precisely measure and analyse cooperation between
two deep reinforcement learning agents. Second, two reinforcement learning techniques
were used to accelerate the induction of cooperation between agents: namely, interac-
tive and inverse reinforcement learning. Specifically, two independent Deep Q-learning
(DQN) agents were supplemented with either positive evaluative feedback from human
observers or demonstration data from humans, respectively. We demonstrate that while
both techniques are effective at promoting cooperation, particularly interactive reinforce-
ment learning yielded improvements in performance compared to baseline.

2. Background
2.1. Multiagent Markov decision process

The game environment can be expressed as a fully observable [14] Multiagent Markov
Decision Process (MMDP) [15], where the selected action for any state in the environ-
ment consists of individual action components from each of the agents in the MMDP,
whom share a common reward function. Formally, it is a tuple G = (N,S,A,R,T,7),
where N = {1,2} is a set of two agents, S is the state space, A = A; X A, is the joint
action space (with A; and A, representing the action spaces of each agent, respectively),
R:SxA — R is the shared reward function, T : S x A x § — [0, 1] is a probabilistic tran-
sition function and y € [0, 1] is the discount factor for future rewards. The main objec-
tive of the agents in our game is to maximise their expected sum of discounted rewards
by finding a joint cooperative strategy = = (m, ), where T: S — A, 1y =S — A; and
m=85—A,.

2.2. Multiagent Deep Reinforcement Learning

The aim of deep reinforcement learning agents is to find an optimal action-selection strat-
egy by maximising a cumulative numerical reward signal through trial and error learning
in their respective environments [16]. One of the popular approaches to this in deep RL
is DQN [16], which was built upon the popular Q-learning algorithm [17]. In contrast
to the Q-learning algorithm, DQN uses a convolutional neural network as a Q-function
approximator. The neural network used in the DQN architecture is parameterised by 6
and trained on input data to minimise the loss function defined in eq. (1).

L(6) =By, a5~ [(r + YmaxQ(s',a'|0) = O(s,]6))’] M
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where L is the loss function, D is experience replay, r is the reward, ¥ is the discount
factor, Q(s,a|0) are the current Q-values with state s and action a and Q(s',d|0) are
target Q-values.

To estimate the maximal Q-value, a separate network parameterised as 6’ is used.
This network is referred to as the target network. The weights of this network are over-
written by the main network weights at a certain interval (every 100 iterations in our
implementation). Furthermore, an experience replay D is used to store all experiences
(s,a,r,s"), which are then uniformly sampled from by the DQN algorithm to update net-
work weights. DQN also uses a £-greedy strategy to balance exploration and exploitation
in the environment similar to one used in [16]. The value of € is decremented over time
from 0.99 to 0.1 with a decay of 0.999996 in our experiments.

3. Related work

Multiple studies have investigated cooperative behaviour in MARL and the effect of in-
teractive or inverse reinforcement learning on agent behaviour. In this section, we de-
scribe the approaches that most closely resemble the current work and discuss how they
can be combined.

The article [18] is one of the early approaches to study decentralised multiagent co-
operation with deep reinforcement learning. Specifically, the authors study how manip-
ulating the reward function affected the progression of cooperation and competition be-
tween independent Q-learners [19]. Another related study [20], shows that agents could
learn cooperative strategies in the same two-player pong game using only raw pixel data,
even within a non-stationary environment. We base our study on these two papers while
focusing only on the cooperative side of the spectrum. Moreover, we extend this work
by including the effects on inverse and interactive RL to investigate whether this could
improve the sample efficiency of MARL.

Interactive RL, also known as human-centred reinforcement learning [21], uses hu-
man evaluative feedback to encourage optimal actions taken by deep RL agents. Inter-
active RL is inspired by potential based reward shaping [22] and was proposed to solve
the inherent problem of sample efficiency in deep RL techniques. The technique used in
this paper is that of model-free, reward-based interactive reinforcement learning. Here,
human feedback is taken as a numerical reward and is thereby used in a similar manner
as traditional rewards in RL systems. One of the earliest and most relevant works on this
topic uses clicker training to provide additional positive reward to train a synthetic puppy
agent [23]. Another early study uses a similar approach to train an agent in a complex
social environment using both positive and negative reward [24]. This is somewhat simi-
lar to our approach, but we included only positive evaluative feedback. Furthermore, due
to the delayed and sparse nature of rewards from our novel environment, we used feed-
back from both humans and the environment to speed up exploration and learning [25]
in a manner similar to the TAMER + RL framework discussed in [26]. Possibly the most
closely related paper to our implementation used DQN-TAMER [27], which is a gen-
eralisation of the human-in-a-loop algorithm TAMER and the Deep Q-Learning (DQN)
framework. In this study, facial expressions were used as additional feedback for the
DQN agent and proved that DQN-TAMER could outperform its constituent algorithms
even despite issues such as instability and randomness of delayed feedback. Instead, our
implementation only uses human input in the form of a button press.
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Inverse RL, introduced in [28], aims to learn the reward function from (expert) hu-
man behaviour rather than learning the optimal policy given a reward function as in tradi-
tional RL setting, hence the name inverse. In our analysis, we employ this very idea with
two-players in a cooperative-based game environment that learns from not only from
self-exploration of the environment, but also from a dataset containing expert demon-
stration trajectories.

Literature for learning from demonstrations can be broadly subdivided into two cat-
egories: one that assumes the optimality of demonstration data [29,30] and one which
does not [31]. This optimality cannot be assumed in real-world scenarios [32]. Moreover,
even if it would hold, agents trained purely on demonstration data may not be able to ex-
plore the entirety of the state space, since the demonstration data will only contain expert
trajectories. Hence, in our approach we assume inherent non-optimality in demonstration
data. Perhaps the closest relationship to our work is [6], which proposes deep Q-learning
from demonstrations (DQfd). DQfd is an algorithm built upon a DQN model and uses a
dual replay buffer to store transition data for expert demonstration and self-exploration.
This data is then uniformly sampled from the replay buffer to update network parameters
using a combination of 1-step temporal difference (TD) learning, n-step TD, supervised,
and regularisation losses. We should note that we take a less complex approach using
only TD learning, along with different ratios of sampling from the replay buffer versus
self-exploration to investigate the utility of demonstration directly.

4. The Game Environment

We introduce a novel two-players general sum game environment named Space Can-
nons. Space Cannons is a real-time 2D game in which two cannons controlled by two in-
dependent deep reinforcement learning agents (see section 2) shoot at enemy spaceships
to earn rewards. Hence, both agents receive the same inputs and generate actions that
are simultaneously executed in the environment. Since Space Cannons was specifically
designed to better understand the emergence of cooperative behaviours between the two
agents, enemies are configured to be very difficult to defeat by an individual player itself.
Therefore, a cooperative behaviour (i.e., coordinated shooting) between both agents is
necessary to shoot down an enemy.

Figure 2. Example frames from the game Space see Cannons. A) shows the state of the game at initialisation,
when no enemies have been spawned yet. In B), two enemies are spawned, but the agents are not cooperatively
firing at one single enemy. In C), the two agents coordinate their firing and target one enemy; thus displaying
cooperation.

Moreover, Space Cannons distributes rewards according to the degree of cooperative
behaviour displayed by the agents. Consequently, maximum reward can only be obtained
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when both agents contribute equally when executing an enemy. Finally, Space Cannon
supports interactive and inverse reinforcement learning settings by incorporating compo-
nents such as the collection of demonstration data and the provision of positive feedback
through human interaction.

4.1. Game components and properties

There are three major components in the game:

1. Player objects are the two identical cannons at the bottom of the screen. These
cannons are hinged to the surface and may rotate 65 degrees to the left and right
to shoot at adversaries approaching from above. The player cannons are also
equipped with an aiming laser to facilitate accurate shooting.

2. Bullet objects are fired by two identical cannon objects, which upon contact with
any enemy will lead to a reduction in enemy health. The bullet objects can be
fired using two modes, namely burst mode and normal mode. The former allows
the cannons to continuously fire bullets, while the latter offers the player a choice
whether to fire or not. For all experiments the burst mode was used.

3. Enemies are spaceship objects that spawn at the top of the screen and descend
towards cannons at a constant speed. These enemies can cause damage to the
player’s health when they manage to evade players by passing through the bottom
screen.

4.2. Gameplay and reward mechanism

The game begins with the guns facing the top of the screen. After a few frames, a new
enemy spaceship spawns every 3 seconds (in terms of learning time) at a random location
at the top of the screen and flies to the bottom of the screen. Henceforth, players can
rotate the relative positions of their guns in order to fire bullets at the enemies. As these
bullets are fired continuously, the players only need to aim at the enemies to defeat them
and do not need to learn how and when to shoot. If the enemies are not defeated by the
players before they pass through the bottom of the screen, a penalty is incurred and the
health of both players is decayed. The game ends when in total 30 enemies have evaded
the players. The players need to shoot each enemy with 160 bullets in order to kill them.
This requirement was a design choice to prevent individual players from easily being
able to defeat enemies by themselves, thereby motivating the agents to collaborate to
obtain high scores.

Space Cannons has an intrinsic mechanism to distribute rewards based on the grade
of cooperative behaviour displayed by the agents. To do this, a scoring mechanism is
initialised whenever an enemy spaceship is eliminated. This scoring mechanism takes the
number of hits by the individual players into the account and based on this information
calculates the Individual Contribution (IC;) and the Cooperative Contribution (o) per
enemy. The individual contribution IC; for each agent i is then calculated by taking the
number of hits made by that agent to the enemy and dividing it by the maximum health
of the enemy:

B #Successful Hits

16 = Max Health @
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Afterwards, the cooperative contribution is calculated by using the absolute difference of
individual contributions from both the players:

a=1 —|IC1—IC2| (3)

If an enemy is eliminated with high cooperation between agents, this will result in very
similar individual contributions and thereby a high value of cooperative contribution.
The cooperative contribution is then used as a threshold to decide if the kill was con-
sidered cooperative or not. In our experiment, the value of this threshold was set to 0.5.
An increase in this threshold would entail a higher level of cooperation for a kill to be
considered cooperative. The individual total reward TR; for an agent i is then defined as
the multiplication of the terms cooperative contribution (¢), the individual contribution
(IC)) and the maximum reward (R) for defeating an enemy (in the current experiments,
this value was set to 20):

TR;=a-IC;-R 4)
4.3. Agents configuration

In this study, we used the DQN algorithm (see Section 2) as the principal method. DQN
was chosen due to its success in solving high-dimensional problems [16]. Since the game
Space Cannons generates visually rich game content on a 950 x 750 display, the frames
that are extracted from the game at every iteration may be too complex to process and
learn from. Therefore, three preprocessing steps were applied to alleviate this problem.
Firstly, information about the scoreboard and enemy health bar was cropped from the
frames as they were not required for the model. Moreover, frames were rescaled from
950 x 750 x 3 to 84 x 84 x 3 and normalised by re-scaling them from 0 — 255 to 0 — 1.
Secondly, colour channels were removed from the frames, thereby converting their di-
mension from 84 x 84 x 3 to 84 x 84. Thirdly, to add a sense of motion in our observa-
tions, we stacked four consecutive frames as input to the neural network”, which changed
the shape of the frames to 84 x 84 x 4.

The architecture of the DQN used consisted of a two-layer convolutional neural
network (CNN) [33], which received input of size 84 x 84 x 4 from the preprocessing
function. The first hidden layer was composed of 32 filters of 8 x 8 with stride 4 and
the second layer of 64 filters of 4 x 4 with stride 2. Both were followed by a non-linear
rectifier unit [34]. The output was then passed to a fully connected layer consisting of
512 rectifier units. The output layer was a fully connected linear layer with a single
output for each valid action. Finally, RMSprop [35] was used as the loss function for all
experiments.

2In future implementations, this feature can likely be removed to reduce computational complexity since
this game is modelled as an MMDP [15]
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5. Experimental Setting
5.1. Baseline: No human input

As the baseline, the two DQN agents were trained for 150 games without any human
input. At every iteration, new actions were consequently executed either randomly or
from the agents’ networks, depending upon the current value of € in the experiment (as
part of the e-greedy approach).

5.2. Experiment 1: Using interactive reinforcement learning

Our first experiment is involved with using real-time positive feedback from a human
observer. A voluntary human participant was instructed to provide a reward signal when-
ever an optimal behaviour (i.e., cooperation) was observed between the agents.>. This
reward signal was converted into a positive reward of 41 and appended to the current
reward signal from the Space Cannons environment. Afterwards, it was stored in the ex-
perience replay from which the agents uniformly sampled transition data to update their
model parameters.

5.2.1. Handling incorrect human feedback

A common limitation of working with human feedback is that the feedback might not
always be accurate due to a variety of systemic factors stemming from limitations in hu-
man (cognitive) capacity, such as delays [37] or user fatigue [27], which could degrade
the quality of feedback after a certain amount of time. While it is unlikely that faulty
feedback can be entirely avoided (after all, this is not our aim either), some techniques
can still drastically mitigate such systemic errors and help with the learning of the agents.
Various techniques have been proposed to alleviate these problems in the field of inter-
active reinforcement learning [27,38,39,40]. In our paper, we employed some of these
techniques. The first of these was to lower the framerate of the game so that observers
have enough time to give feedback. Second, the framerate of the game was even further
decreased after receiving the first feedback, which allows the human to decide if she/he
still thinks that the agents are cooperating. Third, we observed that the human observer
typically took some time to stop giving feedback after an enemy was killed. In order
to avoid that, we added a delay of 1.5 seconds after every enemy is killed, which gave
enough time for the observer to release the feedback key. And as last, to tackle with the
user fatigue, we added an option for the observer to freeze the environment and take a
break during the experiment.

5.2.2. Quantifying human evaluative feedback

Another challenge in providing human evaluative feedback is that such process can be-
come extremely repetitive, cumbersome and time consuming, since it usually requires a
large amount of feedback before we can see any sign of learning. Therefore, it is impor-
tant to quantify the amount of feedback required to achieve different level of agent per-
formance in our environment. To do this, we provided evaluative feedback for the first 60
out of 150 games during our experiments. The optimiser and network parameters were

3In game-theoretic terms, the human participant acts as a central authority for the agents to correlate [36]
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saved every 10 games until 60 games were completed. These parameters could later be
used to continue training the model from the exact timestep when they were saved, in the
absence of new evaluative feedback. This allowed for the generation of a performance
curve for agents that were trained for the first 10, 20, 30, 40, 50 or 60 games with eval-
uative feedback. That way, we could quantify the amount of feedback without the need
of repeating the feedback experiment too many times (and thereby incurring additional
variance).

5.3. Experiment 2: Using Inverse reinforcement learning

Our next experiment investigated whether inverse reinforcement learning through
demonstration data could improve the performance and sample efficiency of DQN agents
compared to using only self-exploration. In order to do so, the experiment was divided
into two phases.

The first phase of this experiment focuses on the collection of demonstration data.
In this phase, interaction data between two voluntary human participants and the envi-
ronment is compiled. After explaining the controls of the game, the participants were in-
structed to not communicate with one another during the experiment in order to replicate
the agents’ configuration in our experiment. At every iteration, the pixel data of the state
space from the game, actions taken, rewards generated, and pixel information of the next
state space was appended to a dataset. The maximum size of this dataset was set to 200k.
After the dataset reached its maximum size, the game was stopped and the dataset was
saved. The experiment then progressed to the second phase.

The second phase of the experiment focused on how agents could learn from a com-
bination of self-exploration and the demonstration data. In this phase, the demonstration
data from prior phase was stored in a replay buffer which was made available to the DQN
agents to sample data and update network parameters from. For convenience, hereafter,
we shall refer to this replay buffer object containing demonstration data as demo buffer,
and the replay buffer created by self-exploration of agents as regular replay buffer. It has
previously been observed that mixed sampling from these buffers improved performance
on Atari games [6]. As it would be interesting to know what the ideal ratio of sampling
from each buffer should be, three different sampling ratios were used in the demonstra-
tion experiments: namely, 0%:100% (i.e. baseline), 50%:50% and 100%:0% from the
demo buffer and regular replay buffer, respectively.

6. Results

The goal of this paper was to investigate whether inverse and interactive RL techniques
could affect the rate at which cooperation emerged between two deep reinforcement
learning agents. While for interactive reinforcement learning we tested the effect of pro-
viding positive feedback from a human observer, in inverse reinforcement learning we fo-
cused on how to use expert demonstration data to improve the performance of the agents
when used alongside self-exploration. Since the game was designed in such a way that a
single agent could nearly not defeat any enemies alone, the average reward obtained by
the two agents was used as a metric to evaluate the performance.



M. Verma and E. Acar / Learning to Cooperate with Human Evaluative Feedback and Demonstrations 55

140 1

w0 Games
50 Games
40 Games
30 Games

120 A

100 A 20 Games
10 Games
T 80 { ===Baseline
2
v 60 1
o
&
o 40 1 /
=
S
g 20 A
0 4
?m W H W H D H W8 W H W oW W W oD
- o MM < F DD O O ~MMOONS S o AN Nm M T
Lol B B e B B B B B
20 4
_40 -

Number of games

Figure 3. Human evaluative feedback could have a positive effect on the average reward obtained by the
two agents on Space Cannons. Curves represent the same model trained without feedback (baseline) or with
feedback for the first 10, 20, 30, 40, 50 or 60 games.

6.1. Interactive reinforcement learning improves learning: The more the merrier

To understand the effect of positive feedback by human observers on the two DQN
agents, we quantified how much feedback was required to teach the agents how to co-
operate. Figure 3 describes the average performance of the agents when trained for ei-
ther the first 10, 20, 30, 40, 50 or 60 games with evaluative feedback, as well as the
baseline performance when no evaluative feedback was given at any time. Overall, it
can be observed that the agents trained with feedback from a human observer achieved
better performance than the baseline. Furthermore, increasing the given amount of feed-
back also seemed to enhance the performance of the agents. Namely, the performance of
agents trained for only the first 10 and 20 games with evaluative feedback was observed
to be similar to the baseline experiment. However, when the number was increased to 30
games or above, there seemed to be an increase in the performance of the agents. The
agents trained for as many as 60 games with feedback managed to obtain almost twice
the amount of average reward compared to the baseline. Therefore, these results suggest
that adding human evaluative feedback can aid agents in learning cooperative policies.

6.2. Inverse reinforcement learning improves learning

To test the effect of inverse reinforcement learning, we ran three different experiments
for 150 games with different ratios of sampling probabilities from either of the demo or
regular replay buffer. Figure 4 describes the average performance of the agents in these
three settings. It can be seen that agents trained solely on demonstration data failed to
learn a cooperative policy. In contrast, agents trained with equal sampling probability
(50:50) from both buffers appeared to achieve better performance than baseline, in which
only self-exploration was used. Repeating the experiment with different random initiali-
sations (of the network) yielded similar conclusions. Hence, it can be concluded that pro-
viding demonstration data appeared to increase agents’ performance, although removing
self-exploration altogether resulted in a failure to learn.
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Figure 4. Human demonstration data could increase the average reward obtained by the agents on Space
Cannons when sampling equally from the demonstration buffer and regular replay buffer (50/50, respectively),
compared to baseline (0/100). Learning appears to fail when sampling exclusively from the demo replay buffer
(100/0).

7. Summary and Discussion

This study is aimed to investigate whether inverse and interactive reinforcement learn-
ing could be used to improve cooperation between two autonomous agents. We empiri-
cally show that this could indeed be the case; that is, both of these approaches enhanced
cooperative agent performance on a novel reinforcement learning environment.

In particular, interactive reinforcement learning is shown to have a positive impact
on the average reward obtained by the agents compared to baseline. This suggests that
interactive reinforcement learning can even be helpful despite the delays and errors in-
herent in producing evaluative feedback. Such a finding is in line with previous stud-
ies using DQN-TAMER [27]. Another interesting finding was that evaluative feedback
had to be provided for at least 30 games before an improvement in performance could
be observed. Therefore, while a small amount of feedback may not be enough to im-
prove agents performance, increasing its quantity is likely to promote the emergence of
cooperative policies between agents.

In the future, it would be interesting to investigate whether negative feedback along-
side the positive feedback could further help in accelerating agent learning. Moreover,
although several remedies (native to our environment) were employed to reduce the im-
pact of errors and delays in human feedback (see Section 5), it could also be worthwhile
to also incorporate extrinsic strategies to counteract these problems. For instance, prob-
abilistic methods could be used to estimate the timing of feedback delay and ensure that
it is processed at the appropriate timesteps.

We should note that compared to interactive reinforcement learning, inverse rein-
forcement learning only resulted in a more modest increase in performance (both relative
to baseline). Namely, agents trained with an equal sampling ratio from the demo buffer
and regular buffer consistently seemed to outperform agents that only sampled from the
regular buffer. In contrast, agents trained exclusively on demonstration data failed to ac-
quire any cooperative policy. A potential explanation for this finding is that these agents
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were only able to sample from expert trajectories. Therefore, they might have not gath-
ered enough information about all the other states in the environment to respond to them
in an optimal way. Therefore, the results suggest that a proper balance between sam-
pling ratios from the different buffers could be required for optimal performance. Find-
ing the optimal ratio of this is left to be explored in the future work. Additionally, it
could be informative to investigate the effect of the loss function used in our experiments.
Namely, no specialised loss was used to prevent overfitting on demonstration as in [6],
which might explain the relatively small effect of interactive reinforcement learning in
our experiments.

Even more interesting than using only interactive or inverse reinforcement learning
would be to investigate the impact of using them in conjunction. Particularly, it would
be informative to see whether using both approaches simply has an additive, or rather
interactive effect.

Finally, the novel game environment Space Cannons we introduce in this paper could
also be used as a test bed for more sophisticated sequential social dilemmas. For instance,
a Stag-Hunt social dilemma [41] could be implemented by adding multiple types of
enemies into the game. These enemies could include both low-health enemies that can
be eliminated by a single agent, as well as more high-health enemies that require an
increasingly higher level of cooperation between the agents to defeat.

These results suggest the potential of these methods in cooperation-based imple-
mentation since they might enhance the sample efficiency of learning. This could be
an especially important feature in settings where training data is expensive or difficult
to acquire. Lastly, these methods could possibly learn from human strengths to create
new regeneration artificial intelligent paradigms that are not just more accurate, but also
hopefully more compatible with human applications.
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