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Abstract. We propose a generic notion of consistency in an abstract labelling set-
ting, based on two relations: one of intolerance between the labelled elements and
one of incompatibility between the labels assigned to them, thus allowing a spec-
trum of consistency requirements depending on the actual choice of these relations.
As a first application to formal argumentation, we show that traditional Dung’s
semantics can be put in correspondence with different consistency requirements
in this context. We consider then the issue of consistency preservation when a la-
belling is obtained as a synthesis of a set of labellings, as is the case for the tradi-
tional notion of argument justification. In this context we provide a general char-
acterization of consistency-preserving synthesis functions and analyze the case of
argument justification in this respect.
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1. Introduction

In formal argumentation, the presence of conflicts between arguments is a key aspect
that calls for mechanisms able to produce sensible reasoning outcomes. In particular, it
is typically required that these outcomes satisfy properties which have intuitively to do
with the notion of consistency. For instance, in abstract argumentation semantics [1,2]
either extensions or labellings are typically required to satisfy the property of conflict-
freeness, while, moving from abstract to structured argumentation, it is desired that the
conclusions of arguments regarded as acceptable are not contradictory, as indicated by
the properties of direct and indirect consistency in [3]. While consistency appears to per-
meate the field of formal argumentation as a crucial component, to our knowledge no at-
tempts are available in the literature to provide a general formal treatment of this notion,
consistency-related definitions being usually embedded in the context of specific for-
malisms, without a common reference framework. This appears to be a limitation regard-
ing the possibility of bridging together the consistency notions considered in different
formalisms and possibly investigating variations and developments thereof.

To fill this gap, in this paper we introduce a generalized notion of (in)consistency
applicable in any context where a labelling approach is adopted. The proposed notion re-
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lies on two basic elements: an intolerance relation between the labelled elements and an
incompatibility relation between the labels, as presented in Section 2. As a first example
of the application of the proposed concept, we show in Section 3 that Dung’s traditional
semantics can be put in correspondence with different consistency requirements, partic-
ularly with different incompatibility relations. As a further step, in Section 4, we con-
sider the issue of consistency preservation when a labelling derives from a set of other la-
bellings. We provide some results concerning consistency preservation when a labelling
is obtained through a synthesis function and apply these concepts to the case of deriving
the argument justification status. The relationships of this work with previous literature
and various perspectives of future development are finally discussed in Section 5.

2. Generalizing consistency for labelling-based systems

In a variety of contexts the assessments of entities of various kind are expressed by
assigning them a label taken from a predefined set. In many cases these sets of labels
have an intuitive underlying order according to some notion of positivity. In order to
provide a common ground to characterize different assessment labels and to relate and
compare them, we first introduce the notion of assessment classes.

Definition 1 A set of assessment classes is a set C equipped with a total order ≤ and
including a maximum and a minimum element, which are assumed to be distinct.

In the following we will abbreviate the term ‘set(s) of assessment classes’ as sac(s).
Intuitively, the order is meant to capture an abstract distinction between different levels
of positivity of the assessment, with c1 ≤ c2 meaning that c2 corresponds to an at least as
positive assessment as c1 (whatever a positive assessment means in a given context). In
the following we will mostly use a tripolar sac C3 = {pos,mid,neg} with neg ≤mid ≤
pos and the intuitive meaning that pos corresponds to a definitely positive assessment,
neg to a definitely negative assessment, and mid to an intermediate situation. The basic
idea, expressed by the following definition, is that a sac is used to classify the elements
of a set of labels according to their level of positivity. Note that the elements of a sac are
called classes because in general more than one label can be mapped to the same class.

Definition 2 Given a set of assessment classes C, a C-classified set of assessment labels
is a set Λ equipped with a total function CΛ : Λ → C. The total preorder induced on Λ
by CΛ will be denoted by � where λ1 � λ2 iff CΛ(λ1) ≤ CΛ(λ2). As usual, λ1 ≺ λ2 will
denote λ1 � λ2 and λ2 � λ1

We will abbreviate the term ‘set(s) of assessment labels’ as sal(s) and omit ‘C-
classified’, when C is not ambiguous. Also, to distinguish preorders referring to different
sals, given a sal Λ we will denote the relevant preorder as �Λ.

The notion of labelling based on a sal is the usual one.

Definition 3 Given a sal Λ and a set S a Λ-labelling of S is a function L : S → Λ.

Different sals can be used to express assessments in distinct, but possibly re-
lated, evaluation contexts. For instance, in the context of argument acceptance evalu-
ation based on the labelling-based version of Dung’s semantics [1,2], the sal ΛIOU =
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{in,out,und} is used, while in Defeasible Logic Programming (DeLP) arguments are
marked as D(efeated) or U(ndefeated) corresponding to the use of the sal ΛDe =
{D,U}, and in [4] an approach using the set of four labels ΛJV = {+,−,±, /0}
is proposed. We assume that the sals mentioned above are C3-classified as fol-
lows: C3

ΛIOU = {(in,pos),(out,neg),(und,mid)}; C3
ΛDe = {(D,neg),(U,pos)}; C3

ΛJV =

{(−,neg),(+,pos),(±,mid),( /0,mid)}.
We can now introduce a generalized notion of inconsistency in this formal context.

Intuitively, an inconsistency arises when two elements of a set which cannot stand each
other are assigned labels which are ‘too positive’ altogether.

This suggests that, in general terms, inconsistency can be understood as arising from
two components: an intolerance relation at the level of the assessed elements, indicating
who cannot stand whom, and an incompatibility relation at the level of the labels, in-
dicating which pairs of positive assessments correspond to a clash if ascribed to a pair
of elements connected by the intolerance relation. In the following we will assume that
an incompatibility relation on assessment labels is always induced by an incompatibility
relation on assessment classes.

Definition 4 Given a set S, an intolerance relation on S is a binary relation int ⊆ S×S,
where (s1,s2) ∈ int indicates that s1 is intolerant of s2 and will be denoted as s1 � s2,
while (s1,s2) /∈ int will be denoted as s1 	 s2.

Note that we do not make any assumption on the intolerance relation, in particular
it needs not to be symmetric.

To exemplify, in languages equipped with negation, typically intolerance between
language elements coincides with negation (a symmetric relation where each element
has exactly one opposite), however more general forms of contrariness have been con-
sidered in argumentation contexts, where the corresponding intolerance relation may not
be symmetric and allows the existence of multiple contraries for an element [5,6]. At the
argument level, the attack relation in Dung’s frameworks can be regarded as an example
of intolerance relation.

Definition 5 Given a sac C, an incompatibility relation on C is a relation inc ⊆ C×C,
where (c1,c2) ∈ inc indicates that c1 is incompatible with c2 and will be denoted as
c1� c2, while (c1,c2) /∈ inc will be denoted as c1� c2. Given a C-classified sal Λ, we
define the induced incompatibility relation inc′ ⊆ Λ×Λ as follows: for every λ1,λ2 ∈ Λ,
(λ1,λ2) ∈ inc′ iff (CΛ(λ1),CΛ(λ2)) ∈ inc. With a little abuse of notation we will also
denote (λ1,λ2)∈ inc′ as λ1�λ2, and analogously for λ1�λ2. Given a label λ , we define
the set of labels which are compatible with λ as sc(λ )� {λ ′ ∈ Λ | (λ ,λ ′) /∈ inc′}.

We remark again that incompatibility refers to the situation where labels are assigned
to entities which are linked by intolerance. For intance, in a context where statements
are assessed and intolerance between them corresponds to contradiction, two (not neces-
sarily distinct) positive labels expressing belief should be incompatible: they cannot be
assigned to two contradictory statements, since you cannot believe both of them.

We can now introduce our generalized notion of inconsistency of a labelling.

Definition 6 Given a set S equipped with an intolerance relation int, a sac C equipped
with an incompatibility relation inc, and a C-classified sal Λ, a Λ-labelling L of S is
int-inc-inconsistent iff ∃s1,s2 ∈ S such that s1 � s2 and L(s1)�L(s2).
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We say that a labelling is int-inc-consistent if it is not int-inc-inconsistent and that a
set L of labellings is int-inc-consistent if every L ∈ L is int-inc-consistent.

From the intuition underlying Definition 6, some rather natural properties can be
identified for an incompatibility relation on a sac C, based on the idea that inconsistency
arises from a sort of ‘excess of simultaneous positiveness’ in the assessment of some
elements linked by intolerance. First, an obvious requirement is that max(C)�max(C):
two maximally positive labels cannot be ascribed together to conflicting elements. More
generally one can observe that if c1� c2, then for every pair c′1,c

′
2 such that c1 ≤ c′1 and

c2 ≤ c′2 it must hold that c′1� c′2, since the simultaneous positiveness expressed by c′1
and c′2 is not lesser that the one expressed by c1 and c2. We call such an incompatibility
relation monotonic and take this property for granted in the following.

Note that max(C)�max(C) is a consequence of the monotonicity property if one as-
sumes that inc is not empty. Accordingly we define, for any sac C, the minimal nonempty
incompatibility relation as incC = {(max(C),max(C))}.

It also follows that, to avoid a degenerate situation where every labelling is incon-
sistent, it must hold that min(C)�min(C).

Moreover, assuming that the intolerance relation is not empty, for max(C) to be
attainable for every element without necessarily generating inconsistencies it must be the
case that the following stronger condition (implying the previous one) holds: max(C)�
min(C) and min(C)�max(C) or equivalently �c∈C such that c�min(C) or min(C)�c.
Note that this implies that for any C-classified sal Λ, sc(λ ) �= /0 for any λ ∈ Λ under the
mild condition that ∃λ ∈ Λ : CΛ(λ ) = min(C), which we will assume in the following.

The generic definition of inconsistency we have introduced is ‘tunable’ as its in-
stances can be ‘adjusted’ varying the incompatibility relation, and possibly also the un-
derlying intolerance relation and C-classification, giving rise to a family of alternative
(in)consistency notions. In particular, different argumentation semantics can be put in
correspondence with different (in)consistency notions, as discussed next.

3. Consistency properties in argumentation semantics

As well-known, in abstract argumentation an argumentation semantics is a formal spec-
ification of a criterion to determine the possible outcomes of a situation of conflict, rep-
resented by a binary relation of attack (denoted as → in the following), between a set A
of arguments, as expressed by the traditional notion of argumentation framework [1].

Definition 7 An argumentation framework is a pair AF = (A ,→) where A is a set of
arguments and →⊆ A ×A is a binary relation of attack between them.

In the extension-based approach to argumentation semantics the conflict outcomes
are expressed as sets of arguments called extensions and, in this context, a basic consis-
tency notion called conflict-freeness has been traditionally considered: a set of arguments
is conflict-free if it does not include any pair of arguments α,β such that (α,β )∈→ (also
denoted as α ∈ β−). In the labelling-based approach to argumentation semantics, the
outcomes are expressed as arguments labellings, i.e. as assignments of labels, taken from
a given set, to the set of arguments A . Using the set of three labels ΛIOU a correspon-
dence can be drawn between extensions and labellings, while in general the labelling-
based approach is more expressive than the extension-based approach. Combining the
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generalized notion of consistency with three-valued labellings enables to identify corre-
spondences between different notions of consistency and different semantics. In particu-
lar, given an abstract argumentation framework, we naturally assume that the intolerance
relation coincides with the attack relation, i.e. α � β iff α ∈ β−, and use the classifi-
cation C3

ΛIOU introduced above. Then, an analysis of labelling-based semantics in this
perspective can be developed, as we do in the following, where we review the defini-
tions of some fundamental labelling-based semantics [2] and analyze their generalized
consistency properties.

The simplest semantics notion is the one of conflict-freeness, which is recalled in
Definition 8.

Definition 8 Let L be a labelling of an argumentation framework AF = (A ,→). L is
conflict-free iff for each α ∈ A it holds that:

1. if L(α) = in then �β ∈ α− : L(β ) = in

2. if L(α) = out then ∃β ∈ α− : L(β ) = in

Item 1 in Definition 8 corresponds exactly to the weakest form of consistency, i.e. to
the incompatibility relation incC3 = {(pos,pos)}.

Admissibility of a set of arguments was introduced in [1] with reference to the notion
of defense, i.e. the ability of a conflict-free set to defend its members by counterattacking
their attackers. The labelling-based counterpart of this idea is given in Definition 9.

Definition 9 Let L be a labelling of an argumentation framework AF = (A ,→). L is
admissible iff for each α ∈ A it holds that:

1. if L(α) = in then ∀β ∈ α− : L(β ) = out

2. if L(α) = out then ∃β ∈ α− : L(β ) = in

Item 1 in Definition 9 is a strengthening of item 1 of Definition 8, while item 2 is
the same in both Definition 8 and 9. Interestingly, this strengthening corresponds to the
choice of a stronger form of consistency: having an attacker labelled und is forbidden for
an argument labelled in, while having an attacker labelled in is allowed for an argument
labelled und. This coincides with adopting the following asymmetric incompatibility
relation inca

C3 = {(pos,pos),(mid,pos)}.

Proposition 1 The set of admissible labellings coincides with the set of conflict-free la-
bellings which are →-inca

C3 -consistent.

Proof: For a labelling L let us first assume that L is admissible. Then L is conflict-
free and by item 1 of Definition 9 �α,β ∈ A such that β ∈ α− (i.e. β � α) and
(L(β ),L(α)) ∈ inca

C3 (i.e. L(β )� L(α)). Hence L is →-inca
C3 -consistent. Let now as-

sume L is conflict-free and →-inca
C3 -consistent. To complete the proof we have to show

that item 1 of Definition 9 holds: assume by contradiction that ∃α such that L(α) = in

and ∃β ∈ α− : L(β ) �= out. It follows that (L(β ),L(α)) ∈ inca
C3 which contradicts the

hypotesis that L is →-inca
C3 -consistent. �

Completeness of a set of arguments was introduced in [1] and is based on the idea
that if an argument is defended by an admissible set of arguments, it should be accepted
together with its defenders. The labelling-based counterpart of this idea is given in Defi-
nition 10.
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Definition 10 Let L be a labelling of an argumentation framework AF = (A ,→). L
is complete if it is admissible and for each α ∈ A it holds that if L(α) = und then
�β ∈ α− : L(β ) = in and ∃β ∈ α− : L(β ) = und

In words a complete labelling is an admissible labelling with the additional require-
ment that an argument which is labelled und must have an und-labelled attacker and no
in-labelled attackers. This amounts to further strengthening the notion of consistency
by adopting the incompatibility relation incc

C3 = {(pos,pos),(pos,mid),(mid,pos)} to-
gether with enforcing the following reinstatement property.

Definition 11 A labelling L satisfies the reinstatement property if ∀α ∈ A it holds that
if ∀β ∈ α− L(β ) = out then L(β ) = in

Proposition 2 The set of complete labellings coincides with the set of admissible la-
bellings which are →-incc

C3 -consistent and satisfy the reinstatement property.

Proof: For a labelling L let us first assume that L is complete, hence admissi-
ble. From Proposition 1 we have that �α,β such that β ∈ α− and (L(β ),L(α)) ∈
{(pos,pos),(mid,pos)}. From Definition 10 we have also that if L(α) = und then
�β ∈ α− : L(β ) = in, i.e. �α ,β such that β ∈ α− and (L(β ),L(α)) ∈ {(pos,mid)}.
It follows that L is →-incc

C3 -consistent. Moreover, it is well known that complete la-
bellings satisfy the reinstatement property [2]. Let us now assume L is admissible, →-
incc

C3 -consistent and satisfies the reinstatement property. Given an argument α such that
L(α) = und it follows (from consistency) that �β ∈ α− : L(β ) = in and (from the rein-
statement property) that ∃β ∈ α− : L(β ) �= out, hence ∃β ∈ α− : L(β ) = und and L is a
complete labelling. �

Stability of a set of arguments can be characterized in several ways, its key feature
being that no room is left for undecidedness (an argument is either accepted or attacked
by an accepted argument) as indicated by Definition 12.

Definition 12 Let L be a labelling of an argumentation framework AF = (A ,→). L is
stable if it is complete and �α ∈ A : L(α) = und.

This constraint can be put in correspondence with the adoption of the strongest
notion of consistency, namely with the choice of the incompatibility relation incC3 =
{(pos,pos),(pos,mid),(mid,pos),(mid,mid)}.

Proposition 3 The set of stable labellings coincides with the set of complete labellings
which are →-incC3 -consistent.

Proof: For a labelling L let us first assume that L is stable. It follows that no argument is
labelled und hence �α,β such that β ∈ α− and (L(β ),L(α)) ∈ {(pos,mid),(mid,pos),
(mid,mid)} and from conflict-freeness we have also that �α ,β such that β ∈ α− and
(L(β ),L(α)) = (pos,pos). Therefore L is →-incC3 -consistent. Assume now L is com-
plete and →-incC3 -consistent and suppose by contradiction that ∃α such that L(α) =
und. It follows that α− �= /0, otherwise by the reinstatement property it would hold that
L(α) = in. For every β ∈ α− we have that L(β ) /∈ {in,und} otherwise L would not be
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→-incC3 -consistent. But then ∀β ∈ α− we get L(β ) = out which, by the reinstatement
property, contradicts L(α) = und. �

To summarize, admissible labellings can be characterized in terms of strengthening
consistency with respect to conflict-freeness without resorting to the traditional notion
of defense, while further strengthenings of consistency, together with the reinstatement
property, characterize complete and stable labellings.

In the next section we move beyond the evaluation of acceptability of arguments
carried out on the basis of argumentation semantics and consider further evaluations that
can be derived from it and raise the issue of preserving consistency across the derivation.

4. Consistency preservation in labelling derivation mechanisms

The outcomes prescribed by an argumentation semantics are typically used as the start-
ing point for the derivation of further evaluations, for instance whether an argument is
skeptically justified. It is then interesting to consider the question of whether and how the
consistency properties of the original evaluation are preserved in the derived evaluation
and of the requirements that can be posed on the derivation mechanism to ensure this
preservation.

We focus here on what we call pure synthesis labelling derivation, namely a mech-
anism where a labelling of a set S is generated from a set of labellings of the same set
S. To exemplify, the evaluation of the argument justification status according to a given
semantics is derived from the set of the argument extensions/labellings prescribed by the
same semantics.

The simplest notion of argument justification, which we will use as running example,
is based on three possible states.

Definition 13 Given a set L of ΛIOU-labellings of a set of arguments A , an argument
α ∈ A is:

• skeptically justified iff ∀L ∈ L L(α) = in;
• credulously justified iff it is not skeptically justified2 and ∃L ∈ L : L(α) = in;
• not justified iff �L ∈ L : L(α) = in

Considering a sal ΛAJ = {SkJ,CrJ,NoJ}, the evaluation of argument justification
can be modelled as the generation of a ΛAJ-labelling from a set of ΛIOU-labellings. Con-
cerning ΛAJ it is intuitive to assume the classification C3

ΛAJ = {(SkJ,pos),(NoJ,neg),
(CrJ,mid)}.

At a general level, pure synthesis labelling derivations, like the one of argument
justification, can be formalized through a simple synthesis function.

Definition 14 Given two sets of labels Λ1 and Λ2, a simple synthesis function (ssf) from
Λ1 to Λ2 is a mapping syn : 2Λ1 \{ /0}→ Λ2.

The idea is that given a set of Λ1-labellings of a set S a Λ2-labelling of S can be
derived by applying a ssf to the set of labels relevant to each element of S.

2Traditionally credulous justification id regarded as including skeptical justification, we enforce this distinc-
tion so that argument justification can be properly modelled as a labelling.
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Definition 15 Let S be a set, Λ1 and Λ2 sets of labels, syn a ssf from Λ1 to Λ2, and L1 a
set of Λ1-labellings of S. The Λ2-labelling L2 derived from L1 through syn is denoted as
DLsyn

L1
defined, for every s ∈ S as:

DLsyn
L1

(s) = syn({L1(s) | L1 ∈ L1})

To exemplify, it is easy to see that the argument justification evaluation described
above corresponds to the use of a ssf synAJ from ΛIOU to ΛAJ defined, for every Λ ⊆
ΛIOU as follows:

• synAJ(Λ) = SkJ if Λ = {in};
• synAJ(Λ) = CrJ if Λ � {in};
• synAJ(Λ) = NoJ otherwise.

Assuming that the labellings used for derivation satisfy some consistency properties,
a preservation of these properties in the derived labelling appears to be desirable.

Definition 16 Let C be a sac equipped with an incompatibility relation inc, and Λ1 and
Λ2 be two C-classifed sets of labels. A ssf syn from Λ1 to Λ2 is consistency preserving iff
for any set S equipped with an intolerance relation int and any int-inc-consistent set L1
of Λ1-labellings of S it holds that the labelling DLsyn

L1
is int-inc-consistent.

This in turn raises the issue of analyzing at a general level some properties of the ssf
that can ensure consistency preservation.

To start, we introduce a notion of well-behaved ssf which intuitively means that
the function is monotonic with respect to some positiveness ordering of sets of labels,
introduced in next definition.

Definition 17 Given a sal Λ, and Λ1,Λ2 ⊆ Λ, we say that Λ2 is at least as positive as
Λ1, denoted as Λ1 �P Λ2, iff ∀λ ∈ Λ1 ∃λ ′ ∈ Λ2 such that λ �Λ λ ′ and ∀λ ′ ∈ Λ2 ∃λ ∈ Λ1
such that λ �Λ λ ′.

The idea of the �P relation is that every element of Λ1 can be mapped into an
at least as positive element of Λ2 and at the same time every element of Λ2 can be
mapped into a no more positive element of Λ1. �P is reflexive and transitive, i.e. a
preorder. To exemplify, ∀ /0 � Λ ⊆ ΛIOU it holds that Λ �P {in} and {out} �P Λ.
Also {in,out}�P {in,und,out} and {in,und,out}�P {in,out} while {in,out}�P
{und} and {und}�P {in,out},

We can now introduce the notion of well-behaved ssf.

Definition 18 A ssf syn is well-behaved iff whenever Λ1 �P Λ2 syn(Λ1)� syn(Λ2).

We then move to consider, given a set of labels Λ1, whether a set of labels Λ2 is a
compatible dual of Λ1, meaning that, given an int-inc-consistent set of labellings L1, if
Λ1 = {L1(s) | L1 ∈ L1} for some element s, then it is possible that Λ2 = {L1(s′) | L1 ∈
L1} for some s′ such that s� s′.

Definition 19 Given a sal Λ, and Λ1 ⊆ Λ, we say that Λ2 ⊆ Λ is a compatible dual of
Λ1, denoted as Λ2 ∈CD(Λ1), iff ∀λ ∈ Λ1 ∃λ ′ ∈ Λ2 such that λ ′ ∈ sc(λ ), and ∀λ ′ ∈ Λ2
∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ).
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Proposition 4 Let C be a sac equipped with an incompatibility relation inc and Λ be
a C-classifed set of labels. For any set S equipped with an intolerance relation int, any
int-inc-consistent set L1 of Λ-labellings of S, and any s1,s2 ∈ S such that (s1,s2) ∈ int,
it holds that L ↓

1 (s2) ∈ CD(L ↓
1 (s1)) where for any set L of Λ-labellings of S and any

s ∈ S, L ↓(s)� {L(s) | L ∈ L }.

Proof: Since every L∈L1 is int-inc-consistent it must be the case that L(s2)∈ sc(L(s1)),
hence ∀λ ∈ L ↓

1 (s1) ∃λ ′ ∈ L ↓
1 (s2) such that λ ′ ∈ sc(λ ) and also ∀λ ′ ∈ L ↓

1 (s2) ∃λ ∈
L ↓

1 (s1) such that λ ′ ∈ sc(λ ), hence L ↓
1 (s2) ∈CD(L ↓

1 (s1)). �

Towards characterizing well-behaved ssfs which are consistency preserving we fo-
cus on the case where the set of labellings to be synthesized is finite, which is common
in argumentation semantics and many other kinds of assessments. The case of infinite
sets of labellings is left to future work.

To start, we need to consider a compatible dual of a finite set of labels which turns
out to be not less positive than any other compatible dual.

Definition 20 Given a sal Λ, and a finite Λ1 ⊆ Λ we define MCD(Λ1)�
⋃

λ∈Λ1
M̂C(λ ),

where M̂C(λ )� {λ ′ ∈ sc(λ ) | �λ ′′ ∈ sc(λ ) : λ ′ ≺ λ ′′}

Note that non emptyness of MCD(Λ1) follows from the non emptyness of sc(λ )
for every λ (Section 2) and from the finiteness of Λ1 together with the total ordering
of C. The following propositions, which assume again Λ1 finite, provide two interesting
properties of MCD(Λ1): it belongs to CD(Λ1) and is maximal with respect to �P.

Proposition 5 MCD(Λ1) ∈CD(Λ1).

Proof: From the definition it is immediate to see that for every λ ∈ Λ1 ∃λ ′ ∈ MCD(Λ1)
such that λ ′ ∈ sc(λ ) and that for every λ ′ ∈ MCD(Λ1) ∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ). �

Proposition 6 ∀D ∈CD(Λ1) it holds that D �P MCD(Λ1).

Proof: For any λ ′ ∈ D, from Definition 19 it holds that ∃λ ∈ Λ1 such that λ ′ ∈ sc(λ ).
Then, by Definition 20 ∃λ ′′ ∈ MCD(Λ1) such that λ ′′ ∈ sc(λ ) and �λ ′′′ ∈ sc(λ ) : λ ′′ ≺
λ ′′′ which implies that λ ′ � λ ′′. Consider now any λ ′′ ∈ MCD(Λ1): by Definition 20 it
holds that ∃λ ∈ Λ1 such that λ ′′ ∈ sc(λ ). Moreover by Definition 19 ∃λ ′ ∈ D such that
λ ′ ∈ sc(λ ). Now by Definition 20 we have again that �λ ′′′ ∈ sc(λ ) : λ ′′ ≺ λ ′′′ and hence
λ ′ � λ ′′. �

On this basis, we can now derive a necessary and sufficient condition for a well-
behaved ssf to be consistency preserving for finite sets of labels.

Proposition 7 A well-behaved ssf syn is consistency preserving if and only if for every
finite set Λ1 ⊆ Λ it holds that syn(MCD(Λ1)) ∈ sc(syn(Λ1)).

Proof: Let syn be a ssf satisfying the hypotheses and assume by contradiction that
syn is not consistency preserving. This means that there are two elements s1,s2 ∈ S
such that s1 � s2 and a set L1 of Λ-labellings of S such that DLsyn

L1
(s1)�DLsyn

L1
(s2).
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Now DLsyn
L1

(s1) = syn(L ↓
1 (s1)) and similarly DLsyn

L1
(s2) = syn(L ↓

1 (s2)). Let Λ1 =

syn(L ↓
1 (s1)). From Proposition 4 we have L ↓

1 (s2) ∈CD(L1) and hence from Proposi-
tion 6 L ↓

1 (s2)�P MCD(Λ1). Since syn is well-behaved syn(L ↓
1 (s2)� syn(MCD(Λ1)),

but this, together with syn(MCD(Λ1)) ∈ sc(syn(Λ1)), contradicts syn(L ↓
1 (s1)) �

syn(L ↓
1 (s2)). As to the other direction of the proof, assume now that syn is consis-

tency preserving. Since by Proposition 5 for every set Λ1 ⊆ Λ it holds that MCD(Λ1) ∈
CD(Λ1), we can identify a consistent set L1 of Λ-labellings such that L ↓

1 (s1) = Λ1 and
L ↓

1 (s2) = MCD(Λ1) with s1 � s2. Then by consistency preservation it must also hold
that syn(MCD(Λ1)) ∈ sc(syn(Λ1)). �

As an example of application of the above concepts, we show that the function synAJ
is consistency preserving for the incompatibility relations incC3 , inca

C3 , and incc
C3 while

it is not for incC3 .
First we need to show that synAJ is well-behaved.

Proposition 8 The ssf synAJ is well-behaved.

Proof: Since the strict order ≺ induced on ΛAJ is total, it is sufficient to show that for
any two non-empty sets Λ1,Λ2 ⊆ ΛIOU whenever synAJ(Λ1) ≺ synAJ(Λ2) it does not
hold that Λ2 �P Λ1. First, it is easy to see that {in} �P Λ1 for any Λ1 ⊆ ΛIOU, with
Λ1 /∈ { /0,{in}} which covers all cases where synAJ(Λ1) ≺ SkJ. Then, it is also easy to
see that for any non-empty set Λ1 such that in /∈ Λ1 and any set Λ2 such that {in}� Λ2,
Λ2 �P Λ1, covering all cases where synAJ(Λ1)≺ CrJ and thus completing the proof. �

Proposition 9 The ssf synAJ is consistency preserving for the incompatibility relations
incC3 , inca

C3 , and incc
C3 while it is not for incC3 .

Proof: We need to show that for every non-empty set Λ1 ⊆ ΛIOU it holds that
synAJ(MCD(Λ1)) ∈ sc(synAJ(Λ1)). For incC3 , inca

C3 , and incc
C3 this is illustrated in

Table 1, where the first column presents the various possible cases for Λ1 with the
relevant value of synAJ(Λ1) and the following columns (illustrating incC3 , inca

C3 ,
and incc

C3 respectively) show the corresponding MCD(Λ1) and the relevant value of
synAJ(MCD(Λ1)). By inspection, it can be checked that, as desired, for every pair
(synAJ(Λ1),synAJ(MCD(Λ1))) obtained by taking the first element from a row of the
first column, and the second element from any other cell (say the i-th with i ∈ {2,3,4})
of the same row it holds that (synAJ(Λ1),synAJ(MCD(Λ1))) /∈ inc′ where inc′ is the
incompatibility relation induced by the inc relation specified at the top of the column
from which the second element of the pair was taken. For instance, considering the
fifth row, with Λ1 = {in,out} and (synAJ(Λ1)) = CrJ and its second cell where (ac-
cording to incC3 ) MCD(Λ1) = {in,und} we have (synAJ(MCD(Λ1))) = CrJ and then
(CrJ,CrJ) /∈ inc′ since (mid,mid) /∈ incC3 .

Concerning incC3 a counterexample is provided by Λ1 = {in,out} with MCD(Λ1)=
{in,out} and synAJ(Λ1) = synAJ(MCD(Λ1)) = CrJ while (mid,mid) ∈ incC3 . �

The fact that synAJ is not consistency preserving according to incC3 is not surprising,
given that incC3 essentially reflects the fully bipolar nature of stable semantics, while
synAJ admits tripolar assessments.
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Λ1 incC3 inca
C3 incc

C3

synAJ(Λ1)

{in} {und} {und} {out}
SkJ NoJ NoJ NoJ

{out} {in} {in} {in}
NoJ SkJ SkJ SkJ

{und} {in} {und} {und}
NoJ SkJ NoJ NoJ

{in,out} {in,und} {in,und} {in,out}
CrJ CrJ CrJ CrJ

{in,und} {in,und} {und} {und,out}
CrJ CrJ NoJ NoJ

{und,out} {in} {in,und} {in,und}
NoJ SkJ CrJ CrJ

{in,und,out} {in,und} {in,und} {in,und,out}
CrJ CrJ CrJ CrJ

Table 1. Illustration of the proof of Proposition 9.

5. Discussion and conclusion

We have introduced a generalized notion of consistency and provided two initial exam-
ples of its possible uses in formal argumentation: revisiting some of Dung’s traditional
semantics from a perspective of progressive strengthening of consistency requirements
and characterizing the consistency preservation of operators which produce assessments
as a synthesis of sets of labellings, as is the case for the traditional notion of argument
justification.

To our knowledge, providing a generalized form of the notion of consistency has not
been previously considered in the formal argumentation literature, while other related
and complementary research directions have been pursued. For instance, in [7] the idea
of encompassing some inconsistency tolerance, through an inconsistency budget in the
semantics of weighted argumentation systems is considered. This proposal does not ad-
dress the issues we consider for traditional argumentation frameworks, while extending
our approach to the case of weighted systems appears to be an important direction for
future work. In [8] the notion of conflict-tolerant semantics is introduced, which is es-
sentially based on lifting the requirement of conflict-freeness in semantics definition. In
the context of our approach, this corresponds to making the intolerance relation empty,
while keeping other constraints: again, we consider drawing correspondences between
our approach and this proposal as interesting future work. In [9] the problem of mea-
suring inconsistency in (abstract and structured) argumentation formalisms is addressed:
this is an orthogonal research direction as we do not aim at quantifying inconsistency in
a given setting, but rather at encompassing different notions of inconsistency. Bridging
the two directions appears worth investigating.

Extending the analysis beyond tripolar classifications is another important future de-
velopment. For example, more articulated notions of argument justification have been
considered in the literature [10,11,12,13]. Dealing with consistency and its preserva-
tion in such a context might require considering different sets of assessment classes and
defining a notion of refinement between them.
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Addressing the evaluation of argument conclusions and their consistency is a fur-
ther key step. In particular, it would be interesting to extend the notions presented in this
paper to the formalism of multi-labelling systems [14], which can capture a variety of
approaches to derive the assessment of conclusions from the assessment of arguments.
This will require to tackle several additional aspects, like addressing the connections be-
tween intolerance relations involving entities at different levels and dealing with the var-
ious possible mechanism for synthesizing the labellings of conclusions after projecting
argument labellings on them.

Finally, we suggest that, in the long term, the potential uses of the proposed approach
go beyond the formal argumentation field. Consistency is a crucial aspect of most, if
not all, reasoning formalisms, typically defined using their structural elements. Expos-
ing the elementary concepts composing the notion of consistency brings, among others,
the following advantages. Firstly, it may enable inter-formalism analyses, comparisons,
and cross-fertilization. Further, it may provide a basis for developing novel theoretical
and practical tools, like, for instance, methods to preserve consistency across different
reasoning stages or general-purpose parametric consistency checkers.
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