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Abstract. Many structured argumentation approaches proceed by constructing a
Dung-style argumentation framework (AF) corresponding to a given knowledge
base. While a main strength of AFs is their simplicity, instantiating a knowledge
base oftentimes requires exponentially many arguments or additional functions in
order to establish the connection. In this paper we make use of more expressive ar-
gumentation formalisms. We provide several novel translations by utilizing claim-
augmented AFs (CAFs) and AFs with collective attacks (SETAFs). We use these
frameworks to translate assumption-based argumentation (ABA) frameworks as
well as logic programs (LPs) into the realm of graph-based argumentation.
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1. Introduction

Argumentation structures often arise from instantiating knowledge bases and identify-
ing their relevant conflicts. The representation of knowledge bases in terms of graph-
based argumentation formalisms has several advantages. First, they provide an intuitive
and user-friendly way for conflict-representation due to their graphical design. Second,
the uniform representation allows to compare different, seemingly unrelated knowledge
bases and helps to identify their similarities. Various kinds of knowledge bases and appli-
cations lead to the invention of several tailor-made argumentation formalisms, each with
their own advantages and disadvantages. In formal argumentation, Abstract Argumenta-
tion due to Dung [1] serves as a common denominator for many of these formalisms.
Popular extensions of Dung’s original framework incorporate for example propositional
acceptance conditions [2], assumptions [3], claims [4], or collective attacks [5]. At first
glance, these formalisms seem incompatible due to their focus on seemingly entirely dif-
ferent features. In an effort to relate selected formalisms, researchers singled out pairs of
formalisms and provided translations for the respective cases. For the classical Dung se-
mantics, i.e., for complete, preferred, stable, and grounded semantics (com, pref, stb, grd),
semantics-preserving translations have been successfully established in many cases.

In this work, we take a step back and compare a variety of argumentation for-
malisms, namely Assumption Based Argumentation (ABA) [3], Claim-Augmented
Frameworks (CAF) [4], and Argumentation Frameworks with Collective Attacks
(SETAF) [5]. Moreover we consider the closely related Normal Logic Programs (LP) and
the restricted atomic LPs [6] (we expect readers to enjoy this work the most if they are al-
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Figure 1. Overview of existing and novel transformations. Novel translations between ABA and CAFs are
given in [a] Def. 3.6 and [b] 3.9; we present two translations relating ABA and SETAFs, cf. [c] Def. 3.13 and
[d] 3.17; translations between [e] SETAFs and LP are in Section 4.2; and for [f] CAFs and LPs by Def. 4.3.

ready familiar with some of these formalisms). There already exist semantics-preserving
translations between several classes of the aforementioned formalisms. Caminada and
Schulz [7] provide a translation between ABA and LP and vice versa. In [8,9], the corre-
spondence between well-formed CAFs and SETAFs has been settled. All of these men-
tioned translations preserve complete, stable, and preferred models (extensions).

If we furthermore take the well-investigated relation between Abstract Dialectical
Frameworks (ADF) [2] and LPs [13,14] as well as to SETAFs, respectively [10,11,12],
into account and collect all available results, we obtain the following insight: (classes of)
ABA frameworks, LPs, ADFs, SETAFs, and CAFs can all be viewed, to some extent,
as different sides of the same (pentagonal) coin. We summarize this insight in Figure 1.
We note that not all translations consider all instances of the domain; e.g., the translation
from CAFs to SETAFs restricts to so-called well-formed CAFs; also, Dvorik et. al [10]
as well as Alcantara and Sa [11] focus on attacking (support-free) ADFs. Likewise, the
image of the translation often do not cover all instances of the target formalism, e.g.,
Polberg [12] translates SETAFs into attacking ADFs and Caminada and Schulz [7] map
LPs to a sub-class of ABA frameworks. As one can verify by following the directed
arrows, there exists semantics-preserving rewriting methods between (classes of) all of
these formalisms. While this existential statement suffices to establish a theoretical cor-
respondence it is hardly of practical use for translating, e.g., ABA instances to CAFs
(this concrete example would require the application of four different translations). From
a theoretical point of view, one would have to comprehend several steps through various
different formalisms, thereby missing the observation that there are immediate transla-
tions which preserve the structure quite well, as we will establish in this paper. For exam-
ple the CAF obtained from an ABA framework is natural and can be constructed directly,
and the role of the additional claims becomes clear immediately.

The paper is organized as follows. In Section 3 we focus on the intertranslatabil-
ity of ABA, CAFs, and SETAFs. We show how an ABA framework naturally induces a
CAF which preserves the structure of the knowledge base due to the flexible handling of
claims. Moreover, we explore the advantageous features of SETAFs which yield a rep-
resentation that requires fewer arguments. We will show that if one is solely interested
in the underlying assumptions, SETAFs yield impressively concise representations. In
Section 4 we discuss the close relation between atomic LPs, CAFs, and SETAFs, pro-
vide natural pairwise translations and demonstrate their compatibility. Along the way,
we show that the instantiation procedure [15] (i.e. constructing arguments from a general
LPs) can be bridged by first making the LP atomic.

We omit proofs in the present paper; full proofs are made available at https://www.
dbai.tuwien.ac.at/research/report/dbai-tr-2022-123.pdf.
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2. Background

We recall the necessary background for AFs since they constitute our main underlying
formalism. The other formalisms will be introduced on the fly. An argumentation frame-
work (AF) [1] is a directed graph (A, R) where A is a finite set of arguments and R C AxA
the attack relation. An argument x (set E CA) attacks y if (x,y) € R (some z € E attacks y).
We write Ef = {a € A | E attacks a} and Ex = {a € A| (a,b) € R,b € E}, and for short
xp = {x}}, xg = {x}x; we omit subscript R if it is clear from the context.

A set E C A is conflict-free in F = (A,R) iff (x,y) ¢ R for all x,y € E; E defends
an argument x if E attacks each attacker of x. A conflict-free set E is admissible in F
(E € adm(F)) iff it defends all its elements. A semantics © is a function which returns
a set of subsets of A. These subsets are called o-extensions. In this paper we consider
so-called complete, grounded, preferred, and stable semantics (abbr. com, grd, pref, stb).

Definition 2.1. Let F = (A,R) be an AF and E € adm(F). We let E € com(F) iff E
contains all arguments it defends; E € grd(F) iff E is C-minimal in com(F); E € pref(F)
iff E is C-maximal in com(F); E € stb(F) iff E¥ = A\ E.

Throughout the paper we will frequently use the notion of a hitting set: Let .# be a
set of sets. We call JZ a hitting set of A if 7 NM # 0 foreach M € 4. By HSpjn (M)
we denote the C-minimal hitting sets of .#. We will make use of the following result.

Lemma 2.2 ([16]). Let X = {Xi,...,X,} be a set of sets with X; £ X; for i # j. Then
HSmin(HSmin(X)) = X.

3. Intertranslatability of ABA Frameworks, CAFs, and SETAFs

In this section, we consider the relation between ABA frameworks, well-formed CAFs,
and SETAFs. Semantics for ABA can be equivalently formulated in terms of assumptions
or in terms of arguments via attacks based on their claims. There are different represen-
tations that put the focus on either preserving assumption-sets or extensions in terms of
conclusions. Figure 2 shows the different translations and directions we consider in this
section: while the CAF representation focuses on extensions in terms of conclusions but
also preserves assumption-extension under projection (cf. translation [a] in Figure 2),
there are several possibilities to represent ABA frameworks as SETAFs. Translation [c]
relates assumptions in the ABA framework with arguments in the SETAF while Transla-
tion [d] relates conclusions with arguments. We also consider the reversed direction, i.e.,
constructing ABA frameworks from CAFs and SETAFs (cf. [b] and [c], respectively). In
Section 3.1, we consider the relation of ABA and CAFs; in Section 3.2 we examine the
relation between ABA and SETAFs. First, we provide necessary background for ABA.

Translations [a,d] from ABA to CAFs and SETAFs

',—" [a] "2 CAF preserve conclusions (cf. Def. 3.6 and 3.17);

2'/- [b] A Translation [b] from CAFs to ABA preserves

ABA : proper conclusion-extensions (cf. Def. 3.9); Trans-
i\ [c] = lation [c] between ABA and SETAFs preserves

RSN “1d] 4 SETAF assumption-sets (cf. Def. 3.13). The diagram com-

mutes w.r.t. dashed lines (cf. Prop. 3.21).

Figure 2. Semantics-preserving translations between ABA frameworks, CAFs, and SETAFs.
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Assumption-based Argumentation. We assume a deductive system (£, %), where ¥
is a formal language and & is a set of inference rules of the form r: ag < ay,...,an,
a; € Z; head(r) = ap denotes the head and body(r) = {aj,...,a,} the body of rule r.

Definition 3.1. An ABA framework is a tuple (£, %, <7 ,”), where (£, %) is a deduc-
tive system, o7 C &, o/ # 0 a set of assumptions, and a contrary function ~: &/ — Z.

We focus on ABA frameworks which are flat, i.e., for each rule r € Z, head(r) ¢ <7,
and finite, i.e., £, %, <f are finite. Furthermore, we assume .Z to be a set of atoms.

An atom p € % in an ABA framework D = (£, %,/ ,”) is tree-derivable from
assumptions S C .o/ and rules R C %, denoted by S g p, if there is a finite rooted labeled
tree such that the root is labeled with p, the set of labels for the leaves is equal to S or
SU{T}, and there is a surjective mapping from the set of internal nodes to R s.t. each
internal note v is labeled with head(r) for some r € R and the set of all successor nodes
corresponds to body(r) or T if body(r) = 0. We write S - p if there exists R C Z with
Stx p. Derivability for a set of assumptions S C .« is defined via Thp(S) = {p | S+ p}.

A set S C o attacks a € o/ if there is S’ C S such that S’ - @; S attacks T C &/
if it attacks some a € T. S is conflict-free if it does not attack itself; S is admissible if
it is conflict-free and counter-attacks each attacker (we say: S defends itself). We recall
grounded, complete, preferred, and stable ABA semantics (abbr. grd, com, pref, stb).

Definition 3.2. Foran ABA D = (£, %, </,”) and an admissible set S C o7, S € com(D)
iff S contains every assumption it defends; S € grd(D) iff S is C-minimal in com(D); S €
pref(D) iff S is C-maximal in com(D); S € stb(D) iff S attacks each {x} C o/ \ S. Given
o € {com,grd,pref,stb}, the &-conclusion-extensions of D are or;,(D) = {Thp(S) | S €
o (D)}, the proper o-conclusion-extensions of D are given by {C\ <7 | C € o7,(D)}.

ABA frameworks and AFs are closely related (see, e.g., [17]). Viewing tree deriva-
tions as arguments, an ABA framework induces a corresponding AF as follows.

Definition 3.3. The associated AF Fp = (A,R) of an ABA D=(%,%,4/,”) is given by
A={Stp|3IRCZ:Stg p} and attack relation (S; F p,S2 F¢q) eRiff p€ {5|s € 2 }.

Example 3.4. Consider the ABA D with assumptions </ = {a,b,c} andrules r| : p < a,
ry:p<—c,andrs : q < b. Moreover, @ = b, b = p, and ¢ = q. Below we depict the attacks
between the assumption-sets (left, we omit @, {a, b}, {b,c}, and &7) and the AF F, (right)
with arguments x; (induced by rules r;) and arguments x,, x;,, x. for the assumptions.

{a,c}

(D)
{a} 0 {c}  aFRy @)—@) 5 @)—(x)
\{b}/ ”.3._’

&)

The ABA D has two stable assumption-sets: S; = {b} and S, = {a,c} with Thp(S;) =
{b,q} and Thp(S2) = {a,c, p}. The stable extensions in Fp are {x3,x, } and {x,x2, %4, % }.

For an argument x = S+ p, we consider functions c/(x) = p and asms(x) = S; more-
over, cl(E) = {cl(x) | x € E} and asms(E) = U, asms(x) for a set of arguments E.

Proposition 3.5 ([17]). For an ABA D, its associated AF F, ¢ € {grd,com,pref,stb}, if
E € 6(F) then asms(E) € 6(D); and if S € o(D) then {S't-p | 3S' CS: 8+ p} € o(F).
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3.1. Assumption-based Argumentation and Claims

Claim-augmented Argumentation Frameworks. A claim-augmented argumentation
Sframework (CAF) [4] is a triple .# = (A, R, cl) where F = (A,R) is an AF and a function
cl which assigns a claim to each argument in A. The claim-function is extended to sets
in the natural way, i.e. for a set E C A, we let c/(E) = {cl(a) |a € E}. For a CAF % =
(A,R,cl), F = (A,R), and an AF semantics o, we define o.(#) = {cl(E) | E € o(F)}.
In this work, we focus on CAFs that are well-formed; i.e. CAFs satisfying ajy = b} for
all a,b € A with cl(a) = cl(b). Whenever we write CAF, we mean well-formed CAF.

ABA-CAF Translations. There is a natural adaption of the AF instantiation given in
Definition 3.3 to CAFs by assigning each argument S - p its claim p:

Definition 3.6. The associated CAF .%p = (A,R,cl) for an ABA D= (%, %,%/,7) is
obtained by constructing (A, R) from Definition 3.3 and cI(SF p) = p forall S+ p € A.

Example 3.7. Instantiating ABA D from Example 3.4 yields the following CAF:

CAF %p:

The CAF .%p is well-formed since attacks depend on the conclusion of the attacking
argument: an argument x attacks argument y if c/(x) = @ for some a € asms(y). Due
to Proposition 3.5, the translation preserves the o-conclusion-extensions of an ABA D;
assumption-extensions can be obtained by restricting the conclusion-sets to .27

Proposition 3.8. For an ABA D = (£, %,/ ,”), its associated CAF Fp and ¢ €
{grd,com,pref,stb}, it holds that or;,(D) = 0.(Fp) and 6(D) ={CN</ | C € o.(Fp)}.

For the other direction, we identify each claim ¢ in a given well-formed CAF as
contrary of some hidden assumption a.; moreover, each argument which is attacked by
claim c is derived from assumption a. (i.e., a. is attacked by all arguments with claim c).

Definition 3.9. The associated ABA Dg = (¥, %,4,”) of a CAF % = (A,R,cl) is
givenby & = {a. | c€cl(A)}, £ = o/ Ucl(A), contrary function a; = ¢ for all ¢ € cl(A),
and Z = {cl(x) < {aqy) |y €x} [x €A}

We obtain a translation which relates claim-sets of the CAF with the proper
conclusion-extensions of the obtained ABA. Note the restriction to the proper conclusion-
extensions is necessary since the translation treats assumptions as implicit information.

Proposition 3.10. Fora CAF % = (A,R,cl), its corresponding ABA D & and a semantics
o € {grd,com,pref,stb}, it holds that o,(F) ={C\ o | C € or;,(Dz)}.

Example 3.11. Consider the CAF #p from Example 3.7. We construct an ABA D 7, =
(&L Z%,7,”) with & = {a,,aq,a4,ap,a.}, contrary function @y = x for each claim in
Fp and rules p < ap, p < aq, q < ap, a < ap, b < ap, and ¢ < a,. The ABA Dz,
has two stable assumption-sets S = {aq,a,,a.} and S» = {ay,a,} with Thp;, (S1) =
{aq,ap,a.,b,q} and ThD?D (82) = {ap,aq,a,c,p}. The proper conclusion-extensions of
Dz, are {b,q} and {a,c, p} which correspond to the conclusion-extensions of D.
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3.2. Assumption-based Argumentation and Collective Attacks

Argumentation frameworks with collective attacks. A SETAF [18] is a pair SF = (A,R)
where A is a finite set of arguments and R C (24 \ {0}) x A is the attack relation. For an
attack (7,h) € R we call T the tail and h the head of the attack. SETAFs (A,R) where
|T| =1 for all (T,h) € R amount to AFs. In that case, we write (¢,4) to denote ({¢},h).

A set T} C A attacks h € A (the set 7o C A) if there is Tl/ C T (and h € T5, resp.)
such that (7],h) € R. We write hy = {T | (T, h) € R} to denote the set of attackers of the
argument /4 (in R). For § C A, we use S; to denote the set of arguments attacked by S
(in R). S is conflict-free in SF if it does not attack itself; S defends argument a € A if it
attacks each attacker of a; likewise, S defends T C A iff it defends eacha € T. A set S
is called admissible if it defends itself (adm(SF) denotes the set of all admissible sets in
SF). AF semantics generalize to SETAFs in the following way [19,5].

Definition 3.12. Given a SETAF SF = (A,R) and a set S € adm(SF). Then, S € com(SF)
iff S contains each argument it defends; S € grd(SF) iff S is C-minimal in com(SF);
S € pref(SF) iff S is C-maximal in com(SF); S € stb(SF) iff S attacks alla € A\ S.

ABA-SETAF-translations: relating assumptions with arguments. When inspecting the
definitions of attacks for ABA frameworks and SETAFs we find the following natural
correspondence: a set of arguments T attacks an argument /4 in the SETAF iff T derives
the contrary of /4 in the corresponding ABA. We obtain an ABA framework from a given
SETAF by introducing a rule i < T for each attack (7,h) € R. For the other direction,
we identify conflicts between assumption-sets. Below, we give the resulting translations.

Definition 3.13. For an ABA D = (¥, %,</,”), we define the corresponding SETAF
SFp = (Ap,Rp) with Ap = <7 and (S,a) € Rp iff S - @. For a SETAF SF = (A,R), we
define the corresponding ABA Dgp = (Lsp, %sr, <sr,”) with Lsp = AU {px | x € A},
Asp = A, X = p, for all x € A, and for each (T,h) € R, we add arule p, < T to Zsr.

Example 3.14. Instantiating ABA D from Example 3.4 yields the following SETAF:

SETAF SFp: @<—>@<—>@

The translations indeed preserve the (assumption-based) semantics.

Proposition 3.15. Given a semantics o € {grd,com,pref,stb}. For an ABA D and its
associated SETAF SFp, it holds that 6(D) = 6(SFp). For a SETAF SF and its associated
ABA Dgp, it holds that 6(SF) = o(Dsr).

We obtain the following strong intertranslatibility result using the correspondence
(S,a) € Rin SF iff a <— S in Dgr iff S @ in Dgr iff (S,a) € R in SFpg, = SF.

Proposition 3.16. Given a SETAF SF, it holds that SFpg. = SF.

This result shows that no information is lost in the SETAF when representing it
in terms of ABA. The other direction, i.e., translating ABA frameworks to SETAFs,
however, comes with a cost: given an ABA framework D, it is impossible to extract the
o-conclusion-extensions from SETAF SFp. This means that the conclusions of a given
ABA instance are lost when applying the translation. In the following, we present a
translation that preserves conclusions of an ABA instance.
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ABA-SETAF-translations: relating conclusions and arguments. In order to establish
a translation from ABA frameworks to SETAFs that preserves the conclusions of the
original instance, we proceed as follows: For a given ABA instance D = (£, %, </,”),
we construct a corresponding SETAF SFp = (A, R) with

1. A={p|3SC &/ : St p},ie., conclusions in D correspond to arguments of our
resulting SETAF (observe that each assumption a € &7 is a conclusion of D); and

2. aset of conclusions C attacks a conclusion p in SFp, i.e., (C, p) € R, iff C contains
a contrary for each set of assumptions S with S F p, and C is C-minimal among
all such sets (i.e., C is a minimal hitting set of the set {{a|a € S} | SF p}).

Definition 3.17. For a given ABA instance D = (£, %, «/,”), let #, = {S | SI- p} and
< p={{alaeS}|St p}foreach p € £. We construct the SETAF SFj = (A,R) with

A={p|3ISC & :Skp}tandR={(C,p) |p€A,CEHSpin( )}

Example 3.18. We construct SETAF SFj from the ABA D from Example 3.4. The ar-
guments in SF] correspond to the conclusions in D, i.e., A = {a,b,c,p,q}. We deter-
mine the attackers of p € A: first, we identify the set ., = {{a},{c}} that contains all
assumption-sets that derive p (in D); the set ., = {{b},{q}} contains the respective
contraries. The unique hitting set of ., is {b,q}, thus {b,q} attacks p. We depict the
resulting SETAF below (the joint arcs from {b, g} to p (in blue) represent the set-attack):

SETAF SF;: (a) /@\ (o)
® @)

The construction indeed preserves the o-conclusion-extensions for the considered
semantics; moreover, we obtain the assumption-extensions of the original instance by
projecting the conclusion-extensions to the assumptions 7.

Proposition 3.19. For an ABA D = (£, %,/ ,7), its associated SETAF SFf, and © €
{grd,com,pref,stb}, it holds that or,(D) = o (SF}) and 6(D) = {CN.</ | C € 6(SFf)}.

3.3. Summary & Compatibility

We presented several different translations from ABA to CAFs and SETAFs and vice
versa. For CAFs, we related claims with conclusions; for SETAFs, we considered two
translations by relating arguments with assumptions and with conclusions, respectively.
When comparing the ABA instances when starting from a CAF or a SETAF (cf. Def-
inition 3.9 and 3.13, respectively), we observe the following similarities: in both cases,
the resulting ABA is flat, also, each rule contains only assumptions in its body, further-
more, no contrary of an assumption is an assumption. We furthermore observe the fol-
lowing notable difference between the two translations: while the translation from ABA
to CAF potentially causes an exponential blow-up as the argument-construction can be
exponential in the number of assumptions, we observe that the resulting SETAF is linear
in the number of assumptions, i.e., the exponential blow-up can be avoided. We note,
however, that the computation of the SETAF might be exponential—the computational
effort is shifted to the construction of the attack relation which requires to identify tree-
derivations S - @ in the ABA framework to define attacks (S,a) in the SETAF.
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We end this section by presenting a strong intertranslatability result for our consid-
ered formalisms. For this, we make use of the translation from well-formed CAFs to
SETAFs [8]. To fit our setting, we reformulate the translation in terms of hitting sets
instead of CNF and DNF-formulas to capture the attack-structure of the frameworks.

Definition 3.20 (cf. [8]). For a well-formed CAF .# = (A,R,cl), we define the cor-
responding SETAF SFz = (Az,Rz) by letting Az =cl(A) and Rg = {(T,c) | c €
cl(A),T € HSpin({cl(xg) | x € A,cl(x) = c})}. For a SETAF SF = (A, R), we define the
corresponding CAF Fsp = (Asp,Rsr, clsp) with Agp = {xc,h ‘ ceA he HSmin(CE)}?
clsp (xen) = ¢, and Rsp = { (Xe s Yan,) | € € hy}.

Restricting the translation to redundancy-free CAFs, i.e., frameworks s.t. there are
no x,y € A with cl(x) = cl(y), x* =yT, and x~ C y~, we obtain the following result.

Proposition 3.21. Given an ABAD = (£, %,4/,”), its corresponding SETAF SF}; (cf.
Definition 3.17), let Fp be the corresponding CAF (cf. Definition 3.6), and let SngD be
the SETAF corresponding to the CAF Fp (cf. Definition 3.20). It holds that SFf§ = SF}D.

4. Strong Intertranslatability of LPs, CAFs, and SETAFs

In this section we strengthen the results regarding CAFs, LPs, and SETAFs by provid-
ing structure-preserving translations for suitable normal forms of the formalisms. This
highlights their equivalent expressiveness. While there is an immediate correspondence
between CAFs and LPs, the connection to SETAFs is via a detour making use of hitting
sets, as we will explain in more detail in Section 4.1 (cf. [20]). The relations we will
discuss are depicted in Figure 3. Our way to extract arguments from an LP is similar
to the AF-instantiation reported in [15] where a semantics correspondence between LPs
and AFs has been established. Due to space restrictions, we will focus our attention on
stable semantics since this is the most commonly used semantics for LPs, but we want to
emphasize that analogous results hold for the other cases, i.e. com, grd, and pref as well.
Moreover, most results reported in this section are concerned with syntactical properties.

Logic Programs. We consider logic programs with default negation not. Such programs
consist of rules of the form “c « ay,...,a,,not by,...,not b,,.” where 0 < n,m and the
a;, b; and ¢ are ordinary atoms. We let head(r) = ¢, pos(r) ={ay,...,a,} and neg(r) =
{b1,...,bm}. Let Z(P) be the set of all atoms occurring in P. For B = {by,..., by}, we
use not B as a shorthand for the conjunction not by,...,not b,,. A rule r is atomic [6] if
pos(r) = 0; a program P is atomic if each rule in P is.

For LPs without default negation (neg(r) = @) the unique stable model is the smallest
set of atoms closed under all rules, where a set E is closed under a rule r with neg(r) =0

Figure 3. Transformations between formalisms discussed in Section 4
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iff pos(r) C E implies head(r) € E. For any LP P, a set E of atoms is a stable model
(E € stb(P)) iff E is the stable model of PE = {head(r) < pos(r) | neg(r)NE = 0}.

Example 4.1. If P = {(d < nota, notb.),(d < notc.),(a + notc.),(c < nota.),(b.)},
then P is atomic. For E = {b,c} we have P = {(c.), (b.)} and thus E € stb(P).

Redundancies. Throughout this section we will require redundancy notions for our for-
malisms. An argument x € A in a CAF .% = (A, R, ¢l) is redundant if there is y € A with
cl(x) = cl(y) and y~ C x™. An attack (T,h) € R in a SETAF SF = (A,R) is redundant
if there is (T”,h) € R with T' C T. A rule r € P of an atomic LP is redundant if there is
r' € P with head(r) = head(r') and neg(r') C neg(r); an atom a € £ (P) is redundant if
it does not occur as a rule head in P. A CAF resp. SETAF resp. LP without redundant
arguments resp. attacks resp. rules and atoms is redundancy-free.

4.1. High Level Point of View

In the following subsections we will require various translations between the formalisms,
which may appear rather technical at first glance. However, by closely inspecting all
cases we observe that the constructed instances of the respective formalisms are quite
similar in their spirit and translations are obtained by using suitably applied simple steps.

More precisely, inter-translating CAFs and atomic LPs is done by identifying rule
heads with claims and bodies with in-going attacks. Recall our program P from above.
In a rather immediate way, the program induces a CAF .%p consisting of five arguments
x; (one for each rule) where cl(x;) =cl(xy) =d, cl(x3) =a, cl(x4) =c, and cl(xs) =b
corresponding to the rule heads. Moreover, cl(x; ) = {a,b}, cl(x; ) = cl(x3) = {c},
cl(x; ) = {a}, and cl(x5 ) = 0 defines the attack relation of the well-formed CAF .Zp.

When connecting either CAFs or atomic LPs to SETAFs, the notion of a hitting set
is required. In SETAFs, we do not use multiple copies of the same claim resp. rule head,
but encode the acceptability condition solely in the attack relation. The corresponding
SETAF would therefore possess only the four arguments a, b, ¢,d. For example, d cannot
be accepted if (i) either a or b is inferred (first rule not applicable) and (ii) c is inferred
(second rule not applicable either). This yields the following SETAF SFp. Below, we also
depict the CAF Zp we calculated earlier:

d ¢ a d b

The more challenging part is dropping the assumption that the given LP P is atomic (see
Figure 3). For this, we will utilize an inductive procedure constructing arguments [15].

Definition 4.2. For an LP P, A is an argument in P (A€Args(P)) with CONC(A)=c,
RULES(A) = U<, RULES(A;) U {r}, and VUL(x) = U<, VUL(A;) U {by,...,bp} iff
there are Ay,...,A, € Args(P) and arule r € P with r = ¢ <~ CONC(A1),...,CONC(A,),
not by,...,not by, and r ¢ RULES(4;) for all i < n.

We will show that this procedure can be mimicked by rewriting P. For example let
P'={(d <+ c,noth.),(d < notc.),(a<+ notc.),(c <+ nota.),(b.)}. The atomic program
P from above is the result of inserting the rule (¢ < nota.) in (d < ¢, not b.).
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4.2. Translations

CAFs and Logic Programs. We will now formally establish the correspondence be-
tween CAFs and LPs, by making use of Args(P) in case P is not atomic.

Definition 4.3. For a CAF .% = (A, R, cl), we define the corresponding atomic LP P4 by
P={c<notB.|a€A, cl(a)=c, cl(a”)=B}.Foran LP P, we set .%p = (Ap,Rp,clp)
where Ap = Args(P), Rp = {(a,b) | cl(a) € VUL(D)}, and clp(a) = CONC(a).

Example 4.4. The LP P’ from above yields four arguments stemming from the atomic
rules, e.g. there is some argument A with CONC(A) = ¢, VUL(A) = {a} and RULES(A) =
{(c < nota.)}. From (d + ¢, not b.) and this argument A we construct another argument
with conclusion d and vulnerabilities {a,b} (inherited from A and the applied rule). The
complete corresponding CAF .Zp is the same as the CAF .%p depicted in Section 4.1.

A rather convenient feature of this approach is that we can infer the semantics cor-
respondence from [15] due to the way CAF semantics make use of the claims.

Proposition 4.5. For % a CAF and P an LP, stb(F) = stb(Pg) and stb(P) = stb(Fp).

By inspecting Definition 4.2 we observe that the challenging part is handling pos-
itive atoms in rule bodies. If P is atomic, we can extract the corresponding CAF
Fp = (Ap,Rp,clp) immediately via Ap = P, Rp = {(a,b) | head(a) € neg(b)}, and
clp(a) = head(a). The fact that atomic LPs and CAFs are so closely related motivates
the question whether we can transform the LP before constructing the arguments as done
in [15]. A technique of this kind could pre-process the LP instead of utilizing the instan-
tiation procedure. In the following, we formalize this idea.

Definition 4.6. For an LP P the corresponding atomic LP P47 is defined inductively:

e If r € P is atomic, then r € Py7.

o If there is a rule ry € P with pos(ry) = {ay,...,a,} and for each g;, 1 <i <n,
there is some rule r; € Py s.t. head(r;) = a;, then there is a rule r € Pyp with
head(r) = head(ry), pos(r) = 0, and neg(r) = Ui_ | neg(r:).

Example 4.7. Applied to our LP P’ = {(d <+ ¢, not b.),(d < notc.), (a < notc.), (c
not a.), (b.)} this procedure yields P;, = P with P as in Example 4.1.

The following theorem formalizes that this pre-processing step successfully mimics
the inductive procedure from [15]. Informally speaking, instantiating the LP is done as in
Definition 4.2 and yields the same result as turning the LP into an atomic one via iterative
insertion of atomic rules and then extracting the corresponding CAF by identifying rule
heads with claims and rule bodies with in-going attacks. Formally:

Theorem 4.8. Let P be an LP. Then Fp = Fp, ;.

SETAFs and LPs We also want to briefly mention that analogous results hold when
turning an LP into a SETAF, which can be done as follows. For an LP P we de-
fine by Ap = Uscargs(p) CONC(a) and Rp = {(T,c) | T € HSuin({VUL(A) | A €
Args(P), CONC(A) = c¢})} the associated SETAF SFp. For a SETAF SF = (A,R), we
define its associated LP Psg = {c <~ not B. | B € HSyin(cg)}. As observed before, the
construction of Args(P) can be omitted if P is atomic. With these constructions, we find:
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Theorem 4.9. For a SETAF SF and an LP P, stb(SF) = stb(Psr) and stb(P) = stb(SFp).
Moreover, SFp = SFp, ;.

4.3. Summary & Compatibility

In this section, we presented translations from LPs to SETAFs and to CAFs, respectively.
We observe that when instantiating an LP as CAF or SETAF, an exponential blow-up
cannot be avoided due to the construction of arguments which is an inherent part of both
procedures. For atomic LPs, on the other hand, the number of arguments is linear in the
number of rules in both formalisms. For the other direction, i.e., when translating a CAF
or SETAF into an LP, the resulting LP is atomic. It can be shown that for atomic LPs,
these constructions are bijective and each others inverse, establishing a close relation.

Lemma 4.10. For all redundancy-free atomic LPs P, CAFs %, and SETAF's SF, respec-
tively, it holds that i) SFpy, = SF; ii) Psp, = P = Pgz,; and iii) Fp, = 7.

We end this section with a strong intertranslatability result in the spirit of Theo-
rem 3.21, stating that all (atomic, well-formed, and redundancy-free) instances of the
considered formalisms can be equivalently represented as CAFs, LPs, or SETAFs with-
out any loss of information via the presented translations and the method in [9] (cf. Defi-
nition 3.20). This shows that all of our constructions are compatible with each other and
similar in their behavior. In particular, the order in which they are applied is arbitrary.

Theorem 4.11. For all redundancy-free atomic LPs P, SETAFs SF, CAFs %, we have
Fsk = Fpy.; Psp = Pgg,.; Fp = Fsp,; SFp = SFz,; SFz = SFp,,; and Py = Psp ;.

5. Discussion

In this paper we investigated translations between the argumentation formalisms ABA,
CAF, SETAF as well as their connections to LP. We strengthened the implicitly exist-
ing intertranslatability result by providing additional translations, filling some of the ex-
isting gaps. For selected translations we showed structure-preserving properties and ar-
gued why others (such as those involving ABA) might not feature this preservation. Fi-
nally, our overview yields implications regarding expressiveness: the formalisms under
our consideration admitting strong intertranslatability are equally expressive—i.e. , they
can describe the same sets of models (extensions). These results illustrate the usefulness
of the versatility in argumentation formalisms: while certain applications might suggest
the usage of a specific formalism, it might be useful to later translate this framework and
utilize features that are native to another formalism. Strong intertranslatability even guar-
antees the preservation of the structure, which opens interesting topics for future work:
as some of the discussed translations are modular in some sense, one might even be able
to instantiate the same knowledge base as part formalism A and part formalism B, while
connecting both parts in later steps during the workflow. Another useful consequence of
our findings is that it is now easier to transfer concepts and ideas between formalisms,
serving as a starting point for various investigations that highlight the similarities of the
considered approaches even further.
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