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Abstract. Autonomous agents are supposed to be able to finish tasks or achieve
goals that are assigned by their users through performing a sequence of actions.
Since there might exist multiple plans that an agent can follow and each plan might
promote or demote different values along each action, the agent should be able to
resolve the conflicts between them and evaluate which plan he should follow. In
this paper, we develop a logic-based framework that combines modal logic and
argumentation for value-based practical reasoning with plans. Modal logic is used
as a technique to represent and verify whether a plan with its local properties of
value promotion or demotion can be followed to achieve an agent’s goal. We then
propose an argumentation-based approach that allows an agent to reason about his
plans in the form of supporting or objecting to a plan using the verification results.
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1. Introduction

Autonomous agents are supposed to be able to perform value-based ethical reasoning
based on their value systems in order to distinguish moral from immoral behavior. Ex-
isting work on value-based practical reasoning such as [1][2] [3] demonstrates how an
agent can reason about what he should do among alternative action options that are as-
sociated with value promotion or demotion. However, agents are supposed to be able to
finish tasks or achieve goals that are assigned by their users through performing a se-
quence of actions. Since there might exist multiple plans that an agent can follow and
each plan might promote or demote different values along each action, the agent should
be able to resolve the conflicts between them and evaluate which plan he should follow.
If the decision-making problem concerns choosing a plan instead of an action, then we
first need to know how an agent can see whether he can follow a plan to achieve his goal.
Verification approaches that are developed based on modal logic only allow us to ver-
ify whether a goal can be achieved under specific conditions such as norm compliance
assumptions [4][5][6], namely telling us whether a plan works or not, but cannot tell us
what we should do. For sure, we can collect the verification results regarding whether a
plan promotes or demotes a specific set of values and then compare different plans using
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lifting approaches as what has been done in [7]. However, the order lifting problem is a
major challenge in many areas of AI and no approach is ultimately “correct”. Moreover,
the agent in our setting needs to lift the preference over values to the preference over
plans with respect to value promotion and demotion, which even complicates the prob-
lem. Therefore, we need a more natural and intuitive approach. It has been shown that
argumentation provides a useful mechanism to model and resolve conflicts [8], and par-
ticularly can be used for the decision-making of artificial intelligence and provides expla-
nation for that [9][10]. In this paper, we develop a logic-based framework that combines
modal logic and argumentation for value-based practical reasoning with plans. Modal
logic is used as a technique to represent and verify whether a plan with its local proper-
ties of value promotion or demotion can be followed to achieve an agent’s goal. Using
the verification results to construct arguments, we then propose an argumentation-based
approach that allows an agent to reason about his plans in the form of support and objec-
tion without using lifting approaches. We prove several formal properties to characterize
our approach, indicating it is consistent with our rationality of decision-making.

2. Logical Framework

The semantic structure of this paper is a transition system that represents the computa-
tional behavior of a system caused by an agent’s actions in the agent’s subjective view.
It is basically a directed graph where a set of vertexes S corresponds to possible states
of the system, and the relation →⊆ S×Act ×S represents the possible transitions of the
system. When a certain action α ∈ Act is performed, the system might progress from a
state s to a different state s′ in which different propositions hold. Formally,

Definition 1 (Transition Systems). Let Φ = {p,q, ...} be a finite set of atomic proposi-
tional variables, a transition system is a tuple T = (S,Act,→,V) over Φ, where

• S is a finite, non-empty set of states;
• Act is a finite, non-empty set of actions;
• →⊆ S×Act ×S is a transition relation between states with actions, which we refer

to as the transition relation labeled with an action; we require that for all s ∈ S
there exists an action a ∈ Act and a state s′ ∈ S such that (s,a,s′) ∈→; we restrict
actions to be deterministic, that is, if (s,a,s′) ∈→ and (s,a,s′′) ∈→, then s′ = s′′;
since the relation is partially functional, we write s[α] to denote the state s′ for
which it holds that (s,α,s′) ∈→; we also use s[α1, . . . ,αn] to denote the resulting
state for which a sequence of actions α1, . . . ,αn succinctly execute from state s;

• V is a propositional valuation V ∶ S→ 2Φ that assigns each state with a subset of
propositions which are true at state s; thus for each s ∈ S we have V(s) ⊆Φ.

Note that the model is deterministic: the same action performed in the same state
will always result in the same resulting state. A pointed transition system is a pair (T,s)
such that T is a transition system, and s ∈ S is a state from T . Adopted from [11][12], the
language L is propositional logic extended with action modality. Formally, its grammar
is defined below:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ϕ ∣Do(α)ϕ (p ∈Φ,α ∈ Act)
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Figure 1. Transition system T . Figure 2. A Value-based transition system V T .

Given a pointed transition system (T,s), we define the semantics with respect to the
satisfaction relation ⊧ inductively as follows:

• T,s ⊧ p iff p ∈V(s);
• T,s ⊧ ¬ϕ iff T,s /⊧ ϕ;
• T,s ⊧ ϕ ∨ψ iff T,s ⊧ ϕ or T,s ⊧ψ;
• T,s ⊧Do(α)ϕ iff s[α] ⊧ ϕ .

The remaining classical logic connectives are assumed to be defined as abbreviations in
terms of ¬ and ∨ in the conventional manner. Given a pointed transition system (T,s),
we say that a sequence of actions α1 . . .αn brings about a ϕ-state if and only if T,s ⊧
Do(α1) . . .Do(αn)ϕ . As standard, we write T ⊧ϕ if T,s⊧ϕ for all s ∈ S, and ⊧ϕ if T ⊧ϕ
for all T .

A transition system represents how a system progresses by an agent’s actions. Be-
sides, an agent in the system is assumed to have his own goal, which is a formula ex-
pressed in propositional logic Lprop. It is indeed possible for an agent to have multiple
goals and his preference over different goals. For example, a goal hierarchy is defined in
[4] to represent increasingly desired properties that the agent wishes to hold. However,
we find that the setting about whether the agent has a goal or multiple goals is in fact
not essential for our analysis, so we simply assume that the agent only has a goal for
simplifying our presentation.

Example 1. Consider the transition system T in Figure 1, which represents how an
agent can get to a pharmacy to buy medicine for his user. State s0 is the initial state,
representing staying at home, and proposition p, representing arriving at a pharmacy,
holds in state s4. The agent can perform actions α1 to α6 in order to get to state s4. From
this transition system, the following formulas hold:

T,s0 ⊧Do(α1)Do(α6)p,

T,s0 ⊧Do(α2)Do(α3)p,

T,s0 ⊧Do(α2)Do(α4)Do(α5)p,

which means that the agent can first perform action α1 and then action α6, or action
α2 followed by action α4, or action α2 followed by actions α4 and α5, to get to the
pharmacy.

It is important for an agent not only to achieve his goal, but also to think about how
to achieve his goal. As we can see from the running example, there are multiple ways for
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the agent to get to the pharmacy, and the agent needs to evaluate which one is the best
to choose. In this paper, agents are able to perform value-based practical reasoning in
terms of planning their actions to achieve their goals. We first assume that an agent has
a set of values. A value can be seen as an abstract standard according to which agents
have their preferences over options. For instance, if we have a value denoting equality,
we prefer the options where equal sharing or equal rewarding hold. Unlike [7] where a
value is interpreted as a state formula, we simply assume a value as a primitive structure
without considering how it is defined. We assume that agents can always compare any
two values, so we define an agent’s value system as a total pre-order (instead of a strict
total order) over a set of values, representing the degree of importance of something.

Definition 2 (Value System). A value system V = (Val,≾) is a tuple consisting of a finite
set of values Val = {v, ...,v′} together with a total pre-ordering ≾ over Val. When v ≾ v′,
we say that value v′ is at least as important as value v. As is standard, we define v ∼ v′ to
mean v ≾ v′ and v′ ≾ v, and v ≺ v′ to mean v ≾ v′ and v /∼ v′.

We label some of the transitions with the values promoted and demoted by moving
from a starting state to a ending state. Notice that not every transition can be labeled, as
some transitions may not be relevant to any value in an agent’s value system. Formally,
function δ ∶ {+,−}×Val→ 2→ is a valuation function which defines the status (promoted
(+) or demoted (-)) of a value v ∈ Val ascribed to a set of transitions. We then define a
value-based transition system V T as a transition system together with a value system V
and a function δ .

Definition 3 (Value-based Transition Systems). A value-based transition system is de-
fined by a triple V T = (T,V,δ), where T is a transition system, V is a value system and δ
is a valuation function that assigns value promotion or demotion to a set of transitions.

Given a sequence of actions with respect to a value-based transition system, we
then express whether the performance of the sequence in a state promotes or demotes
a specific value, which can be done by extending our language. Given a pointed value-
based transition system (V T,s) and a value v ∈Val, the satisfaction relation V T,s ⊧ψ is
extended with the following new semantics:

• V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ iff s[α1, . . . ,αn] ⊧ ϕ and there exists 1 ≤ m ≤ n
such that (s[α1, . . . ,αm−1],αm,s[α1, . . . ,αm]) ∈ δ(+,v);

• V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ iff s[α1, . . . ,αn] ⊧ ϕ and there exists 1 ≤ m ≤ n
such that (s[α1, . . . ,αm−1],αm,s[α1, . . . ,αm]) ∈ δ(−,v).

The formula V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ (resp. V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ)
should be intuitively read as ϕ is achieved after the performance of a sequence of actions
α1, . . . ,αn in state s and there exists an action that promotes (resp. demotes) value v in
the sequence. Notice that the formula only expresses the local property of a sequence of
actions in terms of value promotion or demotion by an action within the sequence. Thus,
it is possible that an action within the sequence promotes value v but it gets demoted by
another action within the sequence, meaning that both V T,s ⊧+v Do(α1), . . . ,Do(αn)ϕ
and V T,s ⊧−v Do(α1), . . . ,Do(αn)ϕ hold at the same time. Through checking the above
formulas, the agent is then aware of whether he can perform the sequence of actions to
achieve his goal and which value gets promoted or demoted along the sequence. We con-
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tinue our running example to illustrate how to use our logical language to express and
verify properties of sequences of actions.

Example 2. Suppose the ethical agent has privacy (pv), safety (s f ) and good conditions
(gc) as his values and a value system as pv ≺ gc ≺ s f . As in Figure 2, some of the tran-
sitions have been labeled with value promotion or demotion with respect to the agent’s
values. Taking action α1 in state s0 is interpreted as going through the neighbor’s garden
for taking shortcut, which demotes the value of privacy of the neighbor, conversely tak-
ing action α2 in state s0 is interpreted as stepping on a normal way, which promotes the
value of privacy of the neighbor. Taking action α3 means crossing the road without using
the crosswalk, which demotes the value of safety of the agent, and conversely taking ac-
tion α4 in state s2 promotes the value of safety of the agent. Finally, performing action α5
in state s3 means stepping into water. As the agent is a robot, which should avoid getting
wet, this choice will demote the value of maintaining good conditions of the agent. The
agent can verify whether he can achieve his goal while promoting or demoting a specific
value by performing a sequence of actions. The verification results are listed below:

V T,s0 ⊧−pv Do(α1)Do(α6)p

V T,s0 ⊧+pv Do(α2)Do(α3)p

V T,s0 ⊧−s f Do(α2)Do(α3)p

V T,s0 ⊧+pv Do(α2)Do(α4)Do(α5)p

V T,s0 ⊧+s f Do(α2)Do(α4)Do(α5)p

V T,s0 ⊧−gc Do(α2)Do(α4)Do(α5)p

3. Planning: an Argumentation-based Approach

Given a transition system and an agent’s goal, model checking and verification tech-
niques allow us to verify whether an agent can achieve his goal while promoting or de-
moting a specific value by performing a sequence of actions. Since following different
plans might promote or demote different sets of values, next question is how the agent
decides what to do given the verification results. In this paper, we propose to use argu-
mentation as a technique for an agent’s decision-making. Formal argumentation is a non-
monotonic formalism for representing and reasoning about conflicts based on the con-
struction and the evaluation of interacting arguments [8]. In particular, it has been used in
practical reasoning, which is concerned by reasoning about what agents should do, given
different alternatives and outcomes they bring about [2][10]. We first define the notion of
plans. A plan is defined as a finite sequence of actions that are enabled by our underlying
transition system. Formally,

Definition 4 (Plans). Given a pointed value-based transition system (V T,s) and a for-
mula p ∈ Lprop as an agent’s goal, a plan is defined as a finite sequence of actions over
Act, denoted as λ = (α1,α2, . . . ,αn), such that V T,s ⊧Do(α1)Do(α2) . . .Do(αn)p.

The definition is equivalent to saying that a plan is a sequence of actions, each of
which can be performed succinctly with respect to the pointed value-based transition
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system, to achieve the agent’s goal. The agent has to reason about the available plans
with respect to their goal achievement and value promotion or demotion. In order to do
that, it is intuitive to define an argument as a plan together with its local property of
value promotion or demotion. Based on the verification results, we define two types of
arguments.

Definition 5 (Ordinary Arguments and Blocking Arguments). Given a pointed value-
based transition system (V T,s), a formula p ∈ Lprop as an agent’s goal, a plan
λ = (α1,α2, . . . ,αn) and v ∈ Val, an ordinary argument is a pair ⟨+v,λ ⟩ such that
V T,s ⊧+v Do(α1)Do(α2) . . .Do(αn)p; a blocking argument is a pair ⟨−v,¬λ ⟩ such that
V T,s⊧−v Do(α1)Do(α2) . . .Do(αn)p; we useAo (resp.Ab) to denote the set of ordinary
arguments (resp. blocking arguments), and A=Ao∪Ab to denote the set of two types of
arguments.

Both an ordinary argument and a blocking argument correspond to a verification
result. An ordinary argument ⟨+v,λ ⟩ is interpreted as “the agent should follow plan λ to
achieve his goal because it promotes a value v”, which supports the performance of plan
λ , and a blocking argument ⟨−v,¬λ ⟩ is interpreted as “the agent should not follow plan
λ to achieve his goal because it demotes a value v”, which objects to the performance
of plan λ . Conventionally, we might represent an argument using an alphabet (a,b, . . .) if
we do not care about the internal structure of the argument.

Example 3. From the verification results listed in Example 2, the agent can con-
struct the following arguments: ⟨−pv,¬(α1,α6)⟩, ⟨+pv,(α2,α3)⟩, ⟨−s f ,¬(α2,α3)⟩,
⟨+pv,(α2,α4,α5)⟩, ⟨+s f ,(α2,α4,α5)⟩ and ⟨−gc,¬(α2,α4,α5)⟩.

When we get to choose a plan to follow, there are conflicts between the alternatives
as they cannot be followed all at the same time. The conflicts are interpreted as attacks
between two ordinary arguments supporting different plans and one ordinary argument
and one blocking argument supporting and objecting to the same plan respectively in this
paper.

Definition 6 (Attacks). Given a set of ordinary arguments Ao and a set of blocking
arguments Ab,

• for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ attacks
⟨+vb,λb⟩ iff λa /= λb;

• for any ordinary argument ⟨+va,λa⟩ ∈ Ao and any blocking argument ⟨−vb,¬λb⟩ ∈
Ab,

* ⟨+va,λa⟩ attacks ⟨−vb,¬λb⟩ iff λa = λb;
* ⟨−vb,¬λb⟩ attacks ⟨+va,λa⟩ iff λa = λb.

The set of attacks over A are denoted asR.

It is obvious that our attack relation is mutual. It should be noticed that there is
no attack between two blocking arguments, as a blocking argument only functions as
blocking the conclusion of an ordinary argument but does not make a conclusion by
itself.

The attack relation represents conflicts between plans. However, the notion of attack
may not be sufficient for modeling conflicts between arguments, as an agent has his
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preference over the values that are promoted or demoted by different plans. In structured
argumentation frameworks such as ASPIC+ [13], an argument a can be used as a counter-
argument to another argument b, if a successfully attacks, i.e. defeats, b. Whether an
attack from a to b (on its sub-argument b′) succeeds as a defeat, may depend on the
relative strengths of a and b, i.e. whether a is strictly stronger than, or strictly preferred
over b′. For this paper, recall that an agent has a value system, which was defined as
a total pre-order over a set of values. We can then determine the preference over two
arguments with respect to value promotion and demotion based on the value system. The
notion of defeats combines the notions of attack and preference.

Definition 7 (Defeats). Given a set of ordinary arguments Ao and a set of blocking
arguments Ab, a set of attacksR over A and a value system V ,

• for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ defeats
⟨+vb,λb⟩ iff ⟨+va,λa⟩ attacks ⟨+vb,λb⟩ and va /≺ vb;

• for any ordinary argument ⟨+va,λa⟩ ∈ Ao and any blocking argument ⟨−vb,¬λb⟩ ∈
Ab,

* ⟨+va,λa⟩ defeats ⟨−vb,¬λb⟩ iff ⟨+va,λa⟩ attacks ⟨−vb,¬λb⟩ and va /≺ vb;
* ⟨−vb,¬λb⟩ defeats ⟨+va,λa⟩ iff ⟨−vb,¬λb⟩ attacks ⟨+va,λa⟩ and vb /≺ va.

The set of defeats over A based on an attack relation and a value system are denoted as
D(R,V). We write D for short if it is clear from the context.

In words, given mutual attacks between two arguments, the attack from the argument
with less preferred value to the attack from the argument with a more preferred value
does not succeed as a defeat. One might ask whether it is more convenient to combine
the notions of attack relation and defeat relation. We argue that two notions represent the
relation between two arguments from different perspectives, one for the conflicts between
plans and the other for the preferences over values. Because of that, defining these two
notions separately can make our framework more clear, even though technically it is
possible to combine them. It is obvious to see that our defeat relation can form a two-
length cycle in which two arguments have equivalent or the same values.

Proposition 1. Given two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈ Ao, ⟨+va,λa⟩ and
⟨+vb,λb⟩ form a two-length cycle iff λa /= λb and (va = vb or va ∼ vb). Given an ordi-
nary argument ⟨+va,λa⟩ ∈ Ao and a blocking argument ⟨−vb,¬λb⟩ ∈ Ab, ⟨+va,λa⟩ and
⟨−vb,¬λb⟩ form a two-length cycle iff λa = λb and (va = vb or va ∼ vb).

Proof. Proof follows from Definition 7 directly.

However, we have the result that our defeat relation obeys the property of irreflexiv-
ity and never forms any odd cycle.

Proposition 2. Given a set of arguments A, a defeat relation D on A never forms any
odd cycle.

Proof. According to Definition 7, in order for an argument a to defeat another argument
b, the value va that belongs to a must be not less preferred than vb that belongs to b. Since
an agent’s value system is a total pre-order over a set of values, arguments can only form
a cycle in which any two arguments are mutually defeated with the values involved are
equivalent or the same. So D on A never forms any odd cycle.
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Figure 3. An argumentation framework.

Proposition 3. Given a set of arguments A, a defeat relation D on A is irreflexive.

Proof. It is a special case of Proposition 2 for the number of arguments in the odd cycle
being one.

We are now ready to construct a Dung-style abstract argumentation framework with
ordinary arguments, blocking arguments and the defeat relation on them.

Definition 8 (Plan-based Argumentation Frameworks). Given a pointed value-based
transition system (V T,s) and a formula p ∈ Lprop as an agent’s goal, a plan-based ar-
gumentation framework over (V T,s) and p is a pair PAF = (A,D), where A is a set of
arguments and D is a defeat relation on A.

Example 4. The running example has three ordinary arguments and three blocking ar-
guments, and any two ordinary arguments with different plans are mutually attacked, and
any ordinary argument and blocking argument with the same plan are mutually attacked.
Suppose the agent has a value system as pv ≺ gc ≺ s f , which means that safety is more
important than keeping good condition, and keeping good condition is more important
than privacy. We then can see some of the attacks do not succeed as defeats. For example,
argument ⟨+pv,(α2,α4,α5)⟩ and argument ⟨−gc,¬(α2,α4,α5)⟩ are mutually attacked,
but since pv is less preferred than gc, only the attack from argument ⟨−gc,¬(α2,α4,α5)⟩
to argument ⟨+pv,(α2,α4,α5)⟩ becomes a defeat. For arguments ⟨+pv,(α2,α4,α5)⟩ and
⟨+pv,(α2,α3)⟩, since pv = pv, the mutual attacks between them succeed as mutual de-
feats. For the space limitation, we do not analyze all the defeats, which is depicted in Fig-
ure 3. Interestingly, argument ⟨−pv,¬(α1,α6) does not receive any defeats or defeat any
arguments not because pv is the most preferred value, but because there is no ordinary
argument with plan (α1,α6).

Given a plan-based argumentation framework PAF , status of arguments is evalu-
ated, producing sets of arguments that are acceptable together, which are based on the
notions of conflict-freeness, acceptability and admissibility. The well-known argumen-
tation semantics are listed as follows, each of which provides a pre-defined criterion for
determining the acceptability of arguments in a PAF [8].
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Definition 9 (Conflict-freeness, Acceptability, Admissibility and Extensions). Given
PAF = (A,D) and E ⊆A,

• A set E of arguments is conflict-free iff there does not exist a,b ∈ E such that
(a,b) ∈ D.

• An argument a ∈A is acceptable w.r.t. a set E (a is defended by E), iff ∀(b,a) ∈D,
∃c ∈ E such that (c,b) ∈ D.

• A conflict-free set of arguments E is admissible iff each argument in E is accept-
able w.r.t. E.

• E is a complete extension of PAF iff E is admissible and each argument in A that
is acceptable w.r.t. E is in E.

• E is the grounded extension of PAF iff E is the minimal (w.r.t. set inclusion) com-
plete extension.

• E is the preferred extension of PAF iff E is a maximal (w.r.t. set inclusion) com-
plete extension.

• E is a stable extension of PAF iff E is conflict-free and ∀b ∈A/E, ∃a ∈E such that
(a,b) ∈ D.

We use sem ∈ {cmp, pr f ,grd,stb} to denote the complete, preferred, grounded and
stable semantics, respectively, and Esem(PAF) to denote the set of extensions of PAF
under a semantics in sem. The following propositions characterize our argumentation
framework in terms of Dung’s semantics.

Proposition 4. Given PAF = (A,D), Epr f (PAF) = Estb(PAF).

Proof. Since our defeat relation D never forms an odd cycle by Proposition 2, which
means that PAF is limited controversial, each preferred extension of PAF is stable. De-
tailed proof can be found in [8].

Proposition 5. Given PAF = (A,D), if there exists an ordinary argument ⟨+va,λa⟩ such
that for all ⟨+vb,λb⟩ ∈ Ao and ⟨−vb,¬λb⟩ ∈ Ab it is the case that vb ≾ va and ⟨+va,λa⟩ is
not in any cycle, then Epr f (PAF) = Egrd(PAF).

Proof. Because vb ≾ va and ⟨+va,λa⟩ is not in any cycle, argument ⟨+va,λa⟩ does not re-
ceive any defeats. So the grounded extension is not an empty set. Suppose Epr f (PAF) /=
Egrd(PAF), which means that there are more than one preferred extensions. Since
⟨+va,λa⟩ is contained in the grounded extension, it should also be contained in each pre-
ferred extension. However, each preferred extension indicates a distinct plan, which will
be later proved by Proposition 6 and its implication. Contradiction!

The justification of optimal plans is then defined under various semantics in Defi-
nition 9. Similarly to [14], we write concl(⟨+v,λ ⟩) for the conclusion λ of an ordinary
argument, and Oplans(PAF,sem) for the set of conclusions of ordinary arguments from
the extensions under a specific semantics.

Definition 10 (Optimal Plans). Given PAF = (A,D), a set of optimal plans, written as
Oplans(PAF,sem), are the conclusions of the ordinary arguments within extensions.

Oplans(PAF,sem) = {concl(⟨+v,λ ⟩) ∣ ⟨+v,λ ⟩ ∈ E and E ∈ Esem(PAF)}
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We show that the results of our approach are consistent with the rationality of
decision-making through the following propositions. Firstly, all the accepted arguments
within an extension indicate the same plan.

Proposition 6. Given a plan-based argumentation framework PAF = (A,D) and an
extension E of PAF under a specific semantics as defined in Definition 9,

1. for any two ordinary arguments ⟨+va,λa⟩,⟨+vb,λb⟩ ∈E, it is the case that λa =λb;
2. for any ordinary argument ⟨+va,λa⟩ ∈ E and any blocking argument ⟨−vb,¬λb⟩ ∈

E, λa /= λb.

Proof. For any extension E under a specific semantics, it is required that all the argu-
ments in E should be conflict-free. 1. By Definition 7, we can derive two cases: either
there is no attack between these two arguments, or one argument attacks the other but
does not succeed as a defeat due to the preference between two values from the argu-
ments. For the former case, two arguments contain the same plan. For the latter case,
since any attack between two arguments is mutual, if an attack from argument ⟨+va,λa⟩
to argument ⟨+vb,λb⟩ fails to be a defeat due to the preference between two values from
the arguments, the attack from argument ⟨+vb,λb⟩ to argument ⟨+va,λa⟩ will succeed
to be a defeat. That means that the second case is impossible and only the first case
holds. Hence, the two arguments have the same plan. 2. We can prove in a similar way
that for any ordinary argument ⟨+va,λa⟩ ∈ E and any blocking argument ⟨−vb,¬λb⟩ ∈ E,
λa /= λb,

From that we can see, if there are multiple preferred extensions, then each of them
indicates a distinct plan. Secondly, our argumentation-based approach always selects the
plan through which the most preferred value gets promoted and does not select the plan
through which the most preferred value gets demoted.

Proposition 7. Given a plan-based argumentation framework PAF = (A,D), let va ∈Val
be a value such that for all ⟨+vb,λb⟩ ∈ Ao and ⟨−vb,¬λb⟩ ∈ Ab it is the case that vb ≾ va,
then an argument with value va is in a preferred extension. Typically, if it is not in a cycle,
then it is in the grounded extension.

Proof. Because vb ≾ va, according to Definition 7, an argument with va only gets defeated
by an argument with va ∼ vb or va = vb. In such a case, the defeats are mutual so ⟨+va,λa⟩
is self-defended. Thus, it is contained in a preferred extension. If it is not in a cycle,
which means that it is not self-defended, then it is in the grounded extension.

Because of the above two propositions, the agent can conclude to follow an opti-
mal plan to achieve his goal. Besides, the notion of optimal plans is defined as the set
of conclusions of ordinary arguments from the extensions, so the set of optimal plans
becomes empty if an extension does not contain any ordinary arguments. The following
proposition indicates the conditions for which the set of optimal plans is not empty.

Proposition 8. Given a PAF = (A,D), Oplans(PAF,sem) /=∅ iff there exists an ordinary
argument ⟨+va,λa⟩ such that it is not defeated by a blocking argument ⟨−vb,¬λb⟩ with
va ≺ vb.
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Proof. Having Oplans(PAF,sem) /= ∅ means that there is at least one extension which
contains at least one ordinary argument. ⇒: Suppose there does not exists an ordinary
argument ⟨+va,λa⟩ such that it is not defeated by a blocking argument ⟨−vb,¬λb⟩ with
va ≺ vb, which means that all the ordinary arguments (if exist) are defeated by a blocking
argument and not self-defended against a blocking argument. In such a case, there exists
a blocking argument that does not receive any defeats, which makes all the ordinary
arguments rejected. Contradiction!⇐: If there exists an ordinary argument such that it is
not defeated by a blocking argument or self-defended against a blocking argument, then
(1) the ordinary argument does not receive any defeats and thus it should be contained
in the grounded extension, or (2) the ordinary argument is in a cycle with a blocking
argument and thus it should be contained in a preferred extension, or (3) the ordinary
argument receives defeats from other ordinary arguments and thus there is always an
ordinary argument accepted. Hence, Oplans(PAF,sem) is not an empty set.

Example 5. The plan-based argumentation framework PAF can be represented as Fig-
ure. 3. Because

Epr f (PAF) =Egrd(PAF) = Estb(PAF) =

{{⟨+pv,(α2,α4,α5)⟩,⟨+s f ,(α2,α4,α5)⟩,

⟨−pv,¬(α1,α6)⟩,⟨−s f ,¬(α2,α3)⟩}}

and thus Oplans(PAF,sem) = {(α2,α4,α5)}, the agent can follow plan (α2,α4,α5) to
get to a pharmacy.

4. Related Work

Our approach is closely related to the value-based argumentation framework (VAF)
[2][1]. The differences are as follows: firstly, their framework allows us to reason about
what we should do given all the available actions, while our framework allows us to rea-
son about what we should do given all the available plans each of which is a sequence of
actions; secondly, in their framework informal arguments are constructed through asking
critical questions associated with an argument scheme and a transition system, while in
our framework agents construct formal arguments through checking formulas with re-
spect to the underlying transition system; thirdly, the aim of VAF (having an audience as
an element) is to explain different agents’ choices based on their social values, while the
aim of our paper is to design an approach for agents’ planning. Existing work combines
modal logic and argumentation in different ways. Proietti and Yuste-Ginel combines both
techniques to reason about the knowledge of arguments in a debate and its dynamics
[15], and Bulling etc. combine both techniques to reason about the abilities of coalitions
of agents and the formation of coalitions [16]. Both use modal logic as meta-language to
argumentation, while we use argumentation as meta-language to modal logic.

5. Conclusions

In this paper, we developed a logic-based framework that combines modal logic and ar-
gumentation for value-based practical reasoning. Modal logic is used as a technique to
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represent and verify whether a plan with its local properties of value promotion or demo-
tion can be followed to achieve an agent’s goal. Seeing a verification result as an argu-
ment and defining a defeat relation based on an attack relation and preference over values,
we then proposed an argumentation-based approach that allows an agent to reason about
his plans using the verification results. Thus, our framework not only offers an approach
for value-based practical reasoning with plans, but also makes a bridge between modal
logic and argumentation in terms of argument construction. In the future, we would like
to extend our framework by allowing an agent to have multiple goals instead of one
goal as we assumed, or taking the actions of other agents into account in the context
of multi-agent systems. More interestingly, we can study how autonomous agents are
properly aligned with human values through adding constraints to the decision-making
mechanism presented in this paper.
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