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Abstract. Assumption-based argumentation (ABA) is one of the most-studied for-
malisms for structured argumentation. While ABA is a general formalism that can
be instantiated with various different logics, most attention from the computational
perspective has been focused on the logic programming (LP) instantiation of ABA.
Going beyond the LP-instantiation, we develop an algorithmic approach to reason-
ing in the propositional default logic (DL) instantiation of ABA. Our approach is
based on iterative applications of Boolean satisfiability (SAT) solvers as a natural
choice for implementing derivations as entailment checks in DL. We instantiate the
approach for deciding acceptance and for assumption-set enumeration in the DL-
instantiation of ABA under several central argumentation semantics, and empiri-
cally evaluate an implementation of the approach.

Keywords. structured argumentation, assumption-based argumentation, default
logic, decision procedures, SAT, counterexample-guided abstraction refinement

1. Introduction

Assumption-based argumentation (ABA) [1,2] is a central approach to structured argu-
mentation [3,4,5]. ABA captures and generalizes different approaches default reason-
ing, constituting a general-purpose framework which can be instantiated for any formal
logic to support various different application settings. Derivations of conclusions from
assumptions via inference rules in the logic of choice give rise to arguments.

Arguably the most-studied ABA instantiation is the logic programming (LP) frag-
ment of ABA [1] in which arguments are derived with logic programming rules. From the
computational perspective, development of algorithmic approaches to central reasoning
problems, such as acceptance, in ABA has focused on the LP-instantiation [6,7,8,9,10].
In the LP-instantiation, derivations are computable in polynomial time, which implies
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that deciding acceptance in ABA is a computational problem contained in NP for various
argumentation semantics [11]. However, algorithmic approaches to reasoning in ABA
beyond the LP-instantiation, i.e., ABA instantiated with more expressive logics, and in
particular ones for which derivations may be hard to compute, are scarce. Addressing
this challenge, in this work we develop algorithms for reasoning in ABA instantiated for
propositional default logic (DL) [12,13], which we refer to as DL-ABA.

In DL-ABA, derivations of arguments require checking entailment (coNP). This im-
plies that reasoning about acceptance is beyond the first level of the polynomial hierar-
chy [11]. The need for entailment checking suggests using Boolean satisfiability (SAT)
solvers [14] as a basis for developing approaches to reasoning in DL-ABA. Indeed, we
employ incremental SAT solving for developing an approach that allows for deciding
acceptance and the enumeration of assumption-sets under several central argumentation
semantics. We provide an implementation of the approach and a first empirical evalua-
tion of its scalability. Although there have been earlier developments for computing ex-
tensions in DL [15,16,17,18] which in particular corresponds to computing extensions
under stable semantics in DL-ABA, to our best understanding our approach presented is
the first in its generality for DL-ABA.

2. Preliminaries

We review background on assumption-based argumentation (ABA) [1,2] with proposi-
tional default logic (DL) [12] as the underlying deductive system.

The first ingredient for ABA is a deductive system (L ,R). For our purposes L is
a set of propositional formulas and R a set of rules of the form r = a0← a1, . . . ,an with
ai ∈ L . We say that a0 is the head of the rule (head(r) = a0) and the set {a1, . . . ,an}
is the body (body(r) = {a1, . . . ,an}). A sentence a ∈ L is derivable from A ⊆ L (in
symbols A �R a) if either a ∈ A, or there is a sequence of rules (r1, . . . ,rn) from R s.t.
head(rn) = a and body(ri)⊆⋃

j<i head(r j)∪A for 1≤ i≤ n; that is, each body element
of rules must be present either in A or as heads of previous rules in the sequence. We omit
subscript R when clear from context. We assume that (Lp,Rp) is a deductive system
for propositional logic, i.e., Lp is the set of all propositional formulas and A �Rp a iff
A |= a (i.e., there is a derivation via Rp iff classical semantic entailment holds; one may
select any sound and complete inference system for classical propositional logic as Rp).

A propositional default theory is a pair T = (W,D), where W ⊆ Lp and D is a
set of default rules of the form r = c← a,Mb1, . . . ,Mbn with c,a,b1, . . . ,bn ∈Lp and
Mbi /∈Lp (Mbi are not propositional formulas). We refer to c as the conclusion, to a as
the prerequisite, and to {Mb1, . . . ,Mbm} as the justifications of the default rule r. We use
the shorthands M(r) = {Mb1, . . . ,Mbn}, prereq(r) = a and conc(r) = c. Intuitively, Mb
is interpreted as ¬b can not be proven and thus it is consistent to assume b.

We directly state ABA instantiated with propositional default logic.

Definition 1. Let (W,D) be a propositional default theory. The assumption-based argu-
mentation framework (ABF) corresponding to (W,D) is F = (L ,R,W,A , ) with

• L = Lp∪{Mα | α ∈Lp},
• R = Rp∪D,
• A = {Mb |Mb occurs in some default rule in D, b ∈Lp}, and
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• a function mapping A to L defined by Mb = ¬b for all Mb ∈A .

An Mb ∈ A is an assumption (in a given ABF). For brevity, as (W,D) uniquely
determines the corresponding ABF and as we focus on ABFs corresponding to propo-
sitional default theories, we identify (W,D) with the corresponding ABF F and write
F = (W,D) referring to the ABF corresponding to (W,D).

Given an ABF, derivability from a set of assumptions A is defined by W ∪A �R a,
i.e., a is derivable from W and the assumption set (note that R includes default rules from
the default theory). A set of assumptions A⊆A attacks a set of assumptions B⊆A iff
W ∪A �R Mb for some b ∈ B, or equivalently, W ∪A �R ¬b; that is, a set of assumptions
is a set of justifications (which are “assumed”), and A attacks B, if one can derive the
negation of some justification in B from the propositional theory W with all default rules
whose justifications are met by A. For a singleton B = {b} we say that A attacks b.
Note that an atom b may be entailed although Mb is not, as assumptions are not part of
the propositional vocabulary. In ABA terminology, an ABF is flat if assumptions do not
occur as heads of rules, as is the case for DL-ABA.

A set of assumptions A is conflict-free if A does not attack A. A defends the assump-
tion set B if A attacks each assumption set C that attacks B.

Definition 2. For a given ABF F = (W,D) and a conflict-free set of assumptions A⊆A ,
we say A is

• admissible (in F) if A defends itself,
• complete (in F) if A is admissible and contains every assumption set it defends,
• grounded (in F) if A is ⊆-minimally complete, and
• stable (in F) if A is conflict-free and attacks every assumption a ∈A \A.

A useful equivalent characterization for grounded semantics is by utilizing FF for
an ABF F = (W,D), defined by FF(S) = {Mb ∈A | {Mb} defended by S} for an S ⊆
A . The grounded assumption set is then the (unique) least fixed point of FF [1]. There is
a direct correspondence between Reiter’s default extensions [12] and stable assumption
sets: E is a default extension of (W,D) iff E ′ is a stable assumption set of F = (W,D)
with E = {a |W ∪E ′ � a}∩Lp [1]. An atom x ∈L is credulously (resp., skeptically)
accepted under semantics σ ∈ {adm,com,grd,stb} (for admissible, complete, grounded,
stable) if x is derivable from some (resp., all) σ -assumption set(s).

Example 1. Let W = (¬b∨¬a)∧(¬b∨¬c) and D contain four default rules: (r1 = a←
Ma), (r2 = b←Mb), (r3 = c←Mc), and (r4 = d← a∧b,Md). For the corresponding
ABF, L and R are together an extension of a propositional deductive system with de-
faults and the assumptions A = {Ma,Mb,Mc,Md}. Contrariness is given by Mx = ¬x
for x ∈ {a,b,c,d}. The four singleton assumption sets {Mx} are all conflict-free. For
instance, ¬a is not derivable from W and Ma, i.e., W ∪{Ma} �� ¬a. Using only rules
from Rp (representing classical propositional entailment), ¬a cannot be derived from
W ∧Ma. However, Ma can be derived and thereby via r1 the atom a. Thus W ∪{Ma} � a.
Moreover, ¬b is derived via the first clause in W. Thus {Ma} attacks {Mb}. Symmetri-
cally, {Mb} attacks {Ma}. Only assumption sets including Mb derive ¬a. Thus {Ma}
attacks all assumption sets that attack {Ma}, indicating that {Ma} is admissible. {Md}
does not attack any other set and is not attacked, as d does not occur anywhere outside
r4. As all other sets are attacked, {Md} is the (unique) grounded assumption set. A com-
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plete and stable assumption set is {Ma,Md}. It holds that a is credulously accepted un-
der complete semantics, since the complete assumption set {Ma,Md} derives a. It holds
that {Mb,Md} (another complete assumption set) does not derive a. Thus a is not skep-
tically accepted. Finally, rule r4 does not trigger: its prerequisite is never entailed by a
conflict-free assumption set (a∧b is unsatisfiable with W).

The complexity of ABA instantiated with propositional default logic was investi-
gated in [13,11,19]. For flat ABA instantiated with a deductive system whose derivation
complexity is in coNP, we have ΣP

2 -completeness for credulous reasoning under admissi-
ble and stable semantics (and since credulous acceptance under admissible and complete
semantics coincides [2], also for complete semantics). Skeptical acceptance under admis-
sibility is coNP-complete and Π2

P-complete under stable semantics. The complexity of
reasoning under grounded semantics (and skeptical acceptance for complete semantics)
is in Δ2

P (i.e., decidable via a deterministic polynomial time algorithm with access to an
NP oracle). Furthermore, the complexity of credulous and skeptical reasoning in propo-
sitional default logic (i.e., deciding whether a formula is entailed by one or all extensions
according to Reiter [12]) coincides with the complexity of stable semantics [13].

3. A SAT-Based Approach to Deciding DL-ABA

Our SAT-based approach to deciding DL-ABA under different argumentation semantics
is based on counterexample-guided abstraction refinement [20] which has earlier proven
successful in the realm of abstract argumentation (see, e.g., [21,22]). For high-level intu-
ition, our algorithms work by iteratively first “guessing” with a SAT solver a candidate
assumption set A, and then employing a SAT solver to determine the set C of conclusions
of default rules in D that are applicable by A. After this, we employ a SAT solver to
check if A conforms to the semantics of interest (together with a query, in case of ac-
ceptance problems) based on C. If this is the case, the search terminates. If not, a coun-
terexample witnessing this fact is obtained, and we proceed to the next iteration to guess
another candidate assumption set A. The counterexamples obtained are used for further
restricting (or “refining”) the set of candidate assumption sets that will be considered in
the forthcoming iterations, depending on the semantics at hand.

We will continue by describing the approach in more detail, including how the can-
didate assumption sets are guessed, conclusions determined, counterexamples obtained,
and refinements made. As convenient, we will treat a set of propositional formulas inter-
changeably as the conjunction of the formulas the set contains.

The following observation is central to our approach. For a given ABF F = (W,D),
we define a function that, given a subset S⊆A of assumptions, iteratively constructs the
set of conclusions of defaults in D that are applicable by S. Let derivedS(X) = {c | (c←
a,Mb1, . . . ,Mbn) ∈ D where Mb1, . . . ,Mbn ∈ S and W ∪{∧c′∈X c′} |= a}. For a given S,
it holds that derivedS is ⊆-monotone; this follows by monotonicity of classical propo-
sitional entailment |=. Further, a unique least fixed-point exists and can be computed
by iteratively applying derivedS starting with X = /0, i.e., derivedi

S( /0) for some i ≥ 0
reaches the least fixed point. This fact can be directly inferred since D is assumed to
be finite: derivedi

S( /0) reaches some fixed-point after some number of iterations, and the
result of each iteration must be a subset of each fixed-point of derivedS (e.g., it holds that
derivedS( /0) is part of each fixed-point, and then also derived1

S( /0) must be, and so on).
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Proposition 1. Suppose an ABA framework F = (L ,R,W,A , ), a set of assumptions
A⊆A and a sentence x ∈L . Let X be the least fixed point of derivedA and C =

∧
c∈X c.

It holds that x is derivable from A in F if and only if either x ∈ A or the propositional
formula W ∧C∧¬x is not satisfiable.

Proof. We first show that y ∈ X implies that y is derivable from A in F via induction on
derivedi

A( /0) with i ≥ 1. For the base case i = 1, since y ∈ derivedA( /0), there is a rule
y← a,Mb1, . . . ,Mbn with {Mb1, . . . ,Mbn} ⊆ A and W |= a. Thus there is a derivation of
a from W in F . For the induction step, assume that y ∈ derivedi

A( /0) implies y is derivable
from A in F . We need to show that z ∈ derivedi+1

A ( /0) implies z is derivable from A in
F . Then there is, again, a rule z← a,Mb1, . . . ,Mbn with {Mb1, . . . ,Mbn} ⊆ A. It must
hold that a is entailed by W ∧∧c∈derivedi

A( /0) c, implying that there is a derivation in F for
a from A and, in turn, also for z. Thus, y ∈ X implies y is derivable from A in F . Now
assume that W ∧C∧¬x is not satisfiable, and thus W ∧C |= x. Each conjunct c of C is a
subset of X and thus, as shown, derivable from A. Therefore x is derivable from A in F .

Suppose x is derivable from A in F . Then there is a sequence of rules in R s.t. each
body element of each rule is either in A or the head of a rule previously in the sequence.
We can assume that the derivation is of finite length, since there are only finitely many
default rules, and a derivation in a sound and complete inference system in propositional
logic can be assumed to be only requiring finitely many steps. Consider again an induc-
tive line of reasoning on the length of the derivation. The base case is straightforward:
the body of the first rule is in A or W , and, in turn, the head is entailed by W ∧C. Assume
that up to i each head of preceding rules is entailed by W ∧C. Independently of the rule
being a default, the body of the rule is either entailed by W ∧C (from previous rules and
induction hypothesis) or in A, implying the claim.

We continue by detailing our algorithmic approach. Apart from W , central to the
approach is a propositional formula φ over all of the assumptions Ma of the framework in
question, used to guess candidate assumption sets. Initially φ is the empty formula, and
φ is expanded at each refinement step conjunctively with further propositional clauses.
Following Proposition 1, W is used to decide derivations and thus attacks from any given
assumption set. In the following, for a truth assignment I we let IA = {Ma |Ma∈A ∩ I}
to denote the set of assumptions that are assigned to true by I.

Algorithm 1 gives the skeleton for credulous reasoning under stable, admissible and
complete semantics. Recall that φ is a conjunction of refinement clauses ruling out prov-
ably incorrect candidate solutions (initially the empty formula). A candidate assumption

Algorithm 1 Credulous reasoning: skeleton for stable, admissible and complete
Require: ABA framework (W,D) and a query q ∈Lp
Ensure: return YES if q is credulously justified under given semantics, NO otherwise

1: Let φ be an empty propositional formula over A
2: while I← Sat(φ) do

3: C← Concluded via Defaults(IA )
4: if CF Derive Query(IA ,C,q) then

5: if ¬Counterexample(I,C) then return YES
6: φ ← Refine(I)
7: return NO
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Algorithm 2 Concluded via Defaults(A)
Require: A⊆A
Ensure: return the conclusions of the default rules that are applicable by A.

1: X ←{r ∈ X |M(r)⊆ A}
2: C←�
3: changes← true

4: while changes do

5: changes← false

6: X ′ ← X
7: while X ′ �= /0 do

8: testrule← pop(X ′)
9: if I←Sat(W ∧C∧¬prereq(testrule)) then X ′←X ′ \ {r ∈ X | ¬prereq(r) ∈ I}

10: else

11: C←C∧ conc(testrule)
12: Remove testrule from X
13: changes← true

14: break

15: return C

set IA is guessed by constraining the solution space with the refinement clauses. As ex-
plained further in what follows, the following subroutines are used in the algorithms.
Here C is the least fixed point of derivedA for assumption set A (Algorithm 2).

• notDerivable(C,q): invokes a SAT solver on W ∧C∧ (¬q), true iff q is not deriv-
able from A.

• ExistUndefeated(B,C): invokes a SAT solver on W ∧C∧∨Ma∈B a, true iff there is
an assumption in B not attacked by A.

• Attacked(B,C): returns the set of assumptions in B attacked by A (Algorithm 4).

On Line 3 of Algorithm 1, the rules applicable by IA are determined, and the con-
clusions of those rules are conjoined as C. Line 4 checks if IA is conflict-free and the
query is derived from IA ; both checks use W with every element of C enforced to hold. If
those checks succeed, the existence of a counterexample is checked on Line 5. The form
of the counterexample depends on the semantics as detailed later on. If a counterexample
is not found, IA is a σ -assumption set that derives q. Otherwise a refinement is added,
again depending on semantics; see below.

The details of the subroutines Concluded via Defaults, CF Derive Query, and At-
tacked are provided as Algorithms 2, 3 and 4, respectively. Given an assumption set A,
Algorithm 2 computes the least fixed-point of derivedA (recall Proposition 1). The rules
whose justifications is a subset of A are collected to X (Line 1). C is a conjunction over

Algorithm 3 CF Derive Query(I,C,q)
Ensure: return YES if IA is conflict-free and derives q

1: if Attacked(IA ,C) �= /0 or notDerivable(C,q) then

2: φ ← Refine(I)
3: return NO
4: return YES
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Algorithm 4 Attacked(B,C)

Ensure: return the elements of B that are attacked by A
1: X ←{x |Mx ∈ B}
2: while X not empty do

3: if I← Sat(W ∧C∧∨x∈X x) then X ← X \ I else return {Mx | x ∈ X}
4: return {Mx | x ∈ X}

the set of conclusions of rules in X that are in the deductive closure; initially C is empty
(Line 2). In the loop starting on Line 4 it is iteratively checked for rules in X if their
prerequisite is entailed by W ∧C. If not, all rules whose prerequisite occurs negatively
in the found assignment I are removed from consideration for this loop, because none of
those prerequisites are entailed (Line 9). If a rule is entailed, the conclusion of this rule is
added to C (Line 11). In this case the rule is removed from further consideration as it is
already determined to be applicable (Line 12). This rule being applicable changes what
W ∧C entails, and thus the algorithm will not terminate (Line 13). Instead, each rule not
already found to be applicable is considered in the next iteration. This is continued until
no more prerequisites of rules in X are entailed.

Algorithm 3 checks if the candidate is conflict-free and derives the query. Concretely
it returns NO and applies the appropriate refinements if there is an attack from the can-
didate to itself, checked with Algorithm 4, or the query is not entailed by W ∧C. Given
assumption sets A and B, and the conclusions of default rules applicable by A, Algo-
rithm 4 considers the contents of assumptions in B (Line 1), and iteratively removes from
consideration those contents of B whose negation W ∧C does not entail, as this implies
that A does not derive them. The rest of the assumptions are attacked by A. If the call
on Line 3 is unsatisfiable, then the set of attacked assumptions returned on Line 3 is not
empty, otherwise the empty set is returned on Line 4.

3.1. Counterexamples

Counterexample(I,C) is defined as follows for the individual semantics. These subrou-
tines determine if a conflict-free assumption set A is a σ -assumption set under stable,
admissible, or complete semantics, respectively. They employ W and C (the least fixed
point of derivedA) as computed in Algorithm 2.

• Stable: return ExistUndefeated(A \ IA ,C). That is, it is checked whether there is
an assumption that is not in the current candidate A and not defeated by it.

• Admissibility: return true if Attacked(IA ,C′) �= /0, where U = A \ Attacked(A \
IA ,C), and C′ = Concluded via Defaults(U). That is, collect all assumptions U
not defeated by A, and then check that U does not defeat A.

• Complete: with U and C′ as above, return true if either Attacked(IA ,C′) �= /0 or
ExistUndefeated(A \ IA ,C′) is true. That is, A is not complete if it is not admis-
sible or there is an assumption outside A that is not attacked by the assumptions
that A does not attack.

3.2. Refinements

The details of the refinement step made when a counterexample is found depend on the
semantics at hand. In particular, we make use of the observations detailed in Proposition 2
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to obtain in cases stronger refinements—ruling out more than one candidate from further
consideration at forthcoming iterations of Algorithm 1 than what is be achieved by the
so-called trivial refinement, consisting of ruling out only the particular candidate for
which a counterexample is obtained from further consideration.

Proposition 2. Given an ABA framework F = (L ,R,W,A , ) and an assumption set
A⊆A , it holds that

1. if A is not conflict-free, then no A′ ⊇ A is conflict-free,
2. if A is conflict-free but not stable, then no A′ ⊆ A is stable,
3. if A does not derive x, then no A′ ⊆ A derives x, and an A′ that derives x must

cover the justifications of at least one default rule not covered by A,
4. if A derives x, then all A′ ⊇ A derive x, and
5. if A is conflict-free but not admissible, then no superset of the assumptions not

defeated by A is admissible.

Proof. Item 1: the same self-attack is present in A′ ⊇ A as in A. For Item 2, suppose that
A is conflict-free but not stable, implying that there is an a∈A \A that A does not attack.
Derivability is ⊆-monotone, implying that a is not attacked by any subset of A either.
The first part of Item 3 follows from the same observation for an A that does not derive
x. The second part follows from the fact that to increase what A derives, one needs to
apply additional default rules. Item 4: the same derivation for x exists from any A′ ⊇ A
than from A. Lastly, for Item 5 assume that A is conflict-free but not admissible, implying
that there is an attack from the set U of assumptions not defeated by A to A. Since A is
conflict-free, A⊆U . Thus U is self-defeating and the claim follows from Item 1.

Refine(I) is defined as follows for the different cases of a candidate being discarded,
based on Proposition 2. Here U is the set of assumptions not defeated by IA .

Refinement Required Optional
A is not conflict-free

∨

Ma∈IA
¬Ma

Query not deriv. from A (cred.)
∨

Ma∈A \IA
Ma

∨

r∈D,
M(r)�I

∧

Mbi∈M(r)
Mbi

Query deriv. from A (skept.)
∨

Ma∈IA
¬Ma

A is not stable
∨

Ma∈A \IA
Ma

A is not admissible
∨

Ma∈A \IA
Ma∨ ∨

Ma∈IA
¬Ma

∨

Ma∈U
¬Ma

A is not complete
∨

Ma∈A \IA
Ma∨ ∨

Ma∈IA
¬Ma

The required clauses for admissible and complete simply rule out the current can-
didate. We also list optional clauses for a query not being derived from the candidate
for credulous reasoning and the candidate not being admissible. The optional clauses are
not neceessary for correctness, but are potentially useful for restricting the remaining
candidate space further towards earlier termination.
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Algorithm 5 Acceptance under grounded
Require: ABA framework F = (W,D) and query q ∈Lp
Ensure: return YES if q is credulously justified in F under grounded, NO otherwise

1: S← /0
2: while true do

3: C← Concluded via Defaults(S)
4: U ←A \Attacked(A ,C)
5: C′ ← Concluded via Defaults(U)
6: defended←A \Attacked(A \S,C′)
7: if defended is empty then break else S← S∪defended
8: return ¬notDerivable(C,q)

3.3. The Special Case of Grounded Semantics

Algorithm 5 for grounded semantics differs from the other semantics. Here we rely on
the fact that DL-ABA frameworks are flat and that the grounded assumption set is the
least fixed point of FF(S) = {Mb ∈ A | {Mb} defended by S} for an S ⊆ A . In other
words, the grounded assumption set can be iteratively build in the set S, initially empty,
by iteratively adding to it all assumptions defended by it. More concretely, on Line 3 the
conclusions of rules applicable by A are identified, and on Line 4 the set of assumptions
U not defeated by S is identified. Similarly, on Lines 5 and 6 the conclusions of rules
applicable by U and assumptions defended by S are identified; any assumption that is
not attacked by U is defended by S, because S counters all attacks not originating from
U . If S defends no assumptions outside of itself, S is the least fixed point of the defense-
operator, and thus the grounded assumption set (Line 7). Finally, q is accepted under
grounded semantics if and only if it is derivable from S (Line 8).

3.4. Skeptical Reasoning and Enumeration

Algorithm 1 requires only minor modifications for deciding skeptical acceptance by
checking for the existence of a counterexample instead of set deriving the query. In par-
ticular, negate the entailment check in Algorithm 3 and invert the answer given by Algo-
rithm 1. Then the subroutine returns NO if the query is entailed by W ∧C, since then the
candidate derives the query and thus can not constitute a counterexample. To enumerate
all σ -assumption-sets, remove the entailment check of Algorithm 3 and when a solution
is found, instead of terminating collect the solution and continue by calling Refine(I).

To query for an assumption Mb instead of member of Lp, it suffices to initialize φ
with the assertion that Mb holds and omit the entailment check in Algorithm 3.

As there is guaranteed to be a unique grounded assumption set in a flat ABA frame-
work (including any DL-ABA framework), Algorithm 5 answers skeptical acceptance as
such. To enumerate (more precisely, return the single) grounded assumption set, S should
be returned on Line 8 instead of performing the entailment check.

4. Experiments

We provide first empirical results on the runtime performance of our SAT-based approach
to DL-ABA, focusing on credulous and skeptical reasoning. We implemented the algo-
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rithms (available at https://bitbucket.org/coreo-group/satfordl-aba) using
the PySAT Python interface [23] and Glucose 3 [24] as the SAT solver. We were unable
to run earlier systems [15,16,17,18] for finding extensions in DL (specifically for find-
ing stable extensions in DL-ABA) for a comparison due to unavailability and compila-
tion issues. The experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core 64-GB
machines with CentOS 7 under a per-instance 600-s time and 16-GB memory limit.

For benchmarks, we randomly sampled a set of 400 CNF formulas from a large set
of real-world SAT instances originally used for benchmarking iterative SAT-based algo-
rithms for the beyond-NP problem of backbone computation [25]. These CNF formulas
can be considered suitably challenging for the purpose of our evaluation. For each CNF
formula, we chose one literal uniformly at random from the set of positive and negative
instances of all variables occuring in the formula, and added default rules to obtain ABFs.
Specifically, for each CNF formula, we generated 12 ABFs for a total of 4800 instances,
with a ∈ {20,50,100,200} assumptions, each of whose content was randomly selected
from the literals in the CNF, and d ∈ {100,200,400} default rules per framework. Each
rule had one literal selected uniformly at random as its prerequisite and conclusion, re-
spectively, and from one to five assumptions as its justifications, with both the amount
and identities of the assumptions selected uniformly at random.

Table 1 gives the number of timeouts and mean runtimes over solved instances wrt.
the number of assumptions and rules for the different reasoning tasks for credulous rea-
soning under stable, admissible, complete and grounded semantics, and for skeptical
reasoning under stable semantics.2 Note that these results are obtained without using
the optional refinements for credulous reasoning and admissible semantics (recall Sec-
tion 3.2). Acceptance under grounded semantics appears the easiest to solve, likely due
to the fact that in this algorithm, unlike for the other semantics, we do not need to “guess”
assumption sets, but instead build the grounded set iteratively. Acceptance under stable
semantics appears harder to solve compared to the other second-level problems, which
fits the intuition that there are fewer stable sets, making it harder to find a suitable one.
Performance on skeptical acceptance under stable semantics is very similar to credulous
acceptance, and likewise for performance under admissible and complete semantics for
credulous reasoning. For the semantics other than grounded, there is a clear increase in
difficulty of the instances as the number of assumptions and defeasible rules, respec-
tively, increases. For example, for all parameters combinations with at least 100 assump-
tions, our current implementation timed out on over half of the instances, suggesting that
there would be room for further runtime improvements as well as for developing further
understanding on what makes individual instances hard to solve.

Figure 1 shows the impact of the number of assumptions on runtime performance
and (in the left side plot) the effect of the optional credulous reasoning refinement under
stable semantics. Interestingly, the optional refinement clauses appear to degrade run-
time performance, especially for instances with 50 assumptions. For a possible explana-
tion, note that while the number of candidates that do not derive the given query is much
lower when using the optional refinement, there are in turn more candidates that fail the
other criteria (conflict-freeness and stability). Hence the number of iterations may even
increase when using the optional refinements. On the other hand, the optional refinement

2Skeptical reasoning under admissible semantics is relatively easy as it reduces to checking if the empty
assumption set derives the query. Skeptical reasoning under complete semantics coincides with acceptance
under grounded semantics. Credulous reasoning under admissible and complete semantics also coincide.
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Table 1. Detailed runtime results. There are a total of 400 instances per each combination of |A | and |D|.

#timeouts (mean runtime over solved instances (s))

|A | |D| stb cred adm cred com cred grd accept stb skept

100 20 (55.5) 29 (50.8) 28 (52.6) 9 (11.0) 22 (54.6)
20 200 65 (67.9) 66 (55.1) 65 (59.4) 12 (15.7) 66 (62.2)

400 97 (77.9) 88 (66.3) 92 (60.2) 10 (15.9) 96 (71.3)

100 115 (113.0) 108 (83.5) 108 (84.1) 13 (14.7) 118 (117.3)
50 200 200 (107.8) 180 (57.2) 180 (58.6) 8 (17.0) 197 (111.4)

400 264 (48.8) 223 (26.9) 225 (21.6) 13 (19.5) 263 (56.5)

100 240 (101.6) 201 (51.7) 201 (55.4) 12 (16.4) 238 (108.8)
100 200 285 (61.2) 226 (27.5) 228 (24.4) 14 (18.8) 281 (61.9)

400 299 (32.3) 235 (15.3) 235 (16.9) 12 (24.1) 301 (32.2)

100 293 (45.3) 229 (25.4) 231 (24.2) 13 (21.5) 297 (37.6)
200 200 312 (8.4) 239 (7.0) 239 (7.9) 16 (20.7) 310 (24.8)

400 312 (13.5) 239 (11.0) 240 (12.9) 16 (20.9) 316 (16.7)

clauses for admissibility seem to slightly improve performance on admissible and com-
plete semantics, allowing for solving 1 and 3 more instances, respectively. Figure 1(right)
shows that instances with more default rules are generally harder to solve under complete
and stable semantics (we omit here admissible due to similar performance to complete
and grounded due to the relative easiness of the task).

5. Conclusions

We developed an algorithmic approach, based on iterative applications of Boolean sat-
isfiability (SAT) solvers, to reasoning in ABA instantiated with propositional default
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Figure 1. Left: credulous reasoning under stable semantics with and without the optional refinement clauses.
Right: credulous reasoning under complete and stable semantics. 1200 instances for each variant.
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logic (DL). We detailed instantiations of the approach for deciding acceptance and for
assumption-set enumeration in the DL-instantiation of ABA under several central argu-
mentation semantics. We also provided an implementation of the approach which to the
best of our understanding is the first system in its generality targeted at the DL instantia-
tion of ABA, and empirically evaluated its potential.
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