
Treewidth for Argumentation Frameworks
with Collective Attacks

Wolfgang DVOŘÁK a, Matthias KÖNIG a and Stefan WOLTRAN a

a TU Wien, Institute of Logic and Computation

Abstract. Abstract Argumentation is a key formalism to resolve conflicts in in-
complete or inconsistent knowledge bases. Argumentation Frameworks (AFs) and
extended versions thereof turned out to be a fruitful approach to reason in a flex-
ible and intuitive setting. The addition of collective attacks, we refer to this class
of frameworks as SETAFs, enriches the expressiveness and allows for compacter
instantiations from knowledge bases, while maintaining the computational com-
plexity of standard argumentation frameworks. This means, however, that standard
reasoning tasks are intractable and worst-case runtimes for known standard algo-
rithms can be exponential. In order to still obtain manageable runtimes, we exploit
graph properties of these frameworks. In this paper, we initiate a parameterized
complexity analysis of SETAFs in terms of the popular graph parameter treewidth.
While treewidth is well studied in the context of AFs with their graph structure,
it cannot be directly applied to the (directed) hypergraphs representing SETAFs.
We thus introduce two generalizations of treewidth based on different graphs that
can be associated with SETAFs, i.e., the primal graph and the incidence graph. We
show that while some of these notions allow for parameterized tractability results,
reasoning remains intractable for other notions, even if we fix the parameter to a
small constant.

Keywords. Abstract Argumentation, Collective Attacks, SETAF, Treewidth

1. Introduction

Argumentation is a key area in Artificial Intelligence. Abstract Argumentation as intro-
duced by Dung [1] serves as a unifying framework to capture argumentation processes
in a formal yet intuitive setting. In standard argumentation frameworks (AFs), discus-
sions are formalized as a directed graph where the nodes represent abstract arguments
(independent of their internal structure), and the edges represent the attack relation. It
turned out that the binary attack relation of AFs occasionally limits the expressiveness of
frameworks, in particular if one is not willing to introduce artificial arguments to model
technicalities. To avoid this issue, Nielsen and Parsons proposed a relaxation of this re-
striction: collective attacks [2]. If a set S collectively attacks an argument, said argument
is only effectively defeated by S if all arguments in S are accepted by an agent. The
resulting class of frameworks is referred to as SETAFs. It was shown that SETAFs are
indeed more expressive than AFs [3].

Due to SETAFs being highly expressive yet intuitive, there is now an increased in-
terest in this formalism within the research community. While in the general case the

Computational Models of Argument
F. Toni et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220148

140

same (mostly intractable) complexity upper bounds hold [4], tractable graph classes have
only recently been investigated [5,6]. We add to this by starting the analysis of compu-
tational properties of SETAFs in the context of parameterized complexity. A problem is
fixed-parameter tractable (FPT), if we can find a numerical parameter p describing the
instances such that for constant values of p the runtime is polynomial in the instance size
(and the degree of the polynomial is independent of p). Implementations of these param-
eterized algorithms often work well in practice, if instances are not randomly generated
but admit an exploitable structure. One prominent such parameter is treewidth. A low
treewidth indicates a certain “tree-likeness” of a graph, and as problems often become
easy on trees, adapted versions of these easy algorithms can often be applied to instancees
with low treewidth. In AFs, it has been shown that reasoning is indeed fixed-parameter
tractable w.r.t. treewidth [7]. We investigate how this notion of treewidth is applicable to
the directed hypergraph-structure of SETAFs and show that certain generalizations ad-
mit FPT algorithms, while other reasonable attempts do not. In particular, our contribu-
tions can be summarized as follows. After recalling the necessary formal background in
Section 2, we discuss the challenges of defining treewidth for SETAFs in Section 3 and
present two different notions of treewidth: primal-treewidth and incidence-treewidth. In
Section 4 we present negative results regarding primal-treewidth, namely that reasoning
remains intractable even for small parameter values. Section 5 establishes FPT results
for incidence-treewidth via a generic argument utilizing Monadic Second Order logic;
this theoretical result gets refined and improved in Section 6 where we discuss a dynamic
programming algorithm tailored to SETAFs. Finally, in Section 7 we conclude and give
pointers to possibly interesting directions for future research.

2. Background

We start with the definition of an Argumentation Framework with Collective Attacks
(SETAF) [2] as a generalization of (standard) Argumentation Frameworks (AFs) [1].

Definition 1. A SETAF is a pair SF = (A,R) where A is a finite set of arguments, and
R ⊆ (2A \{ /0})×A is the attack relation. For an attack (T,h) ∈ R we call T the tail and
h the head of the attack. SETAFs (A,R), where for all (T,h) ∈ R it holds that |T | = 1,
amount to (standard Dung) AFs. In that case, we usually write (t,h) to denote the set-
attack ({t},h). We write S �→R a if there is a set T ⊆ S with (T,a)∈ R. Moreover, we write
S′ �→R S if S′ �→R a for some a ∈ S. We drop subscript R in �→R if there is no ambiguity.
For S ⊆ A, we use S+R to denote the set {a | S �→R a} and define the range of S (w.r.t. R),
denoted S⊕R , as the set S∪S+R .

The well-known notions of conflict and defense from classical Dung-style-AFs nat-
urally generalize to SETAFs.

Definition 2. Let SF = (A,R) be a SETAF. A set S ⊆ A is conflicting in SF if S �→R a for
some a ∈ S. S ⊆ A is conflict-free in SF, if S is not conflicting in SF, i.e. if T ∪{h} 	⊆ S
for each (T,h) ∈ R. cf(SF) denotes the set of all conflict-free sets in SF.

Definition 3. Let SF = (A,R) be a SETAF. An argument a ∈ A is defended (in SF) by a
set S ⊆ A if for each B ⊆ A, such that B �→R a, also S �→R B. A set T ⊆ A is defended (in
SF) by S if each a ∈ T is defended by S (in SF).

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 141

Table 1. Complexity for AFs and SETAFs (C-c denotes completeness for C).

grd adm com pref stb

Credσ P-c NP-c NP-c NP-c NP-c

Skeptσ P-c trivial P-c ΠP
2 -c coNP-c

The semantics we study in this work are the grounded, admissible, complete, pre-
ferred, and stable, semantics, which we will abbreviate by grd, adm, com, pref, and stb,
respectively [2,4,8]. Acceptable sets of arguments w.r.t. a semantics are called extensions.

Definition 4. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF). Then,
• S ∈ adm(SF), if S defends itself in SF,
• S ∈ com(SF), if S ∈ adm(SF) and a ∈ S for all a ∈ A defended by S,
• S ∈ grd(SF), if S =

⋂
T∈com(SF) T ,

• S ∈ pref(SF), if S ∈ adm(SF) and there is no T ∈ adm(SF) s.t. T ⊃ S,
• S ∈ stb(SF), if S �→ a for all a ∈ A\S,

The relationship between the semantics has been clarified in [2,4,8] and matches
with the relations between the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF)⊆ pref(SF)⊆ com(SF)⊆ adm(SF)⊆ cf(SF)

Complexity. We assume the reader to have basic knowledge in computational complex-
ity theory1, in particular we make use of the complexity classes P (polynomial time), NP
(non-deterministic polynomial time), coNP, and ΠP

2 . For a SETAF SF = (A,R) and an
argument a ∈ A, we consider the standard reasoning problems (under semantics σ):

• Credulous acceptance Credσ : Is a contained in at least one σ extension of SF?
• Skeptical acceptance Skeptσ : Is a contained in all σ extensions of SF?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted
in Table 1. As SETAFs generalize Dung AFs the hardness results for Dung AFs [9] carry
over to SETAFs, also the same upper bounds hold for SETAFs [4].

For a more fine-grained complexity analysis we also make use of the complexity
class FPT (fixed-parameter tractability): a problem is fixed-parameter tractable w.r.t. a
parameter if there is an algorithm with runtime O(f (p) · nk), where n is the size of the
input, k is an integer constant, p is an integer describing the instance called the param-
eter value, and f (·) is an arbitrary computable function independent of n (typically at
least exponential in p). For fixed (i.e., constant) parameter values p, FPT-runtime is
polynomial (and the degree of the polynomial does not depend on p).

3. Graph Notions and Tree Decompositions of SETAFs

In this section we discuss approaches to apply the notion of treewidth [10] to SETAFs.

Definition 5 (Treewidth). Let G = (V,E) be an undirected graph. A tree decomposition
(TD) of G is a pair (T ,X), where T = (VT ,ET) is a tree and X = (Xn)n∈VT

is a set
of bags (a bag is a subset of V) such that

1For a gentle introduction to complexity theory in the context of formal argumentation, see [9].

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks142

1.
⋃

n∈VT
Xn =V ;

2. for each v ∈V , the subgraph induced by v in T is connected; and
3. for each {v,w} ∈ E, {v,w} ⊆ Xn for some n ∈VT .

The width of a TD is max{|Xn| | n ∈ VT }− 1, the treewidth of G is the minimum width
of all TDs for G.

For fixed k it can be decided in linear time whether a graph has treewidth at most
k; moreover an according tree decomposition can be computed in linear time [11]. For
practical applications there are heuristic approaches available that will return decompo-
sitions of reasonable width very efficiently [12]. However, as the underlying structure of
SETAFs is a directed hypergraph, this notion is not directly applicable in our context. We
can use “standard” directed graphs to describe SETAFs, and apply treewidth by simply
ignoring the direction of the involved arcs. For SETAFs there is the primal graph [5] and
the incidence graph [6] as such notions, each of which leads to its own treewidth notion
for SETAFs. First, we utilize the primal graph to define primal-treewidth.

Definition 6 (Primal Graph). Let SF = (A,R) be a SETAF. The primal graph of SF is
defined as Primal(SF) = (A,R′), where R′ = {(t,h) | (T,h) ∈ R, t ∈ T}. The primal-
treewidth ptw(SF) is defined as the treewidth of Primal(SF).

It is easy to see that several SETAFs can map to the same primal graph. However,
restrictions on the primal graph are often useful to obtain computational speedups for
otherwise hard problems [5,6]. In contrast, the incidence graph uniquely describes a
SETAF, as attacks are explicitly modeled in this notion. Again, we utilize the incidence
graph to define incidence-treewidth.

Definition 7 (Incidence Graph). Let SF = (A,R) be a SETAF and let tails(SF) = {T |
(T,h) ∈ R}. We define the bipartite incidence graph of SF as Inc(SF) = (V,E) with
V = A∪ tails(SF) and E = {(t,T),(T,h) | (T,h) ∈ R, t ∈ T}. The incidence-treewidth
itw(SF) is defined as the treewidth of Inc(SF).

We want to highlight that (a) both of these notions properly generalize the classi-
cal notion of treewidth commonly applied to Dung-style AFs, and (b) these measures
coincide on AFs. Formally:

Proposition 8. The “standard” treewidth of AFs F coincides with ptw(F) and itw(F).

Proof. The case of primal-treewidth is immediate. For incidence-treewidth note that we
can construct Inc(F) from F by substituting each edge r=(a,b) ∈ R by a fresh vertex r
and two edges (a,r), (r,b). It is well known that this operation preserves treewidth.

We will first show that reasoning on SETAFs with fixed primal-treewidth remains
hard (Section 4). Incidence-treewidth on the other hand admits FPT algorithms—we will
initially establish this by characterizing the SETAF semantics via Monadic Second Order
logic (MSO) [13,14] (Section 5). We utilize this characterization to obtain the desired
upper bounds, as in this context we can apply a meta-theorem due to Courcelle [15,16].
In a nutshell, it states that every graph property that can be characterized in MSO can be
checked in polynomial time. However, this generic method typically produces infeasible
constants in practice, which is why in Section 6 we will refine these results and provide
a prototypical algorithm with feasible constants for stable semantics (cf. [7]).

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 143

ϕ

x1

x̄1

x2 x̄2

x3

x̄3

ϕ

x1

x̄1

x2 x̄2

x3

x̄3

2: ϕ,x2, x̄2

1: ϕ,x1, x̄1

3: ϕ,x3, x̄3

(a) (b) (c)

Figure 1. (a) The framework SFϕ from the proof of Theorem 9 for ϕ = (x1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2)∧ (x2 ∨ x3),
(b) Primal(SFϕ), and (c) a tree-decomposition of Primal(SFϕ) of width 2.

4. Decomposing the Primal Graph

We start with an investigation of the treewidth of the primal graph. It has been shown that
various restrictions on the primal graph can lead to computational ease [5,6]. However,
we will see that reasoning remains hard for SETAFs with constant primal-treewidth (in
contrast to the AF-case, where we observe FPT results). We establish this via reductions
from (QBF-)SAT, illustrated in Figures 1 and 2. Intuitively, the attacks between the dual
literals x and x̄ represent the choice between assigning x to true or false. The collective
attack ({x, x̄},ϕ) ensures that we take at least one of x and x̄ into any extension in order to
defend ϕ , making sure we only construct proper truth assignments. Finally, the remaining
attacks towards ϕ correspond to the clauses and make sure that we cannot defend ϕ if for
any clause we set all duals of its literals true—as this means the clause is not satisfied.

Theorem 9. The problems Credσ for σ ∈ {adm,com,stb,pref} are NP-complete, and
Skeptstb is coNP-complete for SETAFs SF with ptw(SF)≥ 2.

Proof. The membership coincides with the general case. For the respective hardness re-
sults, consider the following reduction from SAT (see Figure 1). Let X be the set of atoms
and C be the set of clauses of a boolean formula ϕ (given in CNF). We denote a clause
c ∈C as the set of literals in the clause, e.g. the clause x1 ∨ x̄2 ∨ x̄3 correspond to the set
of literals (arguments, resp.) {x1, x̄2, x̄3}. By xd we denote the dual of a literal (e.g. xd = x̄
and x̄d = x). Let SFϕ = (A,R), where A = {x, x̄ | x ∈ X}∪{ϕ}, and

R = {({xd | x ∈ c},ϕ) | c ∈C}∪{({x, x̄},ϕ),(x, x̄),(x̄,x) | x ∈ X}

Now it holds that ϕ is in at least one σ extension for σ ∈ {adm,com,stb,pref} if and
only if ϕ is satisfiable.

(⇒) An admissible set E containing ϕ contains exactly one of each pair x, x̄, as
otherwise ϕ would not be defended against the attack ({x, x̄},ϕ). Moreover, as c̄ 	⊆ E for
each attack (c̄,ϕ)—c̄ consists of the duals of the literals in c—this means at least one
argument corresponding to a literal of each clause c ∈ C is in E. Hence, E corresponds
to a satisfying assignment of ϕ .

(⇐) Every satisfying assignment of ϕ corresponds to a stable extension of SFϕ : let I
be the interpretation satisfying ϕ , the corresponding set E = {ϕ}∪{x | I(x) = true}∪{x̄ |
I(x) = false} is then stable (admissible, complete, preferred): As I satisfies ϕ , for each
attack corresponding to a clause not all tail-arguments are in E, and hence ϕ is defended.

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks144

ϕ

y1

ȳ1

z2 z̄2

z3

z̄3

ϕ̄

2: ϕ, ϕ̄,z2, z̄2

1: ϕ, ϕ̄,y1, ȳ1

3: ϕ, ϕ̄,z3, z̄3

(a) (b)

Figure 2. (a) SFΦ from the proof of Theorem 10 for Φ = ∀{y1}∃{z2,z3}(y1 ∨ z̄2 ∨ z̄3)∧ (ȳ1 ∨ z2)∧ (z2 ∨ z3),
and (b) a tree-decomposition of Primal(SFΦ) of width 3.

For the coNP completeness result, we add an argument ϕ̄ and an attack (ϕ, ϕ̄). If
ϕ is unsatisfiable, ϕ will be attacked and ϕ̄ will be contained in every stable extension.
Finally note that stable extensions are admissible, complete, and preferred. The constant
primal-treewidth is immediate, as illustrated in the example of Figure 1(c).

Also for preferred semantics reasoning remains intractable for SETAFs with fixed
primal-treewidth. For this result, we extend the construction from Theorem 9 by an ad-
ditional argument ϕ̄ that attacks the existentially quantified variables (see Figure 2).

Theorem 10. Skeptpref is ΠP
2 -complete for SETAFs SF with ptw(SF)≥ 3.

Proof. We show this by a reduction from the ΠP
2 -complete QBF2

∀ problem. Let Φ =
∀Y∃Zϕ be a QBF2

∀-formula with ϕ in CNF. We construct the SETAF SFΦ by extending
Fϕ from Theorem 9 in the following way (for an example see Figure 2): First, we set X =
Y ∪Z and add all arguments and attacks according to the construction of Fϕ . Moreover we
add an argument ϕ̄ and attacks (ϕ̄, ϕ̄),(ϕ, ϕ̄). The last step is to add attacks (ϕ̄,z),(ϕ̄, z̄)
for each z ∈ Z. Now ϕ is in every preferred extension of SFΦ if and only if Φ is valid. We
start with some general observations: ϕ̄ cannot be in any admissible set, and ϕ can only
be in an admissible set S if for each x ∈Y ∪Z exactly one of x and x̄ is in S. Moreover, in
order to have S∩ (Z ∪ Z̄) 	= /0, the argument ϕ̄ has to be attacked by S, and consequently
ϕ ∈ S. This means for every admissible set S that S∩ (Y ∪ Ȳ ∪Z ∪ Z̄) corresponds to a
satisfying assignment of the formula ϕ . In summary, every assignment on the variables
Y corresponds to an admissible set, and every other admissible set in SFΦ contains ϕ and
represents a satisfying assignment for ϕ .

(⇒) Assume ϕ is in every preferred extension. Since every set S ⊆ 2Y is admissible
and in order to accept ϕ for each x ∈ Y ∪Z either x or x̄ have to be accepted, we know
that for every assignment of Y variables there is an assignment satisfying ϕ .

(⇐) Now assume Φ is valid, i.e. for each assignment IY on the variables Y , there is
an assignment IZ on Z such that IY ∪ IZ satisfies ϕ . From this and our observations above
it follows that ϕ is in every preferred extensions.

It is easy to see that the primal-treewidth of FΦ is bounded by 3 (see Figure 2(b)).

Hence, under standard complexity-theoretical assumptions, these problems do not
become tractable when parameterized by the primal-treewidth.

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 145

5. Parameterized Tractability via Incidence-Treewidth

In this section, we establish tractability for reasoning in SETAFs with constant incidence
treewidth by utilizing a meta-theorem due to Courcelle [15,16]. In particular, we use the
tools of Monadic Second Order logic (MSO) to characterize the semantics of SETAFs
(similarly, this has been done for AFs [13,14]). MSO generalizes first-order logic in the
sense that it is also allowed to quantify over sets. Domain elements in our settings are
vertices of an (incidence)-graph, i.e., arguments or attacks. Hence, MSO in our context
consists of variables corresponding to domain elements (indicated by lower case letters),
and set-variables corresponding to sets of domain elements (indicated by uppercase let-
ters). Moreover, we use the standard logical connectives ¬,∧,∨,→,↔, as well as quanti-
fiers ∃,∀ for both types of variables. We use the unary predicates A(·) and R(·) to indicate
an element being an argument or an attack of our SETAF, respectively. Moreover, we use
the binary predicate E(x,y) to indicate an edge in the incidence graph between incidence-
vertices x and y. Alternatively, we write a ∈ A, r ∈ R, (x,y) ∈ E for A(a),R(r),E(x,y),
respectively. Based on these basic definitions, we define notational shortcuts to conve-
niently characterize SETAF-properties. Let SF=(A,R) be a SETAF and Inc(SF)=(V,E)
its incidence graph. We define the following notion for T ⊆V and h ∈V : let (T,h)∈ R be
short-hand notation for ∃r (r ∈ R∧ (r,h) ∈ E ∧∀t(t ∈ T ↔ (t,r) ∈ E)). This notion con-
sists of four parts: (1) vertex r corresponds to an attack, (2) h is the head of the attack r,
(3) the arguments in T constitute the tail of r. We utilize this to avoid dealing with the
attack-vertices of the incidence graph in our semantics characterizations. We borrow the
following “building blocks” from [14] (slightly adapted for our setting).

X ⊆ Y = ∀x (x ∈ X → x ∈ Y) X 	⊂ Y = ¬(X ⊂ Y)
X ⊂ Y = X ⊆ Y ∧¬(Y ⊆ X) x /∈ X = ¬(x ∈ X)
X 	⊆ Y = ¬(X ⊆ Y) x ∈ X⊕

R = x ∈ X ∨∃Y (Y ⊆ X ∧ (Y,x) ∈ R)

We can express (subset-)maximality: max A,P(.),⊆(X)=P(X)∧¬∃Y (Y ⊆A∧P(Y)∧X⊂
Y), and analogously (subset-)minimality: minA,P(.),⊆(X) = max A,P(.),⊇(X) [14] for any
expressible property P(·). Having these tools at hand, we can characterize the SETAF
semantics in an intuitive way. It is easy to verify that these exactly correspond to the
respective notions from Definition 4. Utilizing these building blocks, we can encode the
semantics cf,adm,com,grd,stb,pref exactly as in AFs [13,14].

Definition 11. Let SF = (A,R) be a SETAF and let Inc(SF) = (V,E) be its incidence
graph. For a set X ⊆V where ∀x ∈ X(x ∈ A):

cf(X) = ∀T,h((T,h) ∈ R → (T 	⊆ X ∨h /∈ X))
adm(X) = cf(X)∧∀T,h(((T,h) ∈ R∧h ∈ X)→∃S, t(S ⊆ X ∧ t ∈ T ∧ (S, t) ∈ R))
com(X) = adm(X)∧∀x((x ∈ A∧ x /∈ X)→

∃S((S,x) ∈ R∧¬∃T (T ⊆ X ∧ (X ,s) ∈ R∧ s ∈ S)))
grd(X) = min A,com(·),⊆(X)
stb(X) = cf(X)∧∀x(x ∈ A → x ∈ X⊕

R)
pref(X) = max A,adm(·),⊆(X)

We can immediately apply Courcelle’s theorem [15,16] to obtain the desired result.

Theorem 12. Let SF be a SETAF. For the semantics under our consideration, reasoning
is fixed-parameter tractable w.r.t. itw(SF).

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks146

a

b

c

(a)

a

b

c

r1

r2

(b)

1: /0

2: {b,r2}

3: {b,r1,r2}

4: {a,r1,r2}

5: {c,r2}

(forget b, forget r2)

(forget r1)

(forget a, insert b)

(forget c, insert b)

B
ot

to
m

-u
p

co
m

pu
ta

tio
n

(c)

Figure 3. Running example for Section 6: (a) SETAF SF ; (b) Inc(SF); (c) tree decomposition of Inc(SF).
The edge labels indicate how (c) can be transformed into a nice tree decomposition.

6. Dynamic Programming on SETAFs

In the following, we specify a dynamic programming algorithm utilizing incidence-
treewidth to reason in stable semantics. Ultimately, we will show that this algorithm
allows us to reason efficiently in SETAFs with fixed incidence-treewidth.
Node Types. To illustrate the idea of this algorithm, we restrict the tree-decompositions
of the incidence graph to nice tree-decompositions: a tree-decomposition (T ,X) is
called nice if T = (VT ,ET) is a rooted tree with an empty bag in the root node, and if
each node t ∈ T (shorthand notion for n ∈VT) is of one of the following types:

1. Leaf : n has no children in T ,
2. Forget: n has one child n′, and Xn = Xn′ \ {v} for some v ∈ Xn′ ,
3. Insert: n has one child n′, and Xn = Xn′ ∪ {v} for some v 	∈ Xn′ ,
4. Join: n has two children n′, n′′, with Xn = Xn′ = Xn′′ .

Any tree-decomposition can be transformed into a nice tree decomposition with the same
width in linear time [17]. Let SF = (A,R) be a SETAF and Inc(SF) = (V,E). For sets
U ⊆V , by UA, UR we identify the sets (U ∩A), (U ∩R), respectively. By X≥n we denote
the union of all bags Xm where m ∈VT appears in the subtree of T rooted in n.
Colorings. We use colors to keep track of the arguments and attacks that appear in the
bag Xn of node n ∈ VT . These colorings characterize extension candidates that are con-
sistent with the framework rooted in the node in question. For an argument a in relation
to an extension E, we use the color ina to indicate a ∈ E. The color outa indicates there
is an attack r = (T,a) with a /∈ T,T ⊆ E, and r ∈ XR≥n, i.e., a is attacked by E and a “re-
sponsible” attack appears in the subtree of T rooted in n. Finally, the color pouta (provi-
sionally out) indicates there is an attack r = (T,a) with a /∈ T,T ⊆ E, and r /∈ XR≥n, i.e., a
is attacked by E but the “responsible” attack appears “above” the node n in T . Similarly,
for attacks (T,h) we use the color inr to indicate T ⊆ E. The color outr means that there
is an argument a ∈ T (i.e., in the tail) that is attacked by E, and the “responsible” attack
appears in the subtree of T rooted in n. Finally, poutr means that an argument a ∈ T is
attacked by E, but the “responsible” attack appears “above” the node n in T . Formally,
a coloring for a node n ∈VT is a function C : Xn →{ina,outa,pouta, inr,outr,poutr}. By
[C] we denote the set {a | C(a) = ina}. Colorings in a node t ∈ T characterize exten-
sion candidates—partial evaluations of the framework rooted in t. Colorings are gener-
ated in the leaves, and unsuitable extension candidates are successively eliminated when
traversing the tree in a bottom-up manner. For an example see Figure 3.

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 147

(a)

r1 a r2
inr outa outr

poutr ina inr
poutr ina poutr
poutr pouta outr

a
pouta

r1

poutr
r2

outr
(b) (c)

r1 r2
inr outr

poutr inr
poutr poutr

Figure 4. Example for valid colorings for (a) the leaf node 4 from Figure 3 and (c) the preceding forget node
for argument a. Subfigure (b) illustrates the subgraph of the incidence graph that corresponds to the leaf node
together with the coloring that is discarded by the forget node.

Leaf Nodes. Intuitively, in leaf nodes we guess one of two possibilities: in or out/pout
for each argument and each attack, and keep every “consistent” coloring. Whether an
argument/attack is colored out or pout depends only on whether the attack in this coloring
is already present in the current leaf node. Formally, a valid coloring for a leaf n is each
coloring that satisfies the conditions in the box below. The valid colorings for leaf node 4
of our running example (Figure 3) are depicted in Figure 4(a).

For each argument a ∈ XA
n :

C(a) = ina ⇒∀r=(T,a) ∈ XR
n : C(r) ∈ {poutr,outr}

C(a) = outa ⇔∃r=(T,a) ∈ XR
n : C(r) = inr

For every attack r = (T,h) ∈ XR
n :

C(r) = inr ⇒C(h) 	= ina ∧∀t ∈ T ∩XA
n : C(t) = ina

C(r) = outr ⇔∃t ∈ T ∩XA
n : C(t) ∈ {pouta,outa}

Forget Nodes. We examine forget-argument nodes and forget-attack nodes separately.
Let n be a forget-argument node with child n′ such that XA

n =XA
n′ \{a}. We have to discard

all colorings C where C(a) = pouta, as in these colorings a is supposed to be attacked by
[C]. As we forget a in the current node and by the definition of a tree-decomposition, this
cannot happen: consider again the running example from Figure 3. a is forgotten between
bag 4 and 3; i.e., in the “upper” part of the tree decomposition, no attacks towards a
can be added. Hence, there cannot be an attack colored inr towards a that confirms a
being attacked, and the provisional color pouta cannot be updated to outa. Formally, if
C is a valid coloring for n′ and C(a) 	= pouta, then C−a is a valid coloring for n, where
(C−a)(b) =C(b) for each b ∈ Xn. We handle forget-attack nodes in the same way: if n
is a forget node with child n′ such that XR

n = XR
n′ \ {r}, and if C(r) 	= poutr, then (C− r)

is a valid coloring for n, where (C− r)(b) =C(b) for each b ∈ Xn.
Insert Nodes. We distinguish the two cases where we insert an argument and insert
an attack. Whenever we insert an argument a, we have to consider up to two different
scenarios: (C + a): the added argument is attacked by the extension. In this case the
added argument is colored pouta or outa, depending on whether the “responsible” attack
is already in the current bag. In case a is in the tail of an attack, we can color this attack
outr. (C+̇a): the added argument is in the extension. In both cases we have to check
whether the result will be consistent with the existing colors, i.e., for (C+ a) the added
argument must not be in the tail of an attack that is colored inr, and for (C+̇a) there
must not be an attack colored inr towards the added argument. Assume we would color
the inserted argument b as outa/pouta while b is in the tail of attack r, which we already
colored inr in a previous step. Of course, this is not consistent with our intended meaning
of the attack color inr (see (Figure 5(b)). On the other hand, assume we color b as ina
while it is attacked by r which we already colored inr in a previous step. This would

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks148

(a)

r1 r2
inr outr

poutr inr
poutr poutr

b
pouta

r1

inr
r2

outr�(b)

b
ina

r1

poutr
r2

inr�(c)

(d)

r1 b r2
inr ina outr

outr outa inr
outr pouta poutr
poutr ina poutr

Figure 5. “Insert b” node between node 4 and 3 (in the running example from Figure 3 after “Forget a” from
Figure 4). Subfigures (b) and (c) show inconsistent colorings, (d) shows the resulting valid colorings.

introduce a conflict in the constructed extension (see (Figure 5(c)). The operations C+a
and C� a are defined the box below. Formally: Let n be an insert-argument node with
child n′ s.t. XA

n = XA
n′ ∪ {a}. If C is a valid coloring for n′,

• if �r=(T,h) ∈ XR
n : (C(r) = inr ∧a ∈ T), then C+a is a valid coloring for n;

• if �r=(T,a) ∈ XR
n : (C(r) = inr), then C+̇a is a valid coloring for n.

(C+a)(b) =

⎧⎪⎪⎨
⎪⎪⎩

outa if b = a∧∃r = (T,a) ∈ XR
n : (C(r) = inr ∧a /∈ T)

pouta if b = a∧�r = (T,a) ∈ XR
n : (C(r) = inr ∧a /∈ T)

outr if b = (T,h)∧a ∈ T ∧C(b) = poutr
C(b) otherwise

(C+̇a)(b) =
{

ina if b = a
C(b) otherwise

For insert-attack nodes, we also have to consider two cases for an attack r = (T,h):
(C + r): the extension attacks T , either in the current bag (in which case we color the
attack outr), or possibly in the “upper” parts of T , then we color the attack poutr. (C+̇r):
this case indicates T ⊆ E for the extension E. In this case the head of the attack can be set
to outa. Again, we can only apply this coloring if it is consistent with the previous colors.
We will use the operations C + r and C+̇r as defined below. Let n be an insert-attack
node with child n′ such that XR

n = XR
n′ ∪ {r = (T,h)}. If C is a valid coloring for n′,

• then C+ r is a valid coloring for n;
• if (h /∈XA

n ∨C(h)	=ina)∧∀t∈T ∩XA
t :C(t)= ina, then C+̇r is a valid coloring for n.

(C+ r)(b) =

⎧⎨
⎩

outr if b = r∧∃t ∈ T ∩XA
n : C(t) ∈ {pouta,outa}

poutr if b = r∧�t ∈ T ∩XA
n : C(t) ∈ {pouta,outa}

C(b) otherwise

(C+̇r)(b) =

⎧⎨
⎩

inr if b = r
outa if r = (T,h)∧b = h
C(b) otherwise

Join Nodes. In these nodes we combine the colorings of immediate child nodes. Let n be
a join node with children n′,n′′. If C is a valid coloring for n′ and D is a valid coloring for
n′′ with [C] = [D] and {r |C(r)= inr} = {r | D(r)= inr}, then C � D is a valid coloring
for n (see the box below).

(C � D)(b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ina if C(b) = D(b) = ina
outa if C(b) = outa ∨D(b) = outa
pouta otherwise (if b ∈ XA)
inr if C(b) = D(b) = inr
outr if C(b) = outr ∨D(b) = outr
poutr otherwise (if b ∈ XR)

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 149

Theorem 13. With the presented algorithm, Credstb, Skeptstb as well as counting the
number of stable extensions can be done in time O(5k · k · (|A|+ |R|)). Moreover, we can
enumerate all stable extensions with linear delay.

Proof. We can assume the number of nodes to be bounded by O(|A|+ |R|). For each
node, the number of (valid) colorings (i.e., rows in our tables of colorings) is bounded
by 3k and that we can find and access rows in linear time w.r.t. k. In leaf nodes, we can
check the colorings in time O(k2) for each of the O(3k) possible colorings, resulting in
O(3k ·k2). In forget nodes, we can check the conditions and compute eventually resulting
colorings in time O(k) for each of the O(3k) colorings of the child node, resulting in
O(3k · k). In insert nodes, we can check the conditions and compute eventually resulting
colorings in time O(k2) for each of the O(3k) colorings of the child node, resulting in
O(3k · k2). Finally, for join nodes we have to consider 3k · 3k = 9k pairs. However, we
only need to consider 5k pairs if we assume the data structure to be properly sorted, e.g.
lexicographically by treating the colors ina/inr as 0 and pouta/outa/poutr/outr as 1. As
each table has O(3k) rows, sorting is in O(3k · k). Let C be a coloring such that m ≤ k
arguments/attacks are colored as ina/inr. There exist at most 2k−m distinct colorings C′

with ∀x : (C(x) ∈ {ina, inr} ⇔ C′(x) ∈ {ina, inr}). There are
(k

m

)
possibilities resulting

from the choice of m, resulting in ∑k
m=0

(k
m

) · 2k−m · 2k−m = 5k join pairs. We can then
compute C � D in O(k), resulting in O(5k · k) for join nodes, dominating the runtime of
the other node types. The resulting runtime for the algorithm is O(5k · k · (|A|+ |R|)).

We can decide Credstb/Skeptstb for a ∈ A by flagging colorings that contain/do not
contain a. In each node we update the flag accordingly; the flag in the root node indicates
credulous/skeptical acceptance. We can keep the count of extensions w.r.t. each coloring,
and to enumerate the extensions once the dynamic programming algorithm is done we
can traverse the tree top-down and output the extensions with linear delay (cf. [7]).

Other Semantics. The core concepts to characterize stable extensions carry over to other
admissibility-based semantics, where also undecidedness can occur. This can be handled
in a similar manner as the poutr/outr colors, where one indicates “confirmed undecid-
edness” and another color indicates “provisional undecidedness”. The latter color can be
“updated” to the former if a suitable witness is present (either in an insert- or join node).
Again, colorings containing provisional colors have to be removed in forget nodes.

7. Discussion

In this paper, we investigated the treewidth parameter for reasoning tasks in SETAFs.
We showed that reasoning with constant primal-treewidth remains hard (contrasting the
results for the special case of AFs), while constant incidence-treewidth allows us to rea-
son and count in polynomial time. Finally, we improved these generically obtained re-
sults by providing a dynamic programming algorithm tailored for SETAFs, highlighting
interesting differences to the AF-case that arise from the generalization step. The under-
lying structure of SETAFs is a directed hypergraph. While there are measures available
for general hypergraphs, the directed case is not as well explored—this work contributes
to this, as we provide an alternative treewidth measure in this context. Moreover, while
there are several systems available to compute the treewidth of undirected simple graphs
efficiently—be it exactly or heuristically—the situation for implementations of hyper-

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks150

treewidth is less advanced. Finally, reasoning in frameworks with fixed directed graph
parameters (e.g., cycle rank, directed path-width, etc.) already turned out to be intractable
for AFs [7]; which carries over to SETAFs. Hence, we decided to focus on the treewidth-
based measures, so that we can implement the presented algorithms in the future.

The results of this paper may serve as a starting point for further parameterized anal-
ysis of computational properties of SETAFs. Considering SETAFs in recent additions to
the treewidth literature in the context of argumentation constitutes interesting topics for
future research, see e.g. [18]. For example, recently treewidth has been investigated in
conjunction with backdoors in [19], effectively decreasing the relevant parameter value.

Acknowledgments. This research has been supported by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT19-065, and by the Austrian Science Fund
(FWF) through projects P32830 and Y698.

References

[1] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artif Intell. 1995;77(2):321-58.

[2] Nielsen SH, Parsons S. A Generalization of Dung’s Abstract Framework for Argumentation: Arguing
with Sets of Attacking Arguments. In: Proceedings of ArgMAS 2006. Springer; 2006. p. 54-73.

[3] Dvořák W, Fandinno J, Woltran S. On the expressive power of collective attacks. Argument Comput.
2019;10(2):191-230.

[4] Dvořák W, Greßler A, Woltran S. Evaluating SETAFs via Answer-Set Programming. In: Proceedings
of SAFA 2018. vol. 2171 of CEUR Workshop Proceedings. CEUR-WS.org; 2018. p. 10-21.

[5] Dvořák W, König M, Woltran S. Graph-Classes of Argumentation Frameworks with Collective Attacks.
In: Proceedings of JELIA 2021. vol. 12678 of LNCS. Springer; 2021. p. 3-17.

[6] Dvořák W, König M, Woltran S. On the Complexity of Preferred Semantics in Argumentation Frame-
works with Bounded Cycle Length. In: Proceedings of KR 2021; 2021. p. 671-5.

[7] Dvořák W, Pichler R, Woltran S. Towards fixed-parameter tractable algorithms for abstract argumenta-
tion. Artif Intell. 2012;186:1-37.

[8] Flouris G, Bikakis A. A comprehensive study of argumentation frameworks with sets of attacking
arguments. Int J Approx Reason. 2019;109:55-86.

[9] Dvořák W, Dunne PE. Computational Problems in Formal Argumentation and their Complexity. In:
Handbook of Formal Argumentation. College Publications; 2018. p. 631-87.

[10] Robertson N, Seymour PD. Graph minors. II. Algorithmic aspects of tree-width. J Algorithms.
1986;7(3):309-22.

[11] Bodlaender HL. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM
J Comput. 1996;25(6):1305-17.

[12] Abseher M, Musliu N, Woltran S. htd - A Free, Open-Source Framework for (Customized) Tree De-
compositions and Beyond. In: Proceedings of CPAIOR 2017. Springer; 2017. p. 376-86.

[13] Dunne PE. Computational properties of argument systems satisfying graph-theoretic constraints. Artif
Intell. 2007;171(10-15):701-29.

[14] Dvořák W, Szeider S, Woltran S. Abstract Argumentation via Monadic Second Order Logic. In: Pro-
ceedings of SUM 2012. vol. 7520 of LNCS. Springer; 2012. p. 85-98.

[15] Courcelle B. Recognizability and second-order definability for sets of finite graphs. Université de
Bordeaux; 1987. I-8634.

[16] Courcelle B. Graph rewriting: an algebraic and logic approach. In: Handbook of theoretical computer
science, Vol. B. Amsterdam: Elsevier; 1990. p. 193-242.

[17] Kloks T. Treewidth, Computations and Approximations. vol. 842 of LNCS. Springer; 1994.
[18] Fichte JK, Hecher M, Mahmood Y, Meier A. Decomposition-Guided Reductions for Argumentation

and Treewidth. In: Zhou Z, editor. Proceedings of IJCAI 2021; 2021. p. 1880-6.
[19] Dvořák W, Hecher M, König M, Schidler A, Szeider S, Woltran S. Tractable Abstract Argumentation

via Backdoor-Treewidth. In: Proceedings of AAAI 2022; 2022. p. 5608-15.

W. Dvořák et al. / Treewidth for Argumentation Frameworks with Collective Attacks 151

