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Abstract. When analyzing the thermal stress and deformation of satellites in orbit, 

the traditional numerical methods, such as the finite difference and the finite element, 

are expensive and time-consuming. To improve computational efficiency, we 

propose a deep-learning based surrogate to immediately predict the thermal stress 

and deformation of a satellite with a given temperature field, where the U-Net is 

employed to learn the end-to-end mapping from the temperature field to the thermal 

stress and deformation. A data set with less smooth temperature fields is generated 

to augment the training data, by which the accuracy and generalization performance 

of the model is significantly improved. Combined with a rapid temperature 

prediction method, the model predicts the thermal stress and deformation of a 

satellite motherboard given several heat sources, verifying the feasibility and 

effectiveness of the proposed method. 
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1. Introduction 

As influential performers of space missions, satellites play an irreplaceable role in 

communication, remote sensing, navigation, and military reconnaissance [1]. 

Nevertheless, their reliability and longevity are long-stand challenges. The satellite 

components will be periodically exposed to alternating high and low temperature fields 

from outer space during the period of on-orbit. The change of temperature will cause 

fatigue, delamination, and fracture of satellite components, affecting their operational 

performance and service life [2]. Besides, the satellite components will inevitably 

generate immense heat during operation due to high power density, which will lead to a 

series of problems such as thermal deformation, thermal buckling or thermal vibration 

[3]. All above will significantly affect the pointing precision of the satellite when 

performing missions. Therefore, it is essential to analyze the thermal stresses and 

deformation of the satellite. 

At present, there are three primary means to analyze the in-orbit satellites: 

experimental, simulation and theoretical [4]. For experimental methods, the ground-

based simulation test is expensive, and it still cannot measure the parameters directly in 

a thermal vacuum tank accurately; besides, the increasing size of the satellite structure 

makes it more challenging to perform ground tests of a full-size model of the satellite. 
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Therefore, theoretical analysis and simulation have become the mainstream methods for 

the in-orbit analysis of satellites [5]. However, these traditional numerical calculation 

methods, such as finite difference and finite element, often cost much calculation time 

[6]. It is difficult to provide an immediate response to the thermal stresses and 

deformation when the temperature field changes. Therefore, it is necessary to develop an 

efficient surrogate model with high precision that meets the fast calculation requirement. 

With the booming development of artificial intelligence, deep learning technology 

based on Deep Neural Network (DNN) has emerged in many fields, such as computer 

vision and natural language processing [7]. Due to the universal approximation ability 

and efficient computation of neural networks [8], the surrogate modeling technique based 

on deep learning provides a paradigm to construct high-precision models for thermal 

stress and thermoelastic deformation. 

In recent years, many deep learning based surrogate models for regression between 

high-dimensional variables have emerged in various fields. In thermodynamics, Rishi 

Sharma et al. [9] solved thermal transport problems by U-Net structure. In aerodynamics, 

Shen et al. [10] developed a generative deep learning model to generate the numerical 

solutions for N-S equations. Also, Thuerey et al. [11] investigated the accuracy of deep 

learning models for the inference of Reynolds-Averaged Navier-Stokes solutions. In 

addition, Cheng et al. [12] predicted the 2D velocity and pressure fields around arbitrary 

shapes in laminar flows by deep learning based surrogate model. In optics, Li et al. [13] 

proposed a deep learning framework for real-time predictions of the scattering from an 

isolated nano-structure in the neared regime. The literature above has demonstrated the 

powerful regression capabilities of surrogate models endowed with deep learning 

techniques. 

In the field of elasticity, Saurabh Deshpande et al. [14] predicted the response of 

super elastomers under load by the U-Net framework. The proposed approach to similar 

problem motivated us. In this paper, we introduce a deep learning based method to 

predict thermal stress and deformation of the satellite. We simply the problem as 

predicting the thermal stress and thermal deformation of a satellite motherboard where 

some heat sources distribute in. Firstly, to address the point of the problem, we 

implement the regression task, which maps the temperature field to thermal stress and 

deformation by U-Net structure. Secondly, to augment the training data, a data set with 

low smoothness is used for training. In this way, the accuracy and generalization 

performance of the model is well improved. Experiments show that the U-Net surrogate 

can effectively return accurate estimates of the thermal stress and deformation. Finally, 

the surrogate is used to predict the thermal stress and deformation of the satellite 

motherboard. This new approach can be used in real-time monitoring techniques. Also, 

it helps to promote the application of deep learning in practical engineering and enrich 

the solution to engineering problems. 

This paper is organized as follows. In section 1, we introduce the background and 

related works. Section 2 presents the essential mathematical models of the thermal field, 

thermal stress, and deformation. Section 3 describes the training processes of the planar 

thermoelastic problem by U-Net. Then section 4 shows the experiment results. In Section 

5, the summary of the research is outlined. 
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2. Mathematical model of thermodynamic coupling problems 

This section investigates linear thermoelastic problems driven by thermal properties. The 

solution of thermodynamic coupling problems is segmented into two processes, heat 

conduction problem and thermoelastic problem. We discuss the two mathematical 

models respectively. 

2.1.  Mathematical model for heat conduction problem 

This paper studies the thermal stress and deformation of a satellite motherboard where 

some heat sources distribute in. Firstly, we need to calculate the temperature field of the 

motherboard. The thermal layout model of the satellite motherboard was previously 

defined by Chen et al. [15], which is illustrated in Fig.1. The thermal layout shows a two-

dimensional satellite motherboard with partial openings, with three sides of the plate 

adiabatic and one side with a convective heat transfer coefficient of  . FDM method is 

used to build the dataset, the process of which is indicated by the red arrow. The blue 

arrow indicates the surrogate model approach. In this way, we can focus our energy on 

the tricky part. 

The steady-state temperature field T , which contains multiple heat sources in the 

two-dimensional motherboard, can be calculated by the Poisson equation. The partial 

differential equations are as follows, 
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where k  means the thermal conductivity of the layout domain, ( , )x y�  represents the 

power distribution of heat sources and h  means the convective heat transfer coefficient. 

The following Poisson equation includes three different boundary conditions: Dirichlet 

(isothermal), Neumann (adiabatic), or Robin (convective). The power distribution 

function ( , )x y�  is determined by the positions and power of different heat sources, 

which can be expressed as 
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where i�  means the intensity of one single heat source and i�  denotes the area the 

heat source covered. When the layout and the power of heat sources changes, functions 

change, so as to influence the steady-state temperature field of the domain

 

Figure 1. Model definition and calculation process. 
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2.2. Mathematical model of thermoelastic problem 

In this part, the temperature field is given as an input. It can be obtained as a solution to 

the steady-state thermal equation (Poisson equation). The linear elasticity coefficient �  

is assumed to not change with temperature. 

As the elastomer is subject to external constraints as well as mutual constraints 

between parts of the body, when the temperature changes, The motherboard tends to 

expand, and the constraints on elastomers will cause thermal stress. It would in turn 

generate new additional strains due to elasticity. The strain components and temperature 
T  satisfy 
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According to the equilibrium differential equation, the thermal displacement components 

satisfy 

 

22 2

2 2

2 2 2

2 2

1 1
(1 ) 0,

2 2

1 1
(1 ) 0.

2 2

yx

y y

x

x

u u T
x x
u

u u

yx y

u T
x y yy x

� �� � � �
� � �  � �

� � �� ��
�
� �� � � �

� �  � �� � � �� ��

� � � �

� � � �

 (4) 

The stress boundary conditions according to displacement are 
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According to the equations above, the thermal stress and deformation of the satellite 

motherboard with any heat source layout can be calculated. 

3. Surrogate model of thermal stress and deformation based on U-Net structure 

This section describes the surrogate model of thermal stress and deformation based on 

U-Net, which can predict the planar thermoelastic problem when given the temperature 

field. According to the above mathematical models, the key lies in solving the equations 

of thermoelastic dynamics. Therefore, we focus on mapping the temperature field to 

thermal stress and deformation. It is organized as follows. Section 3.1 introduces the U-

Net architecture. In Section 3.2, the construction of the data set is described in detail. 

Section 3.3 presents the training process. 
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3.1. U-Net architecture 

The structure of U-Net is shown in Fig.2. It is a symmetric structure similar to a U-shape, 

consisting of two main parts, encoder and decoder. The encoder is the feature extraction 

part, and it is a classical VGG-16 network similar to the coding process, which learns 

multi-scale features of an image through pooling and convolution operations; The 

decoder is an up sampling process, which reduces the image size layer by layer through 

deconvolution operations. U-Net fuses the feature extraction part with same scale, then 

obtains more features from the lower-level feature maps, effectively preserving the 

information in the original image and preventing the loss of too much detailed 

information. In this way, U-Net combines features at different scales and increases the 

amount of information, and the accuracy of model benefits from this structure. Referring 

to the above characteristic, the U-Net is well suited for regression tasks between images. 

 

Figure 2. U-Net architecture  

3.2. Data preparation 

The specific task problem is shown in Fig.1. We consider a two-dimensional rectangular 

satellite motherboard with size L H� . The motherboard is not subjected to self-weight 

loads. It has four circular holes inside, which simulate the screw articulation of an actual 

engineering component. There is no displacement at the edges of the circular holes. 

Thermo-elastic properties are assumed to be isotropic and linear. In this model, 

parameters are the same as those of aluminium and will be considered around a reference 

temperature 0 293KT � . Stress and flux-free boundary conditions are applied on the 

outer boundary of the plate. Detailed parameters are shown in Tab.1. 

In the U-Net, the input is a two-dimensional planar temperature field in the form of 

matrix. The outputs are the corresponding thermal stress matrix and the thermal 

deformation matrix. The Finite-Difference Method (FDM) [16] was used for the 

calculation. The computational domain is a 200 200�  uniform grid, and the 200 200�  

temperature field matrix is the input; five 200 200�  matrices are outputs, which 
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represent x-direction displacement( xu ), y-direction displacement( yu ), x-direction 

thermal stress( xx� ), y-direction thermal stress( yy� ), tangential stress( xy� ) respectively. 

Table 1. Parameter list 

Option Symbol Value Units 

Length of plate L  20 cm  

Height of plate H  20 cm  

Radius of the holes R  0.5 cm  

Thermo-conductivity k  0.5 W/(m k)�  

Linear coefficient expansion �  1 5e   1 /  

Young's modulus E  50 3e  MP  

Poisson's ratio �  0.2 / 

 

Referring to the solution of Poisson equation, the temperature field of satellite 

motherboard is very smooth. To augment the training data, two data sets with lower 

smoothness than actual conditions are used for training. The temperature field is 

generated by the gaussian random field. When we adjust the standard deviation and mean 

of the gauss function, the smoothness of temperature changes as well. We generated two 

training sets, respectively DS and DC (as shown in Fig.3). The DS and DC are two 

samples in the sample set with a sample size of 10000. DS means relatively smooth 

temperature and DC means relatively coarse one. However, both of them are more 

complex than the temperature field of the satellite motherboard.Also, we have 500 

general samples as test set TS, and the smoothness level of it is the same as DS. The TS 

is generated in the same way of training set. 

    
DS DC 

Figure 3. Training set comparison. 

3.3. Data preparation 

Given an arbitrary temperature field T , we can obtain the outputs from the neural 

network surrogate model, i.e., the predicted thermal stress and deformation. The training 

objective of the U-Net model is to minimize the difference between the predicted 

outcome Ŷ  and the label Y , so that the surrogate model can fit the labels. Once the 

model is trained, it can be applied in inference to the thermal stress and deformation 

corresponding to any temperature field. This task has five predicting targets, and if they 

were trained individually in a single-channel manner, it would be time-consuming. To 

solve this problem, this paper adopts multi-task training method. 

In this regression task between images, the loss function is defined by 
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The dimensions between different tasks are different. To ensure the balance of training 

accuracy as well as training speed between different tasks, the normalized operation is 

applied, and the loss function is weighted according to the task characteristics just as 
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where m means the number of tasks, and wi  is the weighted value determined by loss of 

different tasks. In this way, we map the thermal field to thermal stress and deformation. 

4. Experiment results 

In this section, the experiment results are discussed. AdamDelda [17] is chosen as the 

optimization. The U-Net model is implemented by PyTorch 1.8. For training, we set the 

epoch to 500 and the batch size to 64. 

4.1. Performance of U-Net 

The predictions of the surrogate model after 500 epochs are shown in Fig.4. It shows the 

label of a randomly chosen temperature field in TS, along with the output of the trained 

neural network and the absolute error. 

The mean relative error(MRE) in the pixel-by-pixel output is only 2.13%. Average 

per-pixel error is computed relative to “ground truth”, which is determined by running 

finite difference to very high precision. Through such a deep learning surrogate model, 

the computation time is reduced from 2min to 0.23s, effectively saving cost of time. This 

demonstrates the feasibility of using the U-Net model for regression between ultra-high 

dimensional variables. It also illustrates the effectiveness of the deep learning based 

surrogate model of thermal stress and deformation. 

 

Figure 4. Comparison between ground truth and network result(TS). 
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4.2. The performance of data augmentation on the generalization of prediction results 

We compared the performance of the surrogate on different training sets after 240 epochs. 

U-Net was trained on DS and DC respectively (Fig.3), then they were both tested on the 

TS. 

The results are shown in Tab.2. It can be seen that the surrogate models trained on 

both data sets exhibit good performance. However, the MRE of DC is obviously less 

than that of DS, even though DS is as smooth as TS. It can be explained as data 

augmentation. The more complex data set (DC) increase the diversity of the data set, 

which improves the accuracy and generalization of the surrogate model. 

Table 2. Performances on the TS for different data sets 

Option 
MRE/% 

DS DC 

xu  3.32 2.61 

yu  3.47 2.37 

xx�  3.92 2.16 

xy�  3.92 2.32 

yy�  3.22 2.19 

4.3. Application: Thermal stress and deformation analysis of the satellite motherboard 

When given the heat source layout of a satellite motherboard, the temperature field of it 

is calculated by finite difference. Then the surrogate, which maps temperature to thermal 

stress and deformation, is applied. Fig.1 shows a randomly generated heat source layout 

and the corresponding temperature field of the satellite motherboard. Fig.5 shows the 

corresponding thermal stress and deformation calculated entirely by the finite 

differences(label), the output of the trained neural network and its absolute error. The 

MRE in the pixel-by-pixel output is only 1.76%. It is less than that on TS. This 

phenomenon also benefits from the data augmentation by DC. This demonstrates that the 

deep learning-based surrogate model is effective in solving complex thermodynamic 

coupling problems such as satellite thermal stress and deformation. 

 
Figure 5. Comparison between ground truth and network result(Satellite motherboard). 
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5. Conclusions 

This paper presents an end-to-end deep learning based surrogate modeling method for 

predicting the thermal stress and deformation of satellites. The neural network is used to 

construct surrogate models for fast simulating complex thermodynamic coupling 

problems, where traditional numerical methods often cost much calculation time and 

resources. 

The prediction problem is simplified as predicting the thermal stress and thermal 

deformation of a satellite motherboard where some heat sources distributed in. We build 

a surrogate model which maps the temperature field to the thermal stress and deformation, 

and then make some data augment strategies to improve the accuracy and generalization 

performance of the model. The surrogate model later is used to predict the thermal stress 

and deformation of the satellite motherboard with some heat sources. This case verifies 

the feasibility and effectiveness of our deep learning surrogate model. 

The results demonstrate that this deep learning-based surrogate model method is 

effective in solving complex thermodynamic coupling problems such as thermal stress 

and deformation of satellites. 
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