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Abstract. Epistemic graphs have been developed for modelling an agent’s degree

of belief in an argument and how belief in one argument may influence the belief in

other arguments. These beliefs are represented by constraints on probability distri-

butions. In this paper, we present a framework for reasoning with epistemic graphs

that allows for beliefs for individual arguments to be determined given beliefs in

some of the other arguments. We present and evaluate algorithms based on SAT

solvers.

Keywords. Probabilistic argumentation; Argumentation algorithms; Bipolar argumentation.

1. Introduction

Epistemic graphs are a generalization of the epistemic approach to probabilistic argu-

mentation [1]. In epistemic graphs, the graph is augmented with a set of constraints on

probability distributions. These constraints restrict the belief we have in each argument

and they capture how beliefs in arguments influence each other. The aim is that a set of

constraints captures the subjective, and possibly imperfect way, that an agent views the

beliefs in the arguments and their interactions. The graphs can model both attack and

support (see for example Figure 1) as well as relations that are neither positive nor nega-

tive (see for example Figure 3) with the label denoting the type of influence (e.g. positive

(supporting), negative (attacking), and mixed). Both the label and the constraints provide

information about the argumentation. In this paper, we focus on the constraints.

There are some similarities between epistemic graphs and graded and ranking–based

semantics proposed for a number of argumentation frameworks [2,3,4,5,6,7,8,9,10,11,12]

but there are also substantial differences. Most assign a value in the unit interval to ar-

guments without further clarification of the meaning of the number. Furthermore, many

of the postulates in these approaches are not really applicable in the epistemic approach,

even though they can be perfectly suitable in other scenarios (e.g. in the epistemic ap-

proach, an increase or decrease in beliefs in attackers (or supporters) does not necessarily

invoke an decrease or increase in the belief of the target argument).

Epistemic graphs have some similarities with abstract dialectical frameworks (ADFs)

[13] and weighted ADFs (WADFs) [14]. However, differences include epistemic graphs

allow for a finer-grained probabilistic evaluation of arguments, allowing unattacked ar-

guments to be disbelieved, and long-distance effects between arguments that do not have
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𝙰 = Has Disease𝙱 = Has Alternative Disease

𝙳 = Has Symptom 1 𝙴 = Has Symptom 2𝙲 = LowHeartRate

−

+ +− +

Figure 1. Example of an epistemic graph concerning diagnosis of a disease based on belief in symptoms

and a differential diagnosis which in turn is based on a symptom and a test. The + (resp. −) label denote

support (resp. attack) relations. Assume that if 𝙱 is strongly believed, and 𝙳 or 𝙴 is strongly disbelieved,

then 𝙰 is strongly disbelieved, whereas if 𝙱 is believed, and 𝙳 or 𝙴 is disbelieved, then 𝙰 is disbelieved. Fur-

thermore, if 𝙳 and 𝙴 are believed, then 𝙰 is believed. These constraints could be reflected by the follow-

ing formulae: 𝜑1 ∶ 𝑝(𝙱) > 0.8 ∧ 𝑝(𝙳∨ 𝙴) < 0.2 ⇒ 𝑝(𝙰) < 0.8; 𝜑2 ∶ 𝑝(𝙱) > 0.5 ∧ 𝑝(𝙳∨ 𝙴) < 0.5 ⇒ 𝑝(𝙰) < 0.5;
𝜑3 ∶ 𝑝(𝙳∧𝙴) > 0.5⇒ 𝑝(𝙰) > 0.5; 𝜑4 ∶ 𝑝(𝙲) > 0.5⇒ 𝑝(𝙱) ≤ 0.5; And 𝜑5 ∶ 𝑝(𝙲) ≤ 0.5⇒ 𝑝(𝙱) > 0.5.

an arc connecting them. For more detailed comparison of ADFs with epigraphs, see [1].

Also see [1] for coverage of substantial differences with Bayesian networks.

In previous work, we presented a model-based theorem prover which can be used to

check whether one constraint entails another that was based on enumerating all the mod-

els [15], and an approach based on calculating probability distributions satisfying the con-

straints using numerical optimization methods [16]. These methods only work for small

numbers of arguments. Yet, there is a need for a scalable theorem prover that allows us to

query the constraints of an epistemic graph in order to draw inferences about the belief

in specific arguments. To address this need, we present a new proposal in this paper for

taking a knowledgebase of constraints and optionally further assumptions, and drawing

inferences from them. The approach involves representing the constraints as clauses, and

then uses an off-the-shelf SAT solver (see [17] for an introduction to SAT solvers). We do

this by defining a set of axioms, which we call a completion, of an epistemic graph which

we add to the constraints when querying the SAT solver. By assuming these axioms, we

can obtain a sound and complete inferencing algorithm.

2. Epistemic Graphs: A Simplified Version

In this paper, we present a simpler version of epistemic graphs than presented in [1]. Let

 denote a graph where 𝖭𝗈𝖽𝖾𝗌() be the set of nodes in , and 𝖠𝗋𝖼𝗌() be the set of arcs

in . We consider a probability distribution 𝑃 ∶℘(𝖭𝗈𝖽𝖾𝗌(𝐺))→ [0,1] as being a prob-

ability assignment to each subset of the set of arguments such that this sums to 1 (i.e.∑
Γ⊆𝖭𝗈𝖽𝖾𝗌(𝐺)𝑃 (Γ) = 1). We denote the set of all probability distributions on 𝖭𝗈𝖽𝖾𝗌() by

𝖣𝗂𝗌𝗍(). The constraints restrict the set of probability distributions that satisfy the argu-

ments (as we explain in the rest of this subsection).

Based on a given graph, we can now define the epistemic language. In this paper,

we will only consider a sublanguage of that defined in [1]. The simplified epistemic
language based on graph  is defined as follows: an epistemic atom is of the form 𝑝(𝐴)#𝑥
where # ∈ {<,≤,=,≥,>}, 𝑥 ∈ [0,1] and 𝐴 ∈ 𝖭𝗈𝖽𝖾𝗌(); and an epistemic formula is a

Boolean combination of epistemic atoms. For example, from the epistemic atoms 𝑝(𝙰) ≤
0.5 and 𝑝(𝙱) ≥ 0.5, an epistemic formula is 𝑝(𝙰) ≤ 0.5→ 𝑝(𝙱) ≥ 0.5.

The semantics for constraints come from probability distributions 𝑃 ∈𝖣𝗂𝗌𝗍(). Each

Γ ⊆ 𝖭𝗈𝖽𝖾𝗌() corresponds to a possible world where the arguments in Γ are true. The

probability of an argument being acceptable is defined as the sum of the probabilities of
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𝙰 = Alice doesn’t go to

the party if Bob goes.

𝙱 = Bob doesn’t go to

the party if Chris goes.

𝙲 = Chris doesn’t go to

the party if Alice goes.

−

−

−

Figure 2. The epistemic graph has constraints {𝑝(𝙱) > 0.5 ⇒ 𝑝(𝙰) ≤ 0.5, 𝑝(𝙲) > 0.5 ⇒ 𝑝(𝙱) ≤ 0.5,
𝑝(𝙰) > 0.5⇒ 𝑝(𝙲) ≤ 0.5}. Given these constraints, we see that at most one argument can be believed.

𝙰 = It tastes good.𝙱 = It tastes salty. 𝙲 = It tastes sweet.
∗ ∗

Figure 3. The epistemic graph has constraints {𝑝(𝙱) > 0.5 ∧ 𝑝(𝙲) ≤ 0.5 ⇒ 𝑝(𝙰) > 0.5,
𝑝(𝙲) > 0.5 ∧ 𝑝(𝙱) ≤ 0.5 ⇒ 𝑝(𝙰) > 0.5, 𝑝(𝙱) > 0.5 ∧ 𝑝(𝙲) > 0.5 ⇒ 𝑝(𝙰) ≤ 0.5}. Given these constraints, the

influence of 𝙱 and 𝙲 on 𝙰 is not simply a positive or a negative one. Consider some an item of food. If it is

believed to be tasting salty and not believed to be tasting sweet, or it is not believed to be tasting salty and

believed to be tasting sweet, then it is believed to be good tasting, and if it is believed to be tasting salty and

believed to be tasting sweet, then it is not believed to be good tasting.

the worlds containing it: 𝑃 (𝐴) =
∑

Γ⊆𝖭𝗈𝖽𝖾𝗌() s.t. 𝐴∈Γ𝑃 (Γ). We say that an agent believes

an argument 𝐴 to be acceptable if 𝑃 (𝐴) > 0.5, disbelieves 𝐴 to be acceptable if 𝑃 (𝐴) <
0.5, and neither believes nor disbelieves 𝐴 to be acceptable when 𝑃 (𝐴) = 0.5.

For an epistemic atom 𝑝(𝐴)#𝑣, where # ∈ {<,≤,=,≥,>}, the satisfying distribu-
tions, or equivalently models, of 𝑝(𝐴)#𝑣 are defined as 𝖲𝖺𝗍(𝑝(𝐴)#𝑣) = {𝑃 ′ ∈ 𝖣𝗂𝗌𝗍() ∣
𝑃 ′(𝐴)#𝑣}. The set of satisfying distributions for a given epistemic formula is as fol-

lows where 𝜙 and 𝜓 are epistemic formulae: 𝖲𝖺𝗍(𝜙∧𝜓) = 𝖲𝖺𝗍(𝜙)∩𝖲𝖺𝗍(𝜓); 𝖲𝖺𝗍(𝜙∨𝜓) =
𝖲𝖺𝗍(𝜙) ∪ 𝖲𝖺𝗍(𝜓); and 𝖲𝖺𝗍(¬𝜙) = 𝖲𝖺𝗍(⊤) ⧵ 𝖲𝖺𝗍(𝜙). For a set of epistemic formulae Φ =
{𝜙1,… ,𝜙𝑛}, the set of satisfying distributions is 𝖲𝖺𝗍(Φ) = 𝖲𝖺𝗍(𝜙1) ∩…∩𝖲𝖺𝗍(𝜙𝑛). A set

of epistemic formulae is consistent iff its set of models is non-empty.

Example 1. Consider the set of formulae {𝑝(𝙰) > 0.5→ ¬(𝑝(𝙱) > 0.5), 𝑝(𝙰) = 0∨𝑝(𝙰) =
0.5∨𝑝(𝙰) = 1, 𝑝(𝙱) = 0∨𝑝(𝙱) = 0.5∨𝑝(𝙱) = 1}. Examples of probability distributions that
satisfy the set include 𝑃1 s.t. 𝑃1(∅) = 1, 𝑃2 s.t. 𝑃2(∅) = 𝑃2({𝙰}) = 0.5, 𝑃3 s.t. 𝑃3({𝙰}) =
1, or 𝑃4 s.t. 𝑃4({𝙰}) = 𝑃3({𝙰,𝙱}) = 0.5 (omitted sets are assigned 0). The probability
distribution 𝑃5 s.t. 𝑃5({𝙰,𝙱}) = 1 does not satisfy the formula.

For the arguments in graph , and probability function 𝑃 , an epistemic extension is

the set {𝐴∈𝖭𝗈𝖽𝖾𝗌() ∣ 𝑃 (𝐴)> 0.5}. So the extension is determined from the probability

function rather the structure of the graph. For example, for Figure 2, if 𝑃 (𝙰) = 0.1, 𝑃 (𝙱) =
0.9, and 𝑃 (𝙲) = 0.1, then the epistemic extension is {𝙱}.

We define an entailment relation, denoted ⊧, as follows, where Γ is a set of epistemic

formulae, and 𝜙 is an epistemic formula: Γ ⊧ 𝜙 iff 𝖲𝖺𝗍(𝜙) ⊆ 𝖲𝖺𝗍(Γ)

Example 2. Let Γ= {𝑝(𝙲)> 0.9, 𝑝(𝙱) = 0.3, 𝑝(𝙲)≥ 0.8∧𝑝(𝙱)< 0.6→ 𝑝(𝙰)> 0.5}. Hence,
𝖲𝖺𝗍(𝑝(𝙰) ≥ 0.5) ⊆ 𝖲𝖺𝗍(Γ), and so Γ ⊧ 𝑝(𝙰) ≥ 0.5.

The simplified epistemic language does not incorporate features of the full epistemic

language (as presented in [1]) such as terms that are Boolean combinations of arguments

(e.g. 𝑃 (𝙱∨𝙲) > 0.6 which says that the probability argument 𝙱 or argument 𝙲 is greater
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than 0.6) or summation of probability values (such as 𝑃 (𝙰) +𝑃 (𝙱) ≤ 1 which says that

the sum of probability 𝙰 and probability 𝙱 is less than or equal to 1). Nonetheless, the

restricted epistemic language is a useful sublanguage and it simplifies the presentation

and evaluation in this paper.

An epistemic constraint is an epistemic formula 𝜓 ∈ 𝖥𝗈𝗋𝗆𝗎𝗅𝖺𝖾(). An epistemic
graph is a tuple (,,) where (,) is a labelled graph, and  ⊆ 𝖥𝗈𝗋𝗆𝗎𝗅𝖺𝖾() is a set

of epistemic constraints associated with the graph.

In general, the graph (and its labellings) is not necessarily induced by the constraints

and therefore it contains additional information. The actual direction of the edges in the

graph is also not necessarily derivable from . For example, if we have two arguments 𝙰
and 𝙱 connected by an edge, a constraint of the form 𝑝(𝙰) < 0.5∨ 𝑝(𝙱) < 0.5 would not

tell us the direction of this edge. The constraints may also involve unrelated arguments,

similar to [18], e.g. ¬𝑝(𝙲)> 0.5∨¬𝑝(𝙳)> 0.5when there is no arc between 𝙲 and 𝙳. So the

assignment of a label to an arc (by the  function) is an extra piece of information. The

assignment is intended to denote the kind of influence of the source node on the target

node. If we use the labels {+,∗,−}, then the assignment of + is intended to denote a form

of support, the assignment of − is intended to denote a form of attack, and ∗ is intended

to denote an influence that is neither support nor attack. So ∗ could denote that under

some conditions behaves as an attack and under some conditions behaves as a support

as illustrated in the arc in Example 3. As investigated in [1], there are various ways that

we can formalize the relationships between labels and constraints. We will not consider

labels further in this paper, and we will focus on the constraints.

For this paper, we also require the notion of an observation which is an epistemic

formula. The difference between constraints and observations is that we assume the con-

straints always hold, whereas observations only hold in some situations or for some peri-

ods. For example, if a debater uses an epistemic graph to model what opponents believe,

the observations would be specific beliefs for a specific opponent.

Example 3. Returning to Figure 2, suppose we have the observation 𝑝(𝙲) ≥ 0.8, then we
want to draw the conclusions 𝑝(𝙱) ≤ 0.5 and 𝑝(𝙰) ≤ 0.5.

Example 4. Returning to Figure 3, suppose we have the observations 𝑝(𝙱) = 0.7 and
𝑝(𝙲) = 0.2, then we want to draw the conclusion 𝑝(𝙰) > 0.5. Or suppose we have the
observations 𝑝(𝙱) > 0.7 and 𝑝(𝙲) ≥ 0.8, then we want to draw the conclusion 𝑝(𝙰) ≤ 0.5.

In the following, we will use the term knowledgebase, denoted , to refer to the

union of a set of constraints and a set of observations.

3. Reasoning with Epistemic Graphs

In this paper, our approach to inference with constraints and observations is to use SAT

solvers. So we will need to represent constraints and observations as clauses (i.e. a dis-

junction of literals). Any formula of propositional logic (and similarly any epistemic for-

mula) can be rewritten in conjunction normal form, and then conjunction elimination

applied, to obtain a set of clauses that are logically equivalent to the original epistemic

formula. So we do not lose any expressibility if we represent our epistemic formulae as

clauses. Note, clauses can be rewritten as implications. So 𝛽1 ∨…∨ 𝛽𝑛−1 ∨ 𝛽𝑛 can be

represented as ¬𝛽1 ∧…∧¬𝛽𝑛−1 → 𝛽𝑛.
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We will also restrict the probability values that the formulae can take by using a

restricted value set, denoted Π, which is a subset of the unit interval such that 0,1 ∈ Π,

and for all 𝑥,𝑦 ∈ Π, if 𝑥+𝑦 ∈ [0,1], then 𝑥+𝑦 ∈ Π, and if 𝑥−𝑦 ∈ [0,1], then 𝑥−𝑦 ∈ Π.

For example, {0,0.5,1} and {0,0.1,0.2,… ,0.9,1} are restricted value sets. In this paper,

we will assume Π = {0,0.1,0.2,… ,0.9,1} unless explicitly stated otherwise.

Definition 1. The restricted language based on graph  and a restricted value set Π
is defined as follows: a restricted atom of the form 𝑝(𝐴)#𝑥 where # ∈ {<,≤,=,≥,>},
𝑥 ∈ Π and 𝐴 ∈ 𝖭𝗈𝖽𝖾𝗌(); a restricted clause of the form 𝛽1 ∨…∨𝛽𝑛∨𝛽𝑛+1 where each
𝛽𝑖 in {𝛽1,… ,𝛽𝑛,𝛽𝑛+1} is a restricted literal (i.e. a restricted atom, or its negation).

Example 5. Let Π = {0,0.5,1}. In the restricted language w.r.t. Π, we can only have
atoms of the form 𝑝(𝙰)#0, 𝑝(𝙰)#0.5, and 𝑝(𝙰)#1, where 𝙰 ∈ 𝖭𝗈𝖽𝖾𝗌() and # ∈ {<,≤,=,≥

,>}. From these atoms we compose epistemic formulae, using the Boolean connectives,
such as 𝑝(𝙰) ≤ 0.5→ ¬(𝑝(𝙱) ≥ 0.5).

We also require some subsidiary definitions. Literals 𝜙 and 𝜓 are logically comple-
mentary iff 𝜙 is ¬𝜓 or 𝜓 is ¬𝜙. (e.g. the literals 𝑃 (𝙰) > 0.8 and ¬(𝑃 (𝙰) > 0.8) are log-

ically complementary); And the literals 𝜙 and 𝜓 are probabilistically complementary
iff 𝖲𝖺𝗍(𝜙) ∩ 𝖲𝖺𝗍(𝜓) = ∅ and 𝜙 and 𝜓 are not logically complementary (e.g. 𝑃 (𝙰) > 0.8
and 𝑃 (𝙰) < 0.8 are probabilistically complementary, and when Π = {0,0.1,… ,0.9,1.0},
𝑃 (𝙰) > 0.9 and ¬(𝑃 (𝙰) = 1) are probabilistically complementary).

To reason with a knowledgebase (i.e. a set of constraints and observations), we pro-

pose a proof theoretic approach based on adding extra axioms to the knowledgebase to

capture the implicit probabilistic information that is required. For this we introduce the

notion of equality completion to reduce our knowledgebase and query to disjunctions in-

volving only equality and the restricted value set Π. For example the atom 𝑝(𝐴) > 0.6
implies 𝑝(𝐴) is one of 0.7, 0.8, 0.9, or 1 as captured by the following clause.

¬(𝑝(𝙰) > 0.6)∨𝑝(𝙰) = 0.7∨𝑝(𝙰) = 0.8∨𝑝(𝙰) = 0.9∨𝑝(𝙰) = 1.0

In the following definition of completion, we also include the constraint that an argu-

ment cannot have two values. So for all arguments 𝙰, for all 𝑥,𝑦 ∈ {0,0.1,0.2,… ,0.9,1},
s.t. 𝑥 ≠ 𝑦, ¬(𝑝(𝙰) = 𝑥)∨¬(𝑝(𝙰) = 𝑦).

Definition 2. For a graph , the set of completion clauses is the following set of clauses

𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() =
⋃

𝐴∈𝖭𝗈𝖽𝖾𝗌()

(( ⋃
𝑘∈{1,…,8}

𝖢𝑘(𝐴)

)
∪𝖤𝗑𝖼𝗅𝗎𝗌𝗂𝗈𝗇(𝐴)

)

where 𝖤𝗑𝖼𝗅𝗎𝗌𝗂𝗈𝗇(𝐴) = {¬(𝑝(𝐴) = 𝑥)∨¬(𝑝(𝐴) = 𝑦) ∣ 𝑥 ≠ 𝑦} and

𝖢1(𝐴) = {𝑝(𝐴) > 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≤ 𝑦1,… ,𝑦𝑛}
𝖢2(𝐴) = {¬(𝑝(𝐴) > 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 > 𝑦1,… ,𝑦𝑛}
𝖢3(𝐴) = {𝑝(𝐴) < 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≥ 𝑦1,… ,𝑦𝑛}
𝖢4(𝐴) = {¬(𝑝(𝐴) < 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 < 𝑦1,… ,𝑦𝑛}
𝖢5(𝐴) = {¬(𝑝(𝐴) ≤ 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≤ 𝑦1,… ,𝑦𝑛}
𝖢6(𝐴) = {𝑝(𝐴) ≤ 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 > 𝑦1,… ,𝑦𝑛}
𝖢7(𝐴) = {¬(𝑝(𝐴) ≥ 𝑥)∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 ≥ 𝑦1,… ,𝑦𝑛}
𝖢8(𝐴) = {𝑝(𝐴) ≥ 𝑥∨𝑝(𝐴) = 𝑦1 ∨…∨𝑝(𝐴) = 𝑦𝑛 ∣ 𝑥 < 𝑦1,… ,𝑦𝑛}
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The size of 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() is a linear function of the number of arguments in the graph

, as there are 198 axioms in 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() per argument.

Proposition 1. If |𝖭𝗈𝖽𝖾𝗌()| = 𝑛, then |𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()| = 198𝑛.

Proof. For each argument in 𝐴∈𝖭𝗈𝖽𝖾𝗌(), there is 11 axioms for each of 𝖢𝗈𝗆𝟣 to 𝖢𝗈𝗆𝟪
(there are 11 axioms since there is one axiom per value of 𝑥), and there are 110 exclusion

axioms (since, for ¬(𝑝(𝐴) = 𝑥)∨¬(𝑝(𝐴) = 𝑦), there are 11 choices for 𝑥 and therefore 10

choices for 𝑦, which is 110 choices), giving a total of 198 axioms per argument.

The axioms given in the completion are sound. In other words, they are satisfied by

all probability distributions, and are therefore entailed by any knowledgebase.

In the following definition, we present the resolution proof rule as part of the resolu-

tion proof relation. This proof rule takes a pair of clauses where one has a disjunct, and

the other has a disjunct that is its negation, and returns a clause where the disjuncts are

all the disjuncts from the original clauses except the disjunct in the first clauses that is

negated in the second clause.

Definition 3. Let 𝜙 and 𝜙′ be clauses where 𝜙 is of the form 𝛼∨𝛽 and 𝜙′ is of the form
𝛾 ∨𝛿, and 𝛼 and 𝛾 are logically complementary literals (i.e. 𝛼 is ¬𝛾 or ¬𝛼 is 𝛾), then 𝛽∨𝛿

is a resolvent of 𝜙 and 𝜙′. The resolution proof relation, denoted ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇, is defined
as follows where Δ is a set of clauses and 𝜓 is a clause where the proof rules are: (1)
Resolution; (2) Reflexivity; (3) Associativity; and (4) Contradiction.

1 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛽 ∨ 𝛿 if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛼∨𝛽 & Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛾 ∨ 𝛿 & 𝛼 is ¬𝛾
2 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜙 if 𝜙 ∈ Δ
3 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛼1 ∨…∨𝛼𝑚 if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝛽1 ∨…∨𝛽𝑛 & {𝛼1,… ,𝛼𝑚} = {𝛽1,… ,𝛽𝑛}
4 Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥ if Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜙 & Δ ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬𝜙

We now consider resolution with a knowledgebase and completion. Consider two

clauses and two literals (one in each clause) that are either logically complementary or

probabilistically complementary. For entailment, there is no probability distribution that

satisfies both literals, and so the inference follows. In contrast, the resolution proof rule

only deals with logically complementary literals, and so the completion is required to treat

probabilistically complementary literals as logically complementary literals, and thereby

obtain the inference. We illustrate this in the following example.

Example 6. Consider 𝜙1 = 𝑝(𝙰) > 0.8 ∨ 𝑝(𝙱) > 0.5 and 𝜙2 = 𝑝(𝙰) < 0.2 ∨ 𝑝(𝙱) > 0.5.
Clearly, 𝑝(𝙰) > 0.8 and 𝑝(𝙰) < 0.2 are probabilistically complementary literals, and that
{𝜙1,𝜙2} ⊧ 𝑝(𝙱) > 0.5 holds. The following axioms are from the completion.

𝜋1 = ¬(𝑝(𝙰) > 0.8)∨𝑝(𝙰) = 0.9∨𝑝(𝙰) = 1 𝜋4 = ¬(𝑝(𝙰) = 1)∨¬(𝑝(𝙰) = 0)
𝜋2 = ¬(𝑝(𝙰) < 0.2)∨𝑝(𝙰) = 0∨𝑝(𝙰) = 0.1 𝜋5 = ¬(𝑝(𝙰) = 0.9)∨¬(𝑝(𝙰) = 0.1)
𝜋3 = ¬(𝑝(𝙰) = 0.9)∨¬(𝑝(𝙰) = 0) 𝜋6 = ¬(𝑝(𝙰) = 1)∨¬(𝑝(𝙰) = 0.1)

We now show that 𝑝(𝙱) > 0.5 can be obtained using the resolution proof relation with the
completion of the knowledge. We use the names of clauses rather than the clauses in the
premises to save space. The name of each clause generated by resolution is given on the
right after the clause.
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1 {𝜙1,𝜋1} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0.9∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔1)
2 {𝜙2,𝜋2} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0∨𝑃 (𝙰) = 0.1∨𝑃 (𝙱) > 0.5 (𝜔2)
3 {𝜔1,𝜋3} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0)∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔3)
4 {𝜔3,𝜋4} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0)∨𝑃 (𝙱) > 0.5 (𝜔4)
5 {𝜔1,𝜋5} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0.1)∨𝑃 (𝙰) = 1∨𝑃 (𝙱) > 0.5 (𝜔5)
6 {𝜔5,𝜋6} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ¬(𝑃 (𝙰) = 0.1)∨𝑃 (𝙱) > 0.5 (𝜔6)
7 {𝜔2,𝜔4} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙰) = 0.1∨𝑃 (𝙱) > 0.5 (𝜔7)
8 {𝜔6,𝜔7} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝑃 (𝙱) > 0.5 (𝜔8)

In the following lemma, we generalize the above example by showing that if a clause

is entailed by a pair of clauses, then that inference can be obtained from the completion

of the clauses using only the resolution proof rule.

Lemma 1. For graph , if 𝜙,𝜙′,𝜓 are clauses where 𝜙 is of the form 𝛼1 ∨…∨𝛼𝑛, 𝜙′ is
of the form 𝛽1 ∨…∨𝛽𝑚, 𝜓 is of the form 𝛼1 ∨…∨𝛼𝑛−1 ∨𝛽1 ∨…∨𝛽𝑚−1, and {𝜙,𝜙′} ⊧ 𝜓 ,
then {𝜙,𝜙′}∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 .

Proof. Assume {𝜙,𝜙′} ⊧ 𝜓 . So for all 𝑃 ∈ 𝖲𝖺𝗍({𝜙,𝜙′}), 𝑃 ̸⊧ 𝛼𝑛 or 𝑃 ̸⊧ 𝛽𝑚. So either

𝛼𝑛 and 𝛽𝑚 are logically complementary literals (i.e. syntactically, 𝛼𝑛 is ¬𝛽𝑚 or ¬𝛼𝑛 is

𝛽𝑚) or 𝛼𝑛 and 𝛽𝑚 are probabilistically complementary literals (i.e. 𝛼𝑛 is of the form

𝑝(𝐴1)#1𝑣1 and 𝛽𝑚 is of the form 𝑝(𝐴2)#2𝑣2 and there is no assignment for 𝑤1 and 𝑤2
where 𝑃 (𝐴1) = 𝑤1 and 𝑃 (𝐴2) = 𝑤2 that would satisfy 𝛼𝑛 and 𝛽𝑚). In the case that

𝛼𝑛 and 𝛽𝑚 are logically complementary literals, then {𝜙,𝜙′} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 holds, and

hence {𝜙,𝜙′} ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 holds. In the case that 𝛼𝑛 and 𝛽𝑚 are proba-

bilistically complementary literals, then the disjunct 𝛼𝑛 in 𝜙 is resolved with a com-

pletion axiom and so exchanged for a disjunction of 𝑝(𝐴1) = 𝑦1 ∨…∨ 𝑝(𝐴1) = 𝑦𝑛, and

the disjunct 𝛽𝑛 in 𝜙′ is resolved with a completion axiom and so exchanged for a dis-

junction of 𝑝(𝐴2) = 𝑦′1 ∨…∨ 𝑝(𝐴2) = 𝑦′
𝑛
. So together with the exclusion axioms, there

is no assignment for 𝑤1 and 𝑤2 in 𝑝(𝐴1) = 𝑤1 and 𝑝(𝐴2) = 𝑤2 that would satisfy

𝑝(𝐴1) = 𝑦1 ∨…∨𝑝(𝐴1) = 𝑦𝑛 and 𝑝(𝐴2) = 𝑦′1 ∨…∨𝑝(𝐴2) = 𝑦′
𝑛
. So each of these incom-

patible assignments is removed by resolution until none of them remain. So via a number

of resolution steps, {𝜙,𝜙′}∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 𝜓 .

The following correctness result shows that a literal 𝛼 is entailed if and only if the

negation of the query together with the knowledgebase and completion results in a con-

tradiction using the resolution consequence relation

Proposition 2. For all epistemic graphs (,,), and literals 𝛼,  ⊧ 𝛼 iff  ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()
∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥.

Proof. (⇒) Assume  ⊧ 𝛼. Therefore 𝖲𝖺𝗍( ∪ {¬𝛼}) = ∅. Therefore there is a subset

Γ ⊆  ∪{¬𝛼} such that 𝖲𝖺𝗍(Γ) = ∅ and for all Γ′ ⊆ Γ, 𝖲𝖺𝗍(Γ′) ≠ ∅. So for all 𝜙 ∈ Γ, and

for all 𝛼 ∈ 𝖣𝗂𝗌𝗃𝗎𝗇𝖼𝗍𝗌(𝜙), Γ ⧵ {𝜙} ⊧ ¬𝛼. Moreover, for all 𝜙,𝜙′ ∈ Γ, and for all 𝜓 such

that 𝜓 is a resolvent of 𝜙 and 𝜙′, Γ ⊢ 𝜓 , and by Lemma 1, Γ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇
𝜓 . Since 𝖲𝖺𝗍(Γ) = ∅, Γ ⊢ ⊥, and by Lemma 1, Γ ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. So  ∪
𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. (⇒) Assume  ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼} ⊢𝗋𝖾𝗌𝗈𝗅𝗎𝗍𝗂𝗈𝗇 ⊥. So

𝖲𝖺𝗍( ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() ∪ {¬𝛼}) = ∅. Since all 𝛿 ∈ 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾() are satisfied by all 𝑃 ∈
𝖣𝗂𝗌𝗍() (i.e. for all 𝑃 ∈ 𝖣𝗂𝗌𝗍(), 𝑃 ⊧ 𝛿), we have 𝖲𝖺𝗍(𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()) = 𝖣𝗂𝗌𝗍(). Therefore,

𝖲𝖺𝗍( ∪{¬𝛼}) = ∅. Hence,  ⊧ 𝛼 holds.
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Algorithm 1 Clausal inference for knowledgebase , query 𝛼, and graph 

function INFERENCE(,𝛼, )

if 𝛼 is a positive literal then
return NOT 𝚂𝙰𝚃(∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{¬𝛼})

else
return NOT 𝚂𝙰𝚃(∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{𝛽}) where 𝛼 is of the form ¬𝛽

Algorithm 2 Bounds for argument 𝐴 w.r.t knowledgebase , graph , and increments 𝜇.

function TIGHTINFERENCE(,𝐴,𝜇,)

𝑛 = 0
while INFERENCE(, 𝑝(𝐴) ≥ 𝑛), do

𝑛 = 𝑛+𝜇

𝑚 = 1
while INFERENCE(, 𝑝(𝐴) ≤ 𝑚), do

𝑚 = 𝑚−𝜇

return (𝑛,𝑚)

4. Algorithms

The inference algorithm (Algorithm 1) calls the SAT solver with a knowledgebase, and

its completion, plus the negation of the query. If the SAT solver returns True, then the set

of formulae is consistent, and hence the query does not follow from the premises, whereas

if the SAT solver returns False, then the set of formulae is inconsistent, and hence the

query does follow from the premises.

Proposition 3. For a knowledgebase , and restricted literal 𝛼, INFERENCE(,𝛼,) =
True iff  ⊧ 𝛼.

Proof. INFERENCE(,𝛼,) = True iff ∪𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾()∪{¬𝛼} ⊢𝑆𝐴𝑇 ⊥ iff  ⊧ 𝛼.

We also give an algorithm for obtaining bounds on a query (Algorithm 2). It obtains

the tightest bounds 𝑛,𝑚∈Π such that ⊧ 𝑝(𝐴)≥ 𝑛 and ⊧ 𝑝(𝐴)≤𝑚 hold. The parameter

𝜇 specifies the restricted value set. For example, 𝜇 = 0.5whenΠ= {0,0.5,1} and 𝜇 = 0.1
when Π = {0,0.1,0.2,… ,0.9,1}.

Example 7. Given the constraints {𝑝(𝙰) ≥ 0.4), 𝑝(𝙰) < 0.7∨ 𝑝(𝙱) < 0.5} and the obser-
vations {𝑝(𝙱) ≥ 0.5}, we obtain (0.4,0.6) from Algorithm 2 (i.e. 0.4 as the lower bound
for 𝑝(𝙰) and 0.6 as the upper bound for 𝑝(𝙰)).

The algorithms (i.e. Algorithms 1 and 2) were implemented on Python. The imple-

mentation1 uses the PySAT implementation [19] that incorporates SAT solvers such as

Glucose3. The implementation includes code to randomly generate sets of epistemic con-

straints and queries. For a given number of arguments, and an upper limit on the num-

ber of disjuncts in each clause, the code randomly selects the argument, comparator and

probability value for each atom in the clause. Each query is generated in the same way.

1http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/episat.zip
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(2,10) (2,100) (4,10) (4,100) (6,10) (6,100)

25 0.22 0.27 0.44 0.18 0.18 0.45

50 0.40 0.43 0.87 0.38 0.39 0.82

75 0.65 0.62 0.88 0.63 0.65 0.88

100 0.92 0.87 0.96 0.93 0.90 0.94

125 1.19 1.17 1.17 1.19 1.17 1.28

150 1.56 1.52 1.50 1.42 1.52 1.56

175 1.82 2.15 2.38 1.87 1.81 3.05

200 2.10 1.98 3.76 2.19 2.12 2.67

225 2.46 2.48 2.52 2.52 2.55 2.59

250 3.02 4.17 3.03 3.04 2.82 3.04

Table 1. Experiments with the INFERENCE algorithm (Algorithm 1). Each column is for a pair (𝑑,𝑐) where

𝑑 is the upper limit of disjuncts (taking the value 2, 4, or 6 disjuncts) and 𝑐 is cardinality of knowledgebase

(taking the value of 10 or 100 clauses). Each row is the number of arguments in the range 25 to 250. For each

combination of column and row, we obtained the average time taken (seconds) obtained over 10 runs.

Combination (𝑎 = 10, 𝑐 = 10) (𝑎 = 20, 𝑐 = 20) (𝑎 = 30, 𝑐 = 30) (𝑎 = 40, 𝑐 = 40)

Average time 1.47 3.25 5.61 7.55

Table 2. For each combination, where 𝑎 is the number of arguments, and 𝑐 is the number of clauses, we obtained

the average time taken (seconds) obtained over 20 runs for each number of arguments.

The main purpose of the evaluation was to determine how the inference algorithm

performs with the number of arguments (propositional letters), disjuncts per clauses, and

clauses per knowledgebase. We considered the values 2, 4, and 6 for the number of dis-

juncts as this reflects what might be common values in applications, we considered 10

and 100 for the number of clauses, and similarly between 25 and 250 arguments, as they

represent the numbers that might be found in small and larger applications. Table 1 shows

that for each row, the time taken was similar for each column. So increasing the number

of disjuncts per clause (i.e. 𝑑), or increasing the number of clauses (i.e. 𝑐), does not sub-

stantially affect the time taken. In contrast, the number of arguments does substantially

increase the time taken. This can be clearly seen in each column.

The algorithm for bounds involves more computation since repeated queries are made

to the inference algorithm. As a result the average time to obtain bounds were slower than

for entailment as indicated by the results in Table 2. A simple improvement to the algo-

rithm to decrease the time would be to only form the completion once (rather than form

the completion each time the inference algorithm is called) and then use this completion

each time the SAT solver is called.

The conclusion that we draw from the evaluations is that by basing the algorithms on

off-the-shelf SAT solvers, we are able to have scalable reasoning with epistemic graphs.

Given a set of constraints for an epistemic graph together with a set of observations, we

are able to quickly determine the belief in any of the arguments. In other words, the belief

on some arguments can be efficiently propagated through the graph to determine the belief

in the others. We can claim that this is scalable because we see that even with 100s of

arguments with clauses of up to 6 disjuncts, and a set of constraints plus observation

of 100 clauses, the time taken is a few seconds. For instance, with 200 arguments, a

maximum of 5 disjuncts, and 500 clauses in the knowledgebase, the average time is 2.71

seconds.
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5. An Application of Automated Reasoning

We now consider an extended example (which has been adapted from [1]) to illustrate how

we can use the automated reasoning as part of an automated persuasion system. Assume

we have the graph presented in Figure 4 and that through, for instance, crowdsourcing

data, we have learned which constraints should be associated with a given user profile.

So now we assume we are dealing with a user of an automated persuasion system whose

profile leads to the selection of the following constraints in order to predict his or her

attitudes.

(1) 𝑝(𝙱) > 0.5∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.5
(2) 𝑝(𝙱) > 0.7∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.8
(3) 𝑝(𝙱) > 0.9∧𝑝(𝙲) < 0.5∧𝑝(𝙳) < 0.5→ 𝑝(𝙰) > 0.9
(4) 𝑝(𝙲) ≥ 0.9→ 𝑝(𝙰) < 0.25
(5) 𝑝(𝙳) ≤ 0.5→ 𝑝(𝙰) ≥ 0.25
(6) 𝑝(𝙳) > 0.75→ 𝑝(𝙰) < 0.75
(7) 𝑝(𝙴) > 0.9→ 𝑝(𝙱) < 0.5
(8) 𝑝(𝙴) ≤ 0.5∧𝑝(𝙵) > 0.5→ 𝑝(𝙱) > 0.5
(9) 𝑝(𝙶) > 0.5→ 𝑝(𝙲) < 0.5
(10) 𝑝(𝙷) > 0.5→ 𝑝(𝙳) < 0.5
(11) 𝑝(𝙸) > 0.75→ 𝑝(𝙳) ≤ 0.5
(12) 𝑝(𝙹) > 0.5→ 𝑝(𝙴) < 0.5
(13) 𝑝(𝙹) > 0.5→ 𝑝(𝙱) > 0.5
(14) 𝑝(𝙹) > 0.5∧𝑝(𝙵) > 0.5→ 𝑝(𝙱) > 0.9

We explain these constraints as follows: (1) If 𝙱 is believed, and 𝙲 and 𝙳 are disbelieved,

then 𝙰 is believed; (2) This refines above so if 𝙱 is strongly believed, then 𝙰 is strongly

believed; (3) This refines above so if 𝙱 is very strongly believed, then 𝙰 is very strongly

believed; (4) If 𝙲 is very strongly believed, then 𝙰 is strongly disbelieved; (5) If 𝙳 is not

believed, then 𝙰 is not strongly disbelieved; (6) If 𝙳 is strongly believed, then 𝙰 is not

strongly believed; (7) If 𝙴 is strongly believed, then 𝙱 is disbelieved; (8) If 𝙴 is not believed,

and 𝙵 is believed, then 𝙱 is believed; (9) If 𝙶 is believed, then 𝙲 is disbelieved; (10) If 𝙷 is

believed, then 𝙳 is disbelieved; (11) If 𝙸 is strongly believed, then 𝙳 is not believed; (12)

If 𝙹 is believed, then 𝙴 is disbelieved; (13) If 𝙹 is believed, then 𝙱 is believed; And (14)

If 𝙹 is believed, and 𝙵 is believed, then 𝙱 is strongly believed;

We can use these constraints together with any specific observations we have about

an individual (perhaps a lapsed patient at a dental surgery) to predict the belief in the per-

suasion goal (i.e. argument 𝙰)). For instance, if we know that a given individual strongly

believes 𝙵 and 𝙶, e.g. 𝑝(𝙵) = 0.8 and 𝑝(𝙶) = 0.8, then we can infer that 𝙲 is disbelieved

(i.e. 𝑝(𝙲) < 0.5). However, it is not possible to infer whether the individual believes or

disbelieves the persuasion goal.

Next, we could consider presenting an argument to the individual in order to see

whether (according to the epistemic graph) the persuasion goal is believed or even

strongly believed. For instance, if we present 𝙷 and 𝙹, we may assume that the patient

believes the arguments (i.e. 𝑝(𝙷) > 0.5 and 𝑝(𝙹) > 0.5). This assumption could be based

on analyzing the crowdsourced data to see which arguments are believed after being pre-

sented. Then from 𝑝(𝙷)> 0.5 and 𝑝(𝙹)> 0.5, together with the original information about
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𝙰 = I should

book regular

dental check-ups.

𝙱 = Having a regular

check-up will help me

keep my teeth healthy.

𝙴 = It is daily brushing

and flossing that really

keeps my teeth healthy.

𝙵 = I like to be healthy.

𝙲 = I don’t have

the money to

pay for a dentist.

𝙶 = Dental care is free if

you have a low income.

𝙳 = I find having dental

check-ups painful.

𝙷 = If I let a dental

problem develop, it will

be much more painful.

𝙸 = The checkups are painful

because the teeth and gums are

in a bad shape, which is even

more a reason to go to the dentist.

𝙹 = Clinical studies show that

both daily brushing and flossing

are required for healthy teeth.

+

−

−

−

+

−

−

−

+
−

Figure 4. Epistemic graph (adapted from [1]) for the domain model for a case study on encouraging people to

take regular dental check-ups.

the patient (i.e. 𝑝(𝙵) = 0.8 and 𝑝(𝙶) = 0.8), we can infer 𝙱 and 𝙰 are very strongly believed

(i.e. 𝑝(𝙱) > 0.9 and 𝑝(𝙰) > 0.9).
Since it is possible to acquire substantial amounts of crowdsourced data, and apply

machine learning to generate constraints [20], we can easily acquire large numbers of

constraints on a topic that can be harnessed for user models in automated persuasion. The

above example only involved 14 constraints, and so the inferences can be made by hand,

but if we have 100s of constraints (which can easily arise if we have an argument graph

with 100 arguments), then we need automated reasoning such as the approach presented

in this paper (which was shown in the previous section to scale to 100s of clauses with

200 arguments) to be able to identify the implications of specific options for presenting

arguments.

6. Discussion

Epistemic graphs offer a rich and flexible formalism for modelling argumentation. The

approach provides subjective reasoning by allowing different agents to be modelled by

a different set of constraints (which can be useful in complex problem analysis where

different perspectives and the associated unncertainty is captured). This may be useful

for modelling how different decision makers make their decisions based on their beliefs

in the relevant arguments by each presenting an epistemic graph. Epistemic graphs also

allow for better modelling of imperfect agents, which can be important in multi–agent

application with dialogical argumentation (e.g. persuasion, negotiation, etc.).
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The benefit of the work presented in this paper is that we can use the automated rea-

soning system to allow us to draw inferences about a situation modelled by an epistemic

graph, or about what inferences another agent would draw based on what we assume

about their epistemic graph. Off-the-shelf SAT solvers (which are available for a range

of programming languages) allow the reasoning to scale to large epistemic graphs, and

this allows us to deal with much larger numbers of arguments than possible with previous

proposals for automated reasoning with epistemic graphs [15,16]. The approach of using

the completion clauses can be adapted to a range of automated reasoning tasks. We will

explore these in future work. We will also consider generalizing the algorithms to handle

the general version of epistemic graphs that was presented in [1].
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