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Abstract. When mathematical modelling is applied to capture a complex system,
multiple models are often created that characterise different aspects of that system.
Often, a model at one level will produce a prediction which is contradictory at an-
other level but both models are accepted because they are both useful. Rather than
aiming to build a single unified model of a complex system, the modeller acknowl-
edges the infinity of ways of capturing the system of interest, while offering their
own specific insight. We refer to this pragmatic applied approach to complex sys-
tems — one which acknowledges that they are incompressible, dynamic, nonlinear,
historical, contextual, and value-laden — as Open Machine Learning (Open ML).
In this paper we define Open ML and contrast it with some of the grand narratives
of ML of two forms: 1) Closed ML, ML which emphasizes learning with minimal
human input (e.g. Google’s Alpha Zero) and 2) Partially Open ML, ML which is
used to parameterize existing models. To achieve this, we use theories of critical
complexity to both evaluate these grand narratives and contrast them with the Open
ML approach. Specifically, we deconstruct grand ML ‘theories’ by identifying thir-
teen ’games’ played in the ML community. These games lend false legitimacy to
models, contribute to over-promise and hype about the capabilities of artificial in-
telligence, reduce wider participation in the subject, lead to models that exacerbate
inequality and cause discrimination and ultimately stifle creativity in research. We
argue that best practice in ML should be more consistent with critical complexity
perspectives than with rationalist, grand narratives.
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1. Introduction

Over the past decade, Machine Learning (ML) models have come to exert significant
power and influence in science and society. From predicting biological phenomena [1,2],
human behaviour [3,4,5] to social patterns [6], ML is now a widespread approach to
modelling complex adaptive phenomena. The idea is that complex problems — from
drug design to criminal sentencing — can be solved by obtaining large amounts of train-
ing data relevant to the problem and then using this data to find an algorithmic solu-
tion. In the process, complex issues which are intrinsically social, cultural, historical,
and open ended [7,8,9] are treated as issues that can be neatly formulated into a closed
question, fully captured in data, and “solved” with huge volumes of data and algorithmic
models. In order to provide a precise understanding about the ways in which ML is used
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in applications, we define three approaches: Closed, Partially Open, and Open ML as
follows.

Closed ML Under this approach (often referred to as a black box approach), data from a
system is fed in to a neural network or similar model. There is minimum or ‘no’ 1

human intervention, i.e. there is a closed loop where the ML is set up and then
‘learns by itself’. In the process, an open, dynamic, complex phenomena is closed
by the data used to train the model.

Partially Open ML Here, a domain expert has designed a mathematical model of a sys-
tem. ML or AI methods are then used to parameterize and/or fine-tune this model.
There is an interaction here between traditional modelling and ML. Interpretability
is considered important, in order for the human to incorporate input into the ma-
chine. This approach is sometimes referred to as human-in-the-loop. In this case,
the domain expert, by taking a certain phenomena and designing a model for it,
partially closes an open system.

Open ML This approach recognises that complex systems are open-ended and can never
be fully captured by data or a single model. Under this approach, experts with in-
depth knowledge of a subject matter use some statistics/ML methods on data to
complement that knowledge. Various different models (mathematical, visual and
verbal) are constructed. Human values play a central role in this process. A variety
of, sometimes contradictory and ideally modest, models of the system are created,
each capturing a snap-shot of the system.

Our definition of Closed and Partially Open ML is inspired by what Chantry et
al. [10] called Hard and Medium AI, when looking at applications to weather predic-
tions. All models close complex systems by artificially setting boundaries, stabilizing and
freezing dynamic phenomena, and formulating them in terms of a fixed formal model.
The terms Closed and Partially Open outline the extent of this closure. Ultimately, no
model is fully closed when we consider various environmental, ecological, material re-
sources, and continual human input necessarily required to build and maintain models.
This includes teams of engineers that setup and closely monitor the model, the wealth of
previous research that it is built on, as well as the compute power and massive amounts
of data necessary to run the model. These are all necessary but often taken for granted
preconditions for any model creation.

One current state-of-the-art example of Closed ML can be found in training com-
puters to play board games. For example, DeepMind’s AlphaZero has mastered board
games such as Go and Chess, as well as computer games like Space Invaders and Break-
out from training conducted on pixel images [11,12]. More complex games, such as Star-
Craft, can be learned using these methods, with some additional model information [13]
(a step toward Partially Open ML).

Partially Open ML approaches have the potential to produce semi-automated insight
into complex physical and biological systems [14], such as protein-folding [15] and im-
proving nuclear fusion [16]. The boundary around where the systems which can be mod-

1No human intervention refers to the way a model operates. To put this in context, no model is entirely
closed, in the sense that it exists independent of humans that set it up, a wealth of previous knowledge it leans
on, the scientific and cultural discourse that makes such work relevant, and the environmental and mineral
resources required to create and run it.
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elled by Closed ML ends and Partially Open ML begins is contested. On the one hand
there are suggestions that experimental procedures in some areas of physics can be run
by a Closed ML [17]. On the other hand, Closed ML could not solve many important
challenges arising from the Covid-19 pandemic for example, despite overconfident and
misleading claims that it could [18,19]. Chantry et al. [10] find that Closed ML per-
forms better than Partially Open ML at nowcasting (predicting the weather in the com-
ing hours using data from arrays of sensors). Partially Open ML, which includes mod-
els of atmospheric and other physical processes parameterised by ML, performs better
on predictions made over a couple of days or weeks. Closed ML, which can only learn
from the data it has seen and becomes unstable when extrapolating, would likely prove
dangerously inaccurate if used to, for example, predict long-term climate change.

While our current work touches on the Closed/Partially Open divide, our main focus
is on the increasing number of suggested applications of Closed and Partially Open ML
in predicting non-determinable, dynamic, inherently social, and contentious phenomena,
such as criminal behaviour [20,21,22], gender [23,24], sexual orientation [25], trustwor-
thiness [26], dishonesty [27], political leanings [28] and emotional states [29]. Despite
the lack of scientific groundings, and with a robust body of work illustrating troubling
eugenic and physiognomic roots [26,30,29,31], using machine learning for contentious
applications is becoming normalized and widely funded. Affect recognition, according
to Crawford, is now predicted to be an industry worth more than seventeen billion US
dollars [32].

Complex phenomena, such as criminal behaviour, emerge from, are embedded in,
and are entangled with social, historical, cultural, and contextual factors [26,20,33]
where what constitutes a crime often aligns with societal power dynamics. This means
that complex behaviour is neither something that can solely be placed on individual ac-
tors (their physical appearances, body movements, or facial expressions), nor something
that can be clearly defined and captured in data or a model [29]. Subsequently, these ML
approaches to, for example, “criminality prediction” spring from a misconception that
the concept of “criminality” can be defined unambiguously, frozen in time, and closed
off.

The rest of this paper is structured as follows. Section 2 presents practical examples
of the Open ML approach, using football and biological systems as examples. Section 3
details what complex phenomena are, consistent with the practice in Section 2. Specif-
ically, we take an approach known as critical complexity, adapted from works of Paul
Cilliers [34,35] and Alicia Juarrero [36], which emphasizes the incompressible, nonlin-
ear, historical, contextual, value-laden and open nature of complex systems. In Section 4
we look closely at the ‘games’ ML researchers play when theorising around the Closed
and Partially Open approaches. The use of the term ’game’ here originates with Wittgen-
stein [37] and, later used by Lyotard in his book The Postmodern Condition [38]. Games
are not entirely frivolous and the activities of applying Closed ML can provide valuable
insight in some limited circumstances. However, we argue that games involve denying
complexity, and forcing Closed and Partially Open thinking on to systems that are best
suited to an Open approach. In Section 5, we argue that the ‘games’ can, and do, lead to
over-promise and over-hype about the capabilities of Artificial Intelligence (AI) systems
and result is negative consequences on minoritized individuals and communities when
these oversimplified models are applied into the social world.
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Figure 1. Under the Open ML approach, the game of football can be modelled in many different ways. Here
we illustrate: the prediction view (top right) simulates the game as a Poisson process; the pitch view uses
models to evaluate impact of actions (bottom right); the society view uses the game to understand society at
large (bottom left) (figure from [39]); and the bio-mechanics view studies physical processes (top left).

2. The Open ML approach in practice

There is no definitive methodology for Open ML modelling of complex systems, just a
set of plural practices. In this section we focus on one particular application area: mod-
elling the game of football. Team sports are more complex compared to board games,
for example. They involve social, physical, tactical, and mental aspects. Team sports are
however less complex than other systems such as human societies, financial systems, or
human brains. Modelling the game of football, thus allows us to understand some of the
challenges involved in modelling open systems, while still dealing with an application of
(somewhat) limited scope.

A widely used model for predicting the outcome of a football match is Poisson
regression [40]. The central idea is that goals in the match are independent, occurring
at a rate which depends on the relative quality of the teams and which can be estimated
using regression methods. This model is used by professional gamblers and bookmakers,
since it outperforms betting strategies of the customers of the bookmakers (see e.g. [41]).
It is possible to include more factors, including events during the match, for example, in
a neural network to improve predictions, giving a prediction view of the game.

The prediction view is of little use to the players, who will have some sense of
the strength of their opponents, and thus whether or not their team is likely to win, but
can’t be helped by a model (ML or otherwise) which sets probabilities to the outcome.
Those playing the game want to understand specific details of their opponents’ and their
teammates’ play which they can exploit during the match. Models that provide these
insights can be found, with help of ML, through concepts such as pass probability and
pass values, which (using historical data) evaluate the quality of actions [42,43].
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There are many other levels and dimensions to football, as Figure 1 shows. For ex-
ample, the bio-mechanics view looks at the body kinematics of players [44]. One ex-
ample of the societal view is statistical analysis of refereeing to reveal discrimination
in decisions made [45]. Another is the use of computer vision to investigate how sports
commentators use words, such as ‘pace’ and ‘power’, when describing players with non-
white backgrounds while words such as ‘hard work’, ’effort’ and ’mental skill’ are used
to describe white players. For example, [39] looked at how commentators described
events on the pitch when they could and couldn’t identify the ethnicity of the players.

Closed and Partially Open ML models can be, and are used in the approach outlined
above, in the sense that regression, neural networks, and other methods are used to fit
data. But their usage is secondary to finding different views of the sport, taken from
different perspectives. Finding a view is sometimes referred to in ML as feature selection.
But this terminology places the ML model as primary and the features as secondary. The
problem with framing this process as feature selection is that it gives the model itself an
aura of neutrality to which subjectively chosen features are added. In fact, the open-ended
process of model building is always a necessarily value-laden endeavour. The Open ML
approach, which we emphasize, places the ML model as a tool for fitting data, once we
have found the view we are interested in. Open ML, then, is about finding a useful view
for a certain problem, and combining the views to get an overall understanding of the
system. The usefulness of the view subsequently cannot be entirely divorced from the
modeller’s objectives, motivations, and perspectives.

The multiple views approach is also adopted when, for example, ant pheromone
trails are modelled in terms of cycles of ant activity, formation and topology of the spa-
tial patterns of trail networks, evolution of co-operation and chemical properties of the
trails [46]. Further examples are found in modelling the growth of tumours, genetic net-
works and ecological systems. Multiple views are also a prerequisite for modelling (more
complex) human social systems [47]. In adopting an Open ML approach, we simultane-
ously engage many different frameworks and views of a system, each designed to answer
a different sub-question. We take different snapshots of the system and then use each of
them to construct a bigger picture of the system. The more snapshots we include, the
more complete the bigger picture. ML might help find the sharpest focus of one particular
snapshot, but it can not tell us what is a good, overall picture.

3. What is a complex system?

Sports are just one example of a complex system, which encompass phenomena ranging
from physical, biochemical and biological to behavioural and social. Human brains, hu-
man behaviour, the financial market and society are notable examples of complex sys-
tems. A complex system necessarily consists of a large number of components, where
stochastic, non-linear interactions give rise to emergent behaviour. The whole system
cannot be fully understood from analysing individual parts. Neither is it possible to trace
a neat cause-effect chain of emergent behaviour.

These broad points about complex systems are widely recognised by mathematical
modellers as well as the broader complexity science tradition which mainly comes from
the field of physics (a la Santa Fe tradition) [48,49,50]. While sharing core points with
complexity science grounded in these schools of thought, our characterization of Open
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ML is informed by critical complexity, building on the work of Paul Cilliers [51] and
Alicia Juarreo [36]. At its core, critical complexity, emphasizes that complex systems
are open-ended with no ‘natural’ or ‘objectively’ given boundary around where a system
ends and the environment/another system begins. The observer draws the boundaries of
what is included in/excluded from a given complex system, where there exist an infi-
nite number of views to modelling a complex system. For example, the different views
of football (prediction, pitch, bio-mechanical, social, for instance) came from the objec-
tives of the stakeholders including bookmakers, coaches, players, and sociologists. Thus,
when adopting an Open ML approach, our choice of what to include in a model is always
made with an awareness of multiple perspectives and contexts.

Moreover, these views and perspectives are never static and change over time. The
system itself changes form — the rules change in football, animal societies change
through evolutionary time, societal norms change (consider cultural and legal changes
around homosexuality in the West over the past few decades) — which means that our
view has to change. The historical evolution of the system is also a potential view of
the system and can be modelled. However, it is an answer to specific questions such as
‘how have the rules of football changed?’ ‘why have ants evolved to follow chemical
trails?’ ‘how have attitudes towards homosexuality altered?’ which are themselves open
to change. It is impossible to close a complex system once and for all — for this would
mean that the system has come to a halt — and imply a single ‘true’ way of looking at
it, or that there are x ‘true’ ways of looking at it. In order to model (or say something
meaningful about) a system we have to draw boundaries and partially close it. However,
there are infinite different ways of closing a system in the form of a model. It is this infi-
nite number of views, some of which are more useful than others, which allows the Open
ML view of modelling complexity to be self-consistent. In short, a complex system can
never be closed once and for ever, but we can continue to find new and useful ways of
looking at it.

The Open ML approach uses established modelling practices, while admitting that
we have no value-free way of knowing whether what we have included in a model is
relevant or whether what we have omitted is indeed irrelevant. While there can be, for
example, a relatively clear relationship between a particular model and data (e.g. the
distribution of goals are Poisson; it is more difficult to score a goal when the player is
80m from the goalmouth than 10m from the goalmouth), there can be no “objective”
description of why someone kicking the ball between the goalposts or probability of
scoring are important. The openness of a complex system is preserved by admitting the
context-dependent choices we make when we close the system using a model, while the
methods within the closed model use well-established statistical and empirical practices.

The openness of complex systems also means that they exhibit behaviour that is
not reproducible in all ways. Non-linear interactions and dynamical processes can create
emergent properties that are not the simple sum of components of a system. Models can
help us untangle some of these non-linear relationships. However, tracing a clear causal
chain all the way from the smallest, elementary components of a system, up to the largest,
amalgamated description of a system is impossible given the nature of complex systems.
Human actions cannot be explained in the same way as billiard balls [9]. Specifically, ex-
planations over many different levels of a system are not possible. The point here, which
Anderson called ‘more is different’, is that human psychology, for example, cannot be
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derived from the physics of elementary particles [52]. As Polanyi puts it, ‘life transcends
physics and chemistry’ [53]

A complex system never emerges from a historical vacuum. Its historical back-
ground partly constitutes the system’s current behaviour and trajectory. According to
Juarrero “Since we carry our histories on our backs, we can never begin from scratch,
either personally or as societies.” [9]. In modelling a complex system, therefore, under-
standing its history is a crucial element. Complex systems are, by their nature, incom-
pressible, meaning that there is no accurate representation of the system that is simpler
than the system itself [51]. Building models is thus a way of capturing important (for
someone, for some given purpose) elements/processes of a system, but there is no sin-
gle perfect or accurate representation or model for a given complex system. Accurate or
perfect representation entails capturing a system (its dynamic and non-linear interactions
and emergent properties) in its entirety without leaving something out. This is, in prin-
ciple, impossible as closing the entire system means bringing it to a halt. The best and
simplest representation of a complex system is the system itself [51]. Each model we
build provides us with a snapshot of that system. Since each snapshot is incomplete, they
can be contradictory. Just like it is a contradiction to tell the 22 players that the outcome
of the match they are about to take part in will be determined by a Poisson process.

The Open ML approach is consistent with a widely held rejection, in critical com-
plexity, of various forms of positivist thinking. In a similar way that Wittgenstein argues
that we need to analyse the language games we play in order to avoid falling in to philo-
sophical traps [54], we now turn our attention to mathematical games, in the form of
models, researchers play, which stand opposite to the Open ML approach. We look at
the games researchers play, either explicitly or implicitly, in which they ignore the open
nature of complex systems. We then deconstruct these games in order to avoid being
misled by them.

4. The games we play

In this section we look at some of the ways in which ML research treats various phe-
nomena with a Partially Open or Closed ML approach, where using a Open ML or no
ML at all would be more appropriate. We argue that the common underlying reason for
misplaced optimism about closed forms of ML is a failure to see the complexity of the
systems which it aims to model, which is then compensated by a tendency to play games
which disguise that complexity. The core objective of this section is, through the lens
of critical complexity, to aid ML researchers, and others doing mathematical modelling,
identify the type of theoretical game they might be playing.

The bitter lesson game: Under Sutton’s hypothesis [55], Closed ML eventually out-
competes Partially Open ML, as computing power and data handling capacity increases.
This may hold true for very particular applications, such as playing board games and
nowcasting of the weather. Indeed, Closed ML succeeds on exactly those tasks where it
is easy to draw a boundary, e.g. board games have a set of relatively simple rules and
the task of weather prediction involves integrating information contained in fixed atmo-
spheric measurement devices over a very short time scale. However, there is no evidence
for a bitter lesson in complex psychological or social systems. Nor is there, given the
nature of these complex systems (outlined in Section 3) any way forward for a closed ap-
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proach. For complex systems that exist in a web of relations embedded in social, cultural
and normative contexts, it is not clear where the boundaries of the system lie, thus mak-
ing it impossible to clearly delineate information that needs to be included or excluded
in a Closed ML approach. At the very least a Partially Open ML is needed. For complex
adaptive systems to succumb to the Closed ML approach would require stripping com-
plexity away from the phenomena and reducing them to simplistic caricatures (as is done
when learning board games).

The map and the territory game: Since complex systems are open systems (see
Section 3), it is impossible to perform an exhaustive mapping, formalizing, and automat-
ing of the physical, psychological/mental, and social world. Incompressible complex
systems can never be captured in a single model and understood or finalized once and
for all. Yet, a common game in AI and ML research is to mistakenly equate a model
of a certain complex phenomenon for the phenomenon itself. A key example of this is
the ‘Reward is enough’ thesis by Silver et al. [56]. In this work, the authors hypothe-
size “[that] reward is enough to drive behaviour that exhibits abilities studied in natural
and artificial intelligence, including knowledge, learning, perception, social intelligence,
language, generalization and imitation”. Through visual analogies, the authors juxtapose
five systems: the board game of Go (on which reinforcement learning performs well),
a robotic agent (in a computational simulation), a physical robot, a squirrel (which they
interchange with human behaviour, natural agents, and animals in general) and Artificial
General Intelligence (AGI). The authors commit a fallacy by moving from Go, to a sim-
ulated agent (which they equate to a physical robot), to biological and social agents, to
AGI (a woolly and ill-defined notion) as if one can be mapped onto another. If complex-
ity is a continuum, these systems can be viewed as increasing in degrees of complexity,
from Go (simple and closed) to general intelligence (complex, open, and to a large extent
hypothetical). The authors thus present a way of thinking that seems trivially true about
a closed system, but has little or no bearing on real-world open systems.

The generalization game: Generalization is one of the most highly desired at-
tributes in current ML research. Examining underlying values of ML research through
analysis of most cited papers from premier conferences in ML (ICML and NeurIPS)
showed that 78% of the top cited papers uplifted ‘generalization’ as an important at-
tribute [57]. Its usage is often overloaded. For example, it is used to describe differ-
ence between train/test performance discrepancy, how well a model works on additional
datasets, adding more parameters to a model and in the context of transfering a model
learnt on one dataset to an application on another dataset. Within ML research, ‘gener-
alization’ is widely used when more precise terms such as out-of-sample, would better
suffice. These usages occur against a background of the idea of a “general AI”, which is
the idea of an abstract, free-floating system that is not limited by specific use-cases. This
free-standing system can supposedly be applied regardless of domain, time, or context.

From the perspective of complexity, the very idea of creating a free-floating general-
izable model or dataset that supposedly captures a complex phenomenon fully, is futile,
given we can only capture a snapshot or part of a moving target. Therefore, while the
specific usages (such as ‘out-of-sample’) may be valid from a technical point of view,
the way in which the word is used in ML turns it into a game. By improving out-of-
sample performance, for example, a model is said to be more general, but in reality it is
not general in the wider sense of the word. The inclusion of the additional dataset (on
which the model is said to generalize) is simply changing the size or shape of the part
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of the true complex system the model encloses. Benchmark datasets themselves are in-
herently specific, contextualized, and finite, thus claims of general model capabilities on
such benchmarks render claims of generalization meaningless [58]. From a complexity
perspective generalizability implies a model, a theory, or a method can work across dif-
ferent contexts, histories, and backgrounds. Contrary to this, complexity science tells us
that context, history and background are crucial elements and parts of a complex system.

The perplexity game: This game is seen most clearly in the evaluation of large lan-
guage models [59,60]. Perplexity and cross-entropy are both measures of the difference
between two probability distributions. For language models, these are used to measure
performance, by summing the log of the probability (according to a model) of the next
word in a test sequence. The game here involves relating improvements in these mea-
sures to improvements in the model. For example, Kaplan and colleagues at OpenAI
emphasize scaling laws relating the number of parameters in a model and the size of
the dataset to the cross-entropy error in the test set [61]. The implication here is that the
bigger the model, the better it will perform and that a Closed ML approach can be ap-
plied to human language. This line of thinking exemplifies playing a game where form is
mistaken for meaning. As Shannon wrote in his original paper on language and entropy:
“Frequently the messages have meaning; that is they refer to or are correlated according
to some system with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem.” [62]. Shannon’s original idea
of entropy makes it clear that what is being measured is form and not meaning. Cross-
entropy and perplexity evaluate ML models in terms of what they optimise, namely se-
lecting a next word/string of words out of a given list, and not the meaning of the words
which a language model produces.

The stochastic parrot game: In their “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big? ” paper, Bender et al. [63] identify another game played
when applying large neural networks and the Closed ML approach to language learning:
that large language models are more or less defined by the data which they are fed. All
that is actually ‘learnt’ by a Closed ML is an efficient representation of the dataset. This
explains why cross-entropy decreases with parameters: the larger the model, the more
efficiently data is stored. Large language models pick up and parrot patterns ‘learned’ in
datasets without any actual understanding of language.

Language is an open system that transcends the individual user. Like other complex
systems, language is a dynamic living thing that is inextricably linked with cultures, his-
tories and contexts. Language, therefore, is not a system that can succumb to formal rules
but is a relational phenomenon of meaning and sense-making [64,35]. The meaning of
language lives among the language speakers, in not only what is being said, but also in
what is not being said and the way it is said. The important characteristics of a complex
system are destroyed when it is taken apart or attempts to close it down are made. Closed
ML approaches — and, ironically given the name, OpenAI’s GPT-3 is one such closed
approach ––– reduce language down to form. Careful manipulation shows that there is no
actual language understanding taking place in large language models [63]. Indeed, prob-
ing state-of-the-art language models, such as GPT-2, with simple questions that require
common sense understanding of everyday situations, shows these models are frequently
incoherent [65]. Understanding language remains one of AI’s stumbling blocks. This,
Mitchell argues, is because language is inherently ambiguous, deeply context dependent,
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and “assumes a great deal of background knowledge common to the communicating
parties” [66].

The underspecification game: One recent paper, by 40 researchers, mostly from
Google, critiqued modern ML methods for being underspecified [67]. The authors
showed that many different models, with different underlying assumptions, fit the same
dataset. Such underspecification is considered as problematic, because it means the
unique ‘correct’ model cannot be identified. Under an Open ML approach, however, the
framing of the underspecification game (as described in [67]) can cause more problems
than it solves. We expect more than one model to capture any system. Indeed, we expect
lots of models to be supported by any particular piece of data. For example, models of
an epidemic (the first example in [67]) might range from a deterministic Susceptible-
Infectives-Removed (SIR) model, a stochastic model incorporating space, a full agent-
based model of spread through the inhabitants of a city, a purely statistical analysis of
previous epidemics, the knowledge of an experienced epidemiologist, the knowledge of
another experienced epidemiologist, the wisdom of a crowd of experts and a betting mar-
ket. All of these views might find some support in the existing data, but this is not nec-
essarily an issue in need of a technical solution. New information (such as a new variant,
a better understanding of symptoms etc.) appears all the time. Thus, having a range of
different, underspecified models is desirable.

The model selection game: While the under-specification game is about document-
ing ways in which different models can make the same prediction, the model selection
game claims there is a method (usually in the form of Bayesian reasoning [68]) for grad-
ually uncovering a single correct model of a system. The idea is that by finding the model
which has the largest probability given the data, i.e. which maximises P(M|D), we get
closer to the ‘true’ model of a system [69]. Model selection implicitly accepts that the
aim of modelling is to find the best single view of a system. From the perspective of a
truly complex system, model selection can be a useful tool for parameter selection of any
particular model, but P(M|D) can not be interpreted as a probability that a model predicts
the data in a wider sense, because the only full description of a complex system is the
description of the system itself, which is inexhaustible. Thus Bayesian model selection
is not a universal rule for these systems. A similar game is found in theories in cogni-
tive science, more specifically the theory known as the free energy principle [70]. In this
theory, Friston et al. incorrectly and without basis in observation, imposes a Bayesian
principle on living, cognitive systems [71].

Although we have highlighted the above games, the list is far from exhaustive. Oth-
ers include: the interpretability game, where we pretend that the ML knows more than
us and all we have to do is extract knowledge from it; the causality game, which tries
to apply ‘billiard ball’-like causation to social systems; the analytically tractable game

which assigns supposed extra value to a model with a mathematical solution; the pre-

diction game which uses models to assign probabilities to future events; the objective

function game, where we pretend that the reason we cannot solve a complex problem is
because we do not yet know what it is trying to maximise; and Turing’s imitation game,
which equates general AI with the imitation of human conversation. As in our more de-
tailed examples, all of these games reason about an open, complex system as if it were
in fact a closed, model system.
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5. Conclusions

By deconstructing ML games, we are not claiming they are never useful. Rather, we iden-
tify the points at which the games necessarily break down. Our aim is not to completely
overturn ML practice, but rather to reveal that ML should be open and thus subject to
changes not fully captured by any unique set of practices. The practices ML researchers
adopt (or the games we play) are, at best, locally correct. Different, equally useful, prac-
tices can make contradictory suggestions. The arguments we have presented here are
based on an assumption that the inherently open nature of complex systems means that
they can never be captured by a single ‘objective’ model. We have identified football as a
concrete example in Section 2 and given a theoretical exposition of our position in Sec-
tion 3, and argued in Section 4 that adopting our assumptions reveals extremely serious
limitations and problems with the games played.

Revealing these limitations is particularly important because the field of AI currently
garners unprecedented over-hype. The capabilities of models are repeatedly exaggerated,
while uncritical trust in AI insulates the field and its claims from scrutiny. Currently, sep-
arating genuine concrete ‘progress’ from deceptive vacuous over-hype can be challeng-
ing even to the most sensible and technically aware expert. The games played by ML
researchers make the task of seeing progress clearly even more challenging. Instead of
embracing Open ML, it is far too common to see researchers, in industry and academia
alike, emphasize the importance of their closed games. These researchers often appear
oblivious to both the consequences of the games they are playing for the society we live
in and to the limited assumptions upon which the rules of their games are designed.

While there is much to be gained by embracing an Open ML approach, there is even
more to be lost from a failure to adopt it. When we build a single model of a complex
adaptive system and present it as a true representation, we are not only committing a
scientific fallacy, but also potentially causing harm. When models are integrated into de-
cision making in the social world, the games on which they are built can have dire down-
stream impacts. When these models fail (which they often do [72,73,74,75]) people at
the margins of society pay the heaviest price. Furthermore, harm and benefit are dispro-
portionately distributed [72]. Those that create and deploy ML models gain the most ben-
efit and face the least harm. The negative consequences for those deploying these models
are, at the very most, reptautional harm and/or critical scrutiny. Individuals and groups
whom these models are applied to, on the other hand, benefit the least (if at all) and can
potentially face dire situations such as death, imprisonment, loss of opportunities due to
failure of or reductive models.

We have placed our critique in the context of an approach, namely that of Open ML.
We thus offer not just a critique (of great importance in and of itself) of existing practices,
but also a way forward. We emphasize that capturing a complex system requires creating
many different models at various levels and from different perspectives. The description
of complexity in combination with the practical application provide both a context to the
(more limited) approach based in theoretical games and a wider understanding of how
progress can be made when applying ML in more complex domains.

This paper is by no means a comprehensive documentation of all the rich and var-
ied ways in which ML is applied. Nor is it a complete description of the meta-games at
play or a presentation of all the ethical and cultural consequences of seeing the world
through these games. It is, though, an encouragement for those working in ML to recog-
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nise the limitations which modelling complex systems places on what we can and cannot
achieve. In particular, many of the so-called big ideas in ML — interpretability, model-
free learning, Bayesian updating of beliefs, general AI -–– are no more than games which
describe our subjective practices. As such, many of the apparently ‘deep’ results arising
from these games are spurious illusions. They are tricks of the light shone on our own
practices.
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[15] Noé F, De Fabritiis G, Clementi C. Machine learning for protein folding and dynamics. Current opinion
in structural biology. 2020;60:77-84.

[16] Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F, et al. Magnetic control of tokamak
plasmas through deep reinforcement learning. Nature. 2022;602(7897):414-9.

[17] Melnikov AA, Nautrup HP, Krenn M, Dunjko V, Tiersch M, Zeilinger A, et al. Active learning ma-
chine learns to create new quantum experiments. Proceedings of the National Academy of Sciences.
2018;115(6):1221-6.

[18] Bachtiger P, Peters NS, Walsh SL. Machine learning for COVID-19—asking the right questions. The
Lancet Digital Health. 2020;2(8):e391-2.

[19] Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommen-
dations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs
and CT scans. Nature Machine Intelligence. 2021;3(3):199-217.

[20] Bowyer KW, King MC, Scheirer WJ, Vangara K. The “Criminality From Face” Illusion. IEEE Trans-
actions on Technology and Society. 2020;1(4):175-83.

[21] Keles U, Lin C, Adolphs R. A cautionary note on predicting social judgments from faces with deep
neural networks. Affective Science. 2021;2(4):438-54.

A. Birhane and D.J.T. Sumpter / The Games We Play: Critical Complexity Improves ML14



[22] Vorhees W. Has AI gone too far? Automated inference of criminality using face images. Data Science
Central. 2016;29.

[23] Barlas P, Kyriakou K, Guest O, Kleanthous S, Otterbacher J. To” see” is to stereotype: Image tagging
algorithms, gender recognition, and the accuracy-fairness trade-off. Proceedings of the ACM on Human-
Computer Interaction. 2021;4(CSCW3):1-31.

[24] Scheuerman MK, Paul JM, Brubaker JR. How computers see gender: An evaluation of gender classifica-
tion in commercial facial analysis services. Proceedings of the ACM on Human-Computer Interaction.
2019;3(CSCW):1-33.

[25] Rincón C, Keyes O, Cath C. Speaking from Experience: Trans/Non-Binary Requirements for Voice-
Activated AI. Proceedings of the ACM on Human-Computer Interaction. 2021;5(CSCW1):1-27.

[26] Spanton RW, Guest O. Measuring Trustworthiness or Automating Physiognomy? A Comment on Safra,
Chevallier, Gr\ezes, and Baumard (2020). arXiv preprint arXiv:220208674. 2022.

[27] Kamalov F, Sulieman H, Santandreu Calonge D. Machine learning based approach to exam cheating
detection. Plos one. 2021;16(8):e0254340.

[28] Sumpter D. Outnumbered: From Facebook and Google to Fake News and Filter-bubbles–the algorithms
that control our lives. vol. 36. Bloomsbury Publishing; 2018.

[29] Stark L, Hutson J. Physiognomic Artificial Intelligence. Available at SSRN 3927300. 2021.
[30] y Arcas BA, Mitchell M, Todorov A. Physiognomy’s new clothes. Medium (6 May 2017), online:¡

https://medium com/@ blaisea/physiognomys-new-clothesf2d4b59fdd6a. 2017.
[31] Belden-Adams K. Eugenics,“Aristogenics,” Photography: Picturing Privilege. Routledge; 2020.
[32] Crawford K. The atlas of AI. Yale University Press; 2021.
[33] Birhane A. The impossibility of automating ambiguity. Artificial Life. 2021;27(1):44-61.
[34] Cilliers P, Preiser R. Critical Complexity. Berlin/Boston: Walter de Gruyter GmbH & Co KG; 2016.
[35] Cilliers P. Complexity, deconstruction and relativism. Theory, culture & society. 2005;22(5):255-67.
[36] Juarrero A. Dynamics in action. Cambridge, Ma: MIT Press; 1999.
[37] Wittgenstein L. Philosophical investigations. Oxford: Basil Blackford; 1953.
[38] Lyotard JF. The postmodern condition: A report on knowledge. vol. 10. U of Minnesota Press; 1984.
[39] Gregory S, Pleuler D, Daly-Grafstein D, Liu Y, Marchwica P. Pace and Power: Removing unconscious

bias from soccer broadcasts. In: 2021 New England Symposium on Statistics in Sports; 2021. .
[40] Dixon MJ, Coles SG. Modelling association football scores and inefficiencies in the football betting

market. Journal of the Royal Statistical Society: Series C (Applied Statistics). 1997;46(2):265-80.
[41] Spann M, Skiera B. Sports forecasting: a comparison of the forecast accuracy of prediction markets,

betting odds and tipsters. Journal of Forecasting. 2009;28(1):55-72.
[42] Fernández J, Bornn L, Cervone D. Decomposing the immeasurable sport: A deep learning expected

possession value framework for soccer. In: 13th MIT Sloan Sports Analytics Conference; 2019. .
[43] Sumpter D. Soccermatics: mathematical adventures in the beautiful game. Bloomsbury Publishing;

2016.
[44] Ibrahim R, Kingma I, de Boode VA, Faber GS, van Dieën JH. Kinematic and kinetic analysis of the
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